Package ‘sptm’

February 20, 2015

LazyLoad yes
LazyData yes
Version 14.10-11
Date 14.10-08
Title SemiParametric Transformation Model Methods
Author Youyi Fong <yfong@fhcrc.org>, Krisztian Sebestyen <ksebestyen@gmail.com>
Maintainer Youyi Fong <yfong@fhcrc.org>
Depends R (>= 3.0.0), survival, survey
Imports kyotil
Suggests RUnit, mvtnorm, Matrix, MASS
Description Semiparametric transformation model, calibration weights
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2014-10-13 10:05:37

R topics documented:

enhanced.ipw.coxph ... 2
rstm .. 2
sim.fong .. 3
sim.kong .. 5
stm ... 5

Index 7
enhanced.ipw.coxph

Enhanced Inverse Probability Weighted coxph

Description

enhanced.ipw.coxph is a wrapper function for calling svycoxph of survey package.

Usage

enhanced.ipw.coxph (formula, dat, strata.formula, subset, imputation.formulae, verbose=FALSE)

Arguments

- **formula**: a formula that gives the model we are interested to fit
- **dat**: a data frame
- **strata.formula**: a formula that gives how two phase sampling is done
- **subset**: a vector of logicals that give which observations are included in phase 2
- **imputation.formulae**: a list of formulae or a single formula that give models to impute missing data
- **verbose**: Boolean

Value

An object of class svycoxph.

Author(s)

Youyi Fong <yfong@fhcrc.org>

rstm

Simulate failure time from a semiparametric transformation model

Description

Simulate failure time from a semiparametric transformation model

Usage

rstm(n, family = c("PH", "PO", "P2"), linear.predictors, baseline.hazard = 1)
Arguments

- `n` integer. Sample size
- `family` string. Link functions in the semiparametric transformation model
- `linear.predictors` vector. It can also be a matrix of 1 column, the dimension will be dropped
- `baseline.hazard` numeric.

Details

Called by `sim.fong`
Details

The number of rows is the size of the full cohort. Adherence ratio works as a Bernoulli variable. Prevalence is used to compute baseline hazard function based on some empirical evidence.

Value

If design is FULL, returns a data frame of:

- \(ft \) failure time
- \(c \) censoring time
- \(x \) smaller of the \(ft \) and \(c \)
- \(d \) event indicator
- \(z \) baseline covariate \(z \)
- \(s \) phase II covariate \(s \)

If design is CC, returns a data frame of:

- \(ft \) failure time
- \(c \) censoring time
- \(x \) smaller of the \(ft \) and \(c \)
- \(d \) event indicator
- \(z \) baseline covariate \(z \)
- \(s \) phase II covariate \(s \)
- \(w \) baseline auxilliary covariate \(w \)

Examples

```r
# Full design
dat = sim.fong(n=10000, family="PH", beta=c(log(.5), log(.7), log(1.2)), design="CC",
auxiliary="weak", seed=1, prevalence=0.1, non.adherence.ratio=0, random.censoring="0")
mean(dat$d[dat$z==0])

# CC design
dat = sim.fong(n=10000, family="PH", beta=c(log(.5), log(.7), log(1.2)), design="CC",
auxiliary="weak", seed=1, prevalence=0.1, non.adherence.ratio=0.15, random.censoring="0")
sum(!dat$d & !is.na(dat$s)) / sum(dat$d & !is.na(dat$s))
sum(!dat$d & !is.na(dat$s)) / sum(dat$d & !is.na(dat$s))
```

sim.kong

Data Simulation as in Kong et al. (2004)

Description

Simulate data as in Kong et al. (2004).

Usage

```r
sim.kong(gamma, beta, design = "FULL", rho = 0.9, seed = 1, impute = FALSE, ppi)
```

Arguments

- `gamma`
- `beta`
- `design`
- `rho`
- `seed`
- `impute`
- `ppi`

stm

Fit a semiparametric transformation model

Description

Fit a semiparametric transformation model.

Usage

```r
stm(formula, dat, strata.formula, phase2.ind=NULL, imputation.formula=NULL, family=c("PH","PO","P2"), ee=c("fine2","fine1","kong"), var.est.type=c("1","2"), t0, init=NULL, maxit=1000, intermediate=FALSE, verbose=FALSE, show.time elapsed=TRUE)
```

```r
# S3 method for class 'stm'
ggetFixedEf(object, ...)
```
Arguments

- **formula**: formula. Regression model of interest
- **dat**: data frame.
- **strata.formula**: formula.
- **phase2.ind**: Boolean vector. If TRUE, phase II samples; if FALSE, phase I samples. If NULL, will try to infer from which subjects have phase II variables. Should not be 0/1.
- **imputation.formula**: formula. If not NULL, calibration weighting is done.
- **family**: string.
- **ee**: string. Type of design matrix used in estimating equation.
- **var.est.type**: string. 1: one-stage estimator, 2: two-stage estimator.
- **t0**: numeric. Should be close to the end of study time.
- **init**: numerical vector.
- **maxit**: integer. Maximum number of iterations in the optimization process.
- **intermediate**: Boolean.
- **verbose**: Boolean.
- **show.time.elapsed**: Boolean.
- **object**: an object of type `stm`.
- **...**: additional arguments.

Details

Fit `stm` both with and without calibration. Calls `stm.internal`.

Value

An object of type `stm`.

Examples

```r
n=100
beta= c(log(.5), log(.7), log(1.2))
t0=2.9999
init = c(log(0.0373*t0), beta)
dat = sim.fong(n, family="PH", beta, random.censoring="0", design="CC", auxiliary="weak", seed=1)
est = stm(formula=Surv(X,d) ~ z + s + z:s, dat, strata.formula=~d, family="PH", t0=t0, init=init, var.est.type="1", verbose=3)
```
Index

enhanced.ipw.coxph, 2
getFixedEf.stm(stm), 5
rstm, 2
sim.fong, 3
sim.kong, 5
stm, 5