Package ‘twang’

February 20, 2015

Version 1.4-9.3
Date 2015-01-30
Title Toolkit for Weighting and Analysis of Nonequivalent Groups
Author Greg Ridgeway, Dan McCaffrey, Andrew Morral, Beth Ann, Lane Burgette
<burgette@rand.org>
Maintainer Lane Burgette <burgette@rand.org>
Depends R (>= 2.10), gbm (>= 1.5-3), survey, xtable, lattice, latticeExtra
Description This package offers functions for propensity score estimating and weighting, nonresponse weighting, and diagnosis of the weights. This package was originally developed by Drs. Ridgeway, McCaffrey, and Morral. Burgette, Griffin and McCaffrey updated the package during 2011-2015.
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2015-02-02 15:32:02
Repository/R-Forge/Project twang
Repository/R-Forge/Revision 27
Repository/R-Forge/DateTimeStamp 2015-01-30 14:00:12

R topics documented:

AOD .. 2
bal.stat .. 3
bal.table .. 4
boxplot.mnps .. 5
boxplot.ps .. 6
desc.wts ... 7
dx.wts .. 8
egsingle ... 10
AOD

Subset of Alcohol and Other Drug treatment data

Description

A small subset of the data from McCaffrey et al. (2013).

Usage

data(AOD)

Format

A data frame with 600 observations on the following 10 variables.

- **treat**: Treatment that each study subject received. Either community, metcbt5, or scy.
- **suf12**: Outcome variable, substance use frequency at 12 month follow-up
- **illact**: Covariate, illicit activities scale
- **crimjust**: Covariate, criminal justice involvement
- **subprob**: Covariate, substance use problem scale
- **subdep**: Covariate, substance use dependence scale
- **white**: 1 if non-Hispanic white, 0 otherwise

References

bal.stat

Calculate weighted balance statistics

Description

bal.stat compares the treatment and control subjects by means, standard deviations, effect size, and KS statistics.

Usage

bal.stat(data,
 vars = NULL,
 treat.var,
 w.all,
 sampw,
 get.means = TRUE,
 get.ks = TRUE,
 na.action = "level",
 estimand,
 multinom, fillNAs = FALSE)

Arguments

data a data frame containing the data

vars a vector of character strings with the names of the variables on which the function will assess the balance

treat.var the name of the treatment variable

w.all observation weights (e.g. propensity score weights, sampling weights, or both)
sampw sampling weights. These are passed in addition to w.all because the "unweighted" results should be adjusted for sample weights (though not propensity score weights).

gt.means logical. If TRUE then bal.stat will compute means and variances

get.ks logical. If TRUE then bal.stat will compute KS statistics

na.action a character string indicating how bal.stat should handle missing values. Current options are "level", "exclude", or "lowest"
estimand either "ATT" or "ATE"
multinom TRUE if used for multinomial propensity scores.

fillNAs If TRUE, fills in zeros for missing values.

Details

bal.stat calls auxiliary functions for each variable and assembles the results in a table.
Value

get.means and get.ks manipulate the inclusion of certain columns in the returned result.

See Also

The example for ps contains an example of the use of bal.table.

bal.table

Compute balance table

Description

Extract the balance table from ps, dx.wts, and mnps objects

Usage

bal.table(x, digits = 3, collapse.to = c("pair","covariate","stop.method")[1], subset.var = NULL, subset.treat = NULL, subset.stop.method = NULL, es.cutoff = 0, ks.cutoff = 0, p.cutoff = 1, ks.p.cutoff = 1, ...)

Arguments

x a ps or dx.wts object

digits The number of digits that the numerical entries should be rounded to.
collapse.to For mnps ATE objects, the comparisons can be given for all pairs (default), summarized by pre-treatment covariate and stop.method, or as a single summary for each stop.method.
subset.var Eliminate all but a specified subset of covariates.
subset.treat Subset to either all pairs that include a specified treatment or a single pair of treatments.
subset.stop.method Subset to a subset of stop.method's used to fit the ps object.
es.cutoff Subsets to comparisons with absolute ES values bigger than es.cutoff.
ks.cutoff Subsets to comparisons with KS values bigger than ks.cutoff.
p.cutoff Subsets to comparisons with t- or chi-squared p-values no bigger than p.cutoff.
ks.p.cutoff Subsets to comparisons with KS p-values no bigger than ks.p.cutoff.
... Additional arguments.

details

bal.table is a generic function for extracting balance tables from ps and dx.wts objects. These objects usually have several sets of candidate weights, one for an unweighted analysis and perhaps several stop.methods. bal.table will return a table for each set of weights combined into a list. Each list component will be named as given in the x, usually the name of the stop.method. The balance table labeled “unw” indicates the unweighted analysis.
Value

Returns a data frame containing the balance information.

- tx.mn: The mean of the treatment group
- tx.sd: The standard deviation of the treatment group
- ct.mn: The mean of the control group
- ct.sd: The standard deviation of the control group
- std.eff.sz: The standardized effect size, \((\text{tx.mn}-\text{ct.mn})/\text{tx.sd}\). If \(\text{tx.sd}\) is small or 0, the standardized effect size can be large or \INF. Therefore standardized effect sizes greater than 500 are set to \NA.
- stat: the t-statistic for numeric variables and the chi-square statistic for continuous variables
- p: the p-value for the test associated with \stat
- ks: the KS statistic
- ks.pval: the KS p-value computed using the analytic approximation, which does not necessarily work well with a lot of ties

See Also

The example for \ps\ contains an example of the use of \bal.table\.

boxplot.mnps

Boxplots for mnps objects

Description

This function produces a collection of diagnostic plots for mnps objects.

Usage

```r
## S3 method for class 'mnps'
boxplot(x, stop.method = NULL, color = TRUE, figureRows = NULL,
singlePlot = NULL, multiPage = FALSE, ...)
```

Arguments

- **x**: A ps object
- **stop.method**: Only 1 \stop.method\ can be presented at a time for mnps objects. Use a numeric indicator of which \stop.method\ (among those specified when fitting the mnps object) should be used.
- **color**: If FALSE, a grayscale figure will be returned.
- **figureRows**: The number of rows in the figure. Defaults to the number of panels.
If multiple sets of boxplots are produced, `singlePlot` can be used to select only one. For example, `singlePlot = 2` would return only the second set of boxplots.

When multiple frames of a figure are produced, `multiPage = TRUE` will print each frame on a different page. This is intended for situations where the graphical output is being saved to a file.

Additional arguments that may be passed to the underlying `lattice` package plotting functions

Details

This function produces lattice-style graphics of diagnostic plots.

References

See Also

`ps`

`boxplot.ps`
Boxplots for ps objects

Description

This function produces a collection of diagnostic plots for `ps` objects.

Usage

```r
## S3 method for class 'ps'
boxplot(x, subset=NULL, color = TRUE, ...)
```

Arguments

- `x`
 A `ps` object

- `subset`
 If multiple `stop.method` rules were used in the `ps()` call, `subset` restricts the plots of a subset of the stopping rules that were employed. This argument expects a subset of the integers from 1 to `k`, if `k stop.methods` were used.

- `color`
 If set to `FALSE`, grayscale figures will be produced

- `...`
 Additional arguments that may be passed to the underlying `lattice` package plotting functions
desc.wts

Details

This function produces lattice-style graphics of diagnostic plots.

References

See Also

ps

desc.wts Description

Diagnosis of weights

desc.wts assesses the quality of a set of weights on balancing a treatment and control group.

Usage

desc.wts(data,
 w,
 sampw = sampw,
 vars = NULL,
 treat.var,
 tp,
 na.action = "level",
 perm.test.iters=0,
 verbose=TRUE,
 alerts.stack,
 estimand, multinom = FALSE, fillNAs = FALSE)

Arguments

data a data frame containing the dataset
w a vector of weights equal to nrow(data)
sampw sampling weights, if provided
vars a vector of variable names corresponding to data
treat.var the name of the treatment variable
tp a title for the method “type” used to create the weights, used to label the results
na.action a string indicating the method for handling missing data
perm.test.ites
an non-negative integer giving the number of iterations of the permutation test for the KS statistic. If perm.test.ites=0 then the function returns an analytic approximation to the p-value. This argument is ignored if x is a ps object. Setting perm.test.ites=200 will yield precision to within 3% if the true p-value is 0.05. Use perm.test.ites=500 to be within 2%

verbose
if TRUE, lots of information will be printed to monitor the progress of the fitting

alerts.stack
an object for collecting warnings issued during the analyses

estimand
the estimand of interest: either "ATT" or "ATE"

multinom
Indicator that weights are from a propensity score analysis with 3 or more treatment groups.

fillNAs
If TRUE fills NAs with zeros.

Details
desc.wts calls bal.stat to assess covariate balance. If perm.test.ites>0 it will call bal.stat multiple times to compute Monte Carlo p-values for the KS statistics and the maximum KS statistic. It assembles the results into a list object, which usually becomes the desc component of ps objects that ps returns.

Value
See the description of the desc component of the ps object that ps returns

See Also
ps

dx.wts
Propensity score diagnostics

Description
dx.wts takes a ps object or a set of propensity scores and computes diagnostics assessing covariates balance.

Usage
dx.wts(x,
 data,
 estimand,
 vars=NULL,
 treat.var,
 x.as.weights=TRUE,
 sampw=NULL,
 perm.test.ites=0)
dx.wts

Arguments

- **x**: a data frame, matrix, or vector of propensity score weights or a ps object. `x` can also be a data frame, matrix, or vector of propensity scores if `x.as.weights=FALSE`
- **data**: a data frame
- **estimand**: the estimand of interest: either "ATT" or "ATE"
- **vars**: a vector of character strings naming variables in `data` on which to assess balance
- **treat.var**: a character string indicating which variable in `data` contains the 0/1 treatment group indicator
- **x.as.weights**: TRUE or FALSE indicating whether `x` specifies propensity score weights or propensity scores. Ignored if `x` is a ps object
- **sampw**: optional sampling weights. If `x` is a ps object then the sampling weights should have been passed to `ps` and not specified here. `dx.wts` will issue a warning if `x` is a ps object and `sampw` is also specified
- **perm.test.iters**: an non-negative integer giving the number of iterations of the permutation test for the KS statistic. If `perm.test.iters=0` then the function returns an analytic approximation to the p-value. This argument is ignored if `x` is a ps object. Setting `perm.test.iters=200` will yield precision to within 3% if the true p-value is 0.05. Use `perm.test.iters=500` to be within 2%

Details

Creates a balance table that compares unweighted and weighted means and standard deviations, computes effect sizes, and KS statistics to assess the ability of the propensity scores to balance the treatment and control groups.

Value

Returns a list containing

- **treat**: the vector of 0/1 treatment assignment indicators
- **desc**: a nested list containing detailed diagnostic information on the weights. This includes the number of treatment and control subjects, the effective sample size, the largest KS statistic, the average absolute effect size, and the complete balance table
- **summary.tab**: a data frame showing balance information
- **ps**: the given propensity scores
- **w**: the given weights
- **datestamp**: the date and time of the call to `dx.wts`
- **parameters**: the parameters used when calling `dx.wts`
- **alerts**: text containing any warnings accumulated during the estimation
- **varNames**: the variable names

See Also

The example for `ps` contains an example of the use of `dx.wts`
Description

A subset of the mathematics scores from the U.S. Sustaining Effects Study. The subset consists of information on 1721 students from 60 schools. This dataset is available in the \texttt{mlmrev} package.

Usage

\texttt{data(egsingle)}

Format

A data frame with 7230 observations on the following 12 variables.

- \texttt{schoolid} a factor of school identifiers
- \texttt{childid} a factor of student identifiers
- \texttt{year} a numeric vector indicating the year of the test
- \texttt{grade} a numeric vector indicating the student's grade
- \texttt{math} a numeric vector of test scores on the IRT scale score metric
- \texttt{retained} a factor with levels 0 1 indicating if the student has been retained in a grade.
- \texttt{female} a factor with levels Female Male
- \texttt{black} a factor with levels 0 1 indicating if the student is Black
- \texttt{hispanic} a factor with levels 0 1 indicating if the student is Hispanic
- \texttt{size} a numeric vector indicating the number of students enrolled in the school
- \texttt{lowinc} a numeric vector giving the percentage of low-income students in the school
- \texttt{mobility} a numeric vector

Source

Reproduced from the \texttt{mlmrev} package for use in the section on nonresponse weighting in the \texttt{twang} package vignette. These data are distributed with the HLM software package (Bryk, Raudenbush, and Congdon, 1996). Conversion to the R format is described in Doran and Lockwood (2006).

References

get.weights

Description

Extracts propensity score weights from a ps or mnps object.

Usage

get.weights(ps1,
stop.method = NULL,
estimand = NULL,
withSampW = TRUE)

Arguments

ps1 a ps or mnps object
stop.method indicates which set of weights to retrieve from the ps object
estimand indicates whether the weights are for the average treatment effect on the treated
(ATT) or the average treatment effect on the population (ATE). By default,
get.weights will use the estimand used to fit the ps object.
withSampW Returns weights with sample weights multiplied in, if they were provided in the
original ps or mnps call.

Details

Weights for ATT are 1 for the treatment cases and p/(1-p) for the control cases.
Weights for ATE are 1/p for the treatment cases and 1/(1-p) for the control cases.

Value

a vector of weights

See Also

ps
Description

One of the datasets used by Dehejia and Wahba in their paper "Causal Effects in Non-Experimental Studies: Reevaluating the Evaluation of Training Programs." Also used as an example dataset in the MatchIt package.

Usage

data(lalonde)

Format

A data frame with 614 observations on the following 10 variables.

- treat 1 if treated in the National Supported Work Demonstration, 0 if from the Current Population Survey
- age age
- educ years of education
- black 1 if black, 0 otherwise
- hispan 1 if Hispanic, 0 otherwise
- married 1 if married, 0 otherwise
- nodegree 1 if no degree, 0 otherwise
- re74 earnings in 1974 (pretreatment)
- re75 earnings in 1975 (pretreatment)
- re78 earnings in 1978 (outcome)

Source

References

Description

These data are adapted from the lindner dataset in the USPS package. The description comes from that package, except for the variable sixMonthSurvive, which is a recode of lifepres.

Data from an observational study of 996 patients receiving an initial Percutaneous Coronary Intervention (PCI) at Ohio Heart Health, Christ Hospital, Cincinnati in 1997 and followed for at least 6 months by the staff of the Lindner Center. The patients thought to be more severely diseased were assigned to treatment with abciximab (an expensive, high-molecular-weight IIb/IIIa cascade blocker); in fact, only 298 (29.9 percent) of patients received usual-care-alone with their initial PCI.

Usage

data(lindner)

Format

A data frame of 10 variables collected on 996 patients; no NAs.

- lifepres: Mean life years preserved due to survival for at least 6 months following PCI; numeric value of either 11.4 or 0.
- cardbill: Cardiac related costs incurred within 6 months of patient’s initial PCI; numeric value in 1998 dollars; costs were truncated by death for the 26 patients with lifepres == 0.
- abcix: Numeric treatment selection indicator; 0 implies usual PCI care alone; 1 implies usual PCI care deliberately augmented by either planned or rescue treatment with abciximab.
- stent: Coronary stent deployment; numeric, with 1 meaning YES and 0 meaning NO.
- height: Height in centimeters; numeric integer from 108 to 196.
- female: Female gender; numeric, with 1 meaning YES and 0 meaning NO.
- diabetic: Diabetes mellitus diagnosis; numeric, with 1 meaning YES and 0 meaning NO.
- acutemi: Acute myocardial infarction within the previous 7 days; numeric, with 1 meaning YES and 0 meaning NO.
- ejectfrac: Left ejection fraction; numeric value from 0 percent to 90 percent.
- ves1proc: Number of vessels involved in the patient’s initial PCI procedure; numeric integer from 0 to 5.
- sixMonthSurvive: Survival at six months — a recoded version of lifepres.

References

means.table

Extract table of means from an mnps object

Description

Extracts table of means from an mnps object.

Usage

```
means.table(mnps, 
stop.method = 1, 
includeSD = FALSE, digits = NULL)
```

Arguments

- `mnps`: An `mnps` object.
- `stop.method`: Indicates which set of weights to retrieve from the `ps` object. Either the name of the stop.method used, or a natural number with 1, for example, indicating the first stop.method specified.
- `includeSD`: Indicates whether standard deviations as well as means are to be displayed. By default, they are not displayed.
- `digits`: If not NULL, results will be rounded to the specified number of digits.

Details

Displays a table with weighted and unweighted means and standardized effect sizes, and – if requested – standard deviations.

Value

A table of means, standardized effect sizes, and perhaps standard deviations, by treatment group.

See Also

- `mnps`
Propensity score estimation

Description

mnps calculates propensity scores and diagnoses them using a variety of methods, but centered on using boosted logistic regression as implemented in gbm.

Usage

```
mnps(formula = formula(data),
     data,
     n.trees = 10000,
     interaction.depth = 3,
     shrinkage = 0.01,
     bag.fraction = 1.0,
     perm.test.iters=0,
     print.level = 2,
     iterlim = 1000,
     verbose = TRUE,
     estimand = "ATE",
     stop.method = "es.max",
     sampw = NULL,
     treatATT = NULL, ...)
```

Arguments

- **formula**: A formula for the propensity score model with the treatment indicator on the left side of the formula and the potential confounding variables on the right side.
- **data**: The dataset, includes treatment assignment as well as covariates.
- **n.trees**: number of gbm iterations passed on to gbm.
- **interaction.depth**: interaction.depth passed on to gbm.
- **shrinkage**: shrinkage passed on to gbm.
- **bag.fraction**: bag.fraction passed on to gbm.
- **perm.test.iters**: a non-negative integer giving the number of iterations of the permutation test for the KS statistic. If perm.test.iters=0 then the function returns an analytic approximation to the p-value. Setting perm.test.iters=200 will yield precision to within 3% if the true p-value is 0.05. Use perm.test.iters=500 to be within 2%.
- **print.level**: the amount of detail to print to the screen.
- **iterlim**: maximum number of iterations for the direct optimization.
verbose if TRUE, lots of information will be printed to monitor the progress of the fitting

estimand The causal effect of interest. Options are "ATE" (average treatment effect), which attempts to estimate the change in the outcome if the treatment were applied to the entire population versus if the control were applied to the entire population, or "ATT" (average treatment effect on the treated) which attempts to estimate the analogous effect, averaging only over the treated population.

stop.method A method or methods of measuring and summarizing balance across pretreatment variables. Current options are ks.mean, ks.max, es.mean, and es.max. ks refers to the Kolmogorov-Smirnov statistic and es refers to standardized effect size. These are summarized across the pretreatment variables by either the maximum (.max) or the mean (.mean).

sampw Optional sampling weights.

treatATT If the estimand is specified to be ATT, this argument is used to specify which treatment condition is considered 'the treated'. It must be one of the levels of the treatment variable. It is ignored for ATE analyses.

... Additional arguments.

Details

formula should be something like "treatment ~ X1 + X2 + X3". The treatment variable should be a variable with three or more levels. There is no need to specify interaction terms in the formula. interaction.depth controls the level of interactions to allow in the propensity score model.

Note that — unlike earlier versions of twang — plotting functions are no longer included in the ps() function. See plot for details of the plots.

Value

Returns an object of class mmps, which consists of the following.

pslist A list of ps objects.
nfits The number of calls to ps that were used to form the mmps object.
estimand The estimand – either ATT or ATE – that was specified in the call to mmps.
treatATT For ATT fits, the treatment category that is considered "the treated"
treatLev The levels of the treatment variable.
levExceptTreatAtt The levels of the treatment variable, excluding the treatATT level.
data The data used to fit the model.
treatVar The vector of treatment indicators
stopMethods The stop.method vector specified in the call to mmps.
sampw Sampling weights provided to mmps, if any.

Author(s)

Lane Burgette <burgette@rand.org>, Beth Ann Griffin <bethg@rand.org>, Dan McCaffrey <danielm@rand.org>
References

See Also
ps

plot.mnps

Plots for mnps objects

Description
This function produces a collection of diagnostic plots for ps objects.

Usage

S3 method for class 'mnps'
plot(x, plots = "optimize", pairwiseMax = TRUE, figureRows = NULL,
 color = TRUE, subset = NULL, treatments = NULL, singlePlot = NULL,
 multipage = FALSE, ...)

Arguments

x An mnps object.
plots An indicator of which type of plot is desired. The options are
 "optimize" or 1 A plot of the balance criteria as a function of the GBM iteration
 "boxplot" or 2 Boxplots of the propensity scores for the treatment and control cases
 "es" or 3 Plots of the standardized effect size of the pre-treatment variables before and after reweighing
 "t" or 4 Plots of the p-values from t-statistics comparing means of treated and control subjects for pretreatment variables, before and after weighting.
 "ks" or 5 Plots of the p-values from Kolmogorov-Smirnov statistics comparing distributions of pretreatment variables of treated and control subjects, before and after weighting.
pairwiseMax If FALSE, the plots for the underlying ps fits will be returned. Otherwise, pairwise maxima will be returned.
figureRows The number of rows of figures that should be used. If left as NULL, twang tries to find a reasonable value.
color If color = FALSE figures will be gray scale.
subset

Used to restrict which of the stop.methods will be used in the figure. For example subset = c(1,3) would indicate that the first and third stop.methods (in alphabetical order of those specified in the original call to mnp) should be included in the figure.

treatments

Only applicable when pairwiseMax is FALSE and plots 3, 4, and 5. If left at NULL, panels for all treatment pairs are created. If one level of the treatment variable is specified, plots comparing that treatment to all others are produced. If two levels are specified, a comparison for that single pair is produced.

singlePlot

For plot calls that produce multiple plots, specifying an integer value of singlePlot will return only the corresponding plot. E.g., specifying singlePlot = 2 will return the second plot.

multiPage

When multiple frames of a figure are produced, multiPage = TRUE will print each frame on a different page. This is intended for situations where the graphical output is being saved to a file.

Details

This function produces lattice-style graphics of diagnostic plots.

References

See Also

mnp

plot.ps

Plots for ps objects

Description

This function produces a collection of diagnostic plots for ps objects.

Usage

S3 method for class 'ps'
plot(x, plots = "optimize", subset=NULL, color = TRUE, ...)
Arguments

x A ps object
plots An indicator of which type of plot is desired. The options are
"optimize" or 1 A plot of the balance criteria as a function of the GBM iteration
"boxplot" or 2 Boxplots of the propensity scores for the treatment and control cases
"es" or 3 Plots of the standardized effect size of the pre-treatment variables before and after reweighing
"t" or 4 Plots of the p-values from t-statistics comparing means of treated and control subjects for pretreatment variables, before and after weighting.
"ks" or 5 Plots of the p-values from Kolmogorov-Smirnov statistics comparing distributions of pretreatment variables of treated and control subjects, before and after weighting.
"histogram" or 6 Histogram of weights for treated and control subjects.
subset If multiple stop.method rules were used in the ps() call, subset restricts the plots of a subset of the stopping rules that were employed. This argument expects a subset of the integers from 1 to k, if k stop.methods were used.
color If set to FALSE, grayscale figures will be produced
... Additional arguments that may be passed to the underlying lattice package plotting functions

Details

This function produces lattice-style graphics of diagnostic plots.

References

See Also

ps

print.dxwts

Print a diagnosis of the weights

Description

Prints a diagnosis of the weights. Extracts summary.tab from the dx.wts object.
Usage

```r
## S3 method for class 'dxwts'
print(x, ...)
```

Arguments

- `x`: a `dx.wts` object
- `...`: further arguments passed to or from other methods

Value

See `ps` for a description of the components of the table

Propensity score estimation

Description

`ps` calculates propensity scores and diagnoses them using a variety of methods, but centered on using boosted logistic regression as implemented in `gbm`

Usage

```r
ps(formula = formula(data),
    data,
    n.trees = 10000,
    interaction.depth = 3,
    shrinkage = 0.01,
    bag.fraction = 1.0,
    perm.test.iters=0,
    print.level = 2,
    iterlim = 1000,
    verbose = TRUE,
    estimand = "ATE",
    stop.method = c("ks.mean", "es.mean"),
    sampw = NULL,
    multinom = FALSE, ...)
```

Arguments

- `formula`: A formula for the propensity score model with the treatment indicator on the left side of the formula and the potential confounding variables on the right side.
- `data`: The dataset, includes treatment assignment as well as covariates
- `n.trees`: number of `gbm` iterations passed on to `gbm`
interaction.depth
interaction.depth passed on to gbm
shrinkage
shrinkage passed on to gbm
bag.fraction
bag.fraction passed on to gbm
perm.test.iters
a non-negative integer giving the number of iterations of the permutation test for the KS statistic. If perm.test.iters=0 then the function returns an analytic approximation to the p-value. Setting perm.test.iters=200 will yield precision to within 3% if the true p-value is 0.05. Use perm.test.iters=500 to be within 2%
print.level
the amount of detail to print to the screen
iterlim
maximum number of iterations for the direct optimization
verbose
if TRUE, lots of information will be printed to monitor the the progress of the fitting
estimand
The causal effect of interest. Options are "ATE" (average treatment effect), which attempts to estimate the change in the outcome if the treatment were applied to the entire population versus if the control were applied to the entire population, or "ATT" (average treatment effect on the treated) which attempts to estimate the analogous effect, averaging only over the treated population.
stop.method
A method or methods of measuring and summarizing balance across pretreatment variables. Current options are ks.mean, ks.max, es.mean, and es.max. ks refers to the Kolmogorov-Smirnov statistic and es refers to standardized effect size. These are summarized across the pretreatment variables by either the maximum (.max) or the mean (.mean).
sampw
Optional sampling weights.
multinom
Set to true only when called from mnps function.
...
Additional arguments.

Details

formula should be something like "treatment ~ X1 + X2 + X3". The treatment variable should be a 0/1 indicator. There is no need to specify interaction terms in the formula. interaction.depth controls the level of interactions to allow in the propensity score model.

Note that — unlike earlier versions of twang — plotting functions are no longer included in the ps() function. See plot for details of the plots.

Value

Returns an object of class ps, a list containing

 gbm.obj The returned gbm object
treat The treatment variable.
desc a list containing balance tables for each method selected in stop.methods. Includes a component for the unweighted analysis names "unw". Each desc component includes a list with the following components
ess The effective sample size of the control group
n.treat The number of subjects in the treatment group
n.ctrl The number of subjects in the control group
max.es The largest effect size across the covariates
mean.es The mean absolute effect size
max.ks The largest KS statistic across the covariates
mean.ks The average KS statistic across the covariates
bal.tab a (potentially large) table summarizing the quality of the weights for
equalizing the distribution of features across the two groups. This table is
best extracted using the `bal.table` method. See the help for `bal.table`
for details on the table’s contents
n.trees The estimated optimal number of `gbm` iterations to optimize the loss
function for the associated `stop.methods`
ps a data frame containing the estimated propensity scores. Each column is
associated with one of the methods selected in `stop.methods`
w a data frame containing the propensity score weights. Each column is as-
sociated with one of the methods selected in `stop.methods`. If sampling
weights are given then these are incorporated into these weights.
estimand The estimand of interest (ATT or ATE).
datestamp Records the date of the analysis
parameters Saves the `ps` call
alerts Text containing any warnings accumulated during the estimation
iters A sequence of iterations used in the GBM fits used by `plot` function.
balance The balance measures for the pretreatment covariates, with a column for each
`stop.method`.
n.trees Maximum number of trees considered in GBM fit.
data Data as specified in the `data` argument.

Author(s)

Greg Ridgeway <gregr@rand.org>, Dan McCaffrey <danielm@rand.org>, Andrew Morral <morral@rand.org>,
Lane Burgette <burgette@rand.org>

References

Regression for Evaluating Adolescent Substance Abuse Treatment,” *Psychological Methods* 9(4):403-
425.

See Also

`gbm`
Description

Simulated example data for assessing race bias in traffic stop outcomes

Usage

data(raceprofiling)

Format

A data frame with 5000 observations on the following 10 variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>an ID for each traffic stop</td>
</tr>
<tr>
<td>nhhood</td>
<td>a factor indicating the neighborhood in which the stop occurred.</td>
</tr>
<tr>
<td>reason</td>
<td>The reason for the stop, mechanical/registration violations, dangerous moving violation, non-dangerous moving violation</td>
</tr>
<tr>
<td>resident</td>
<td>an indicator whether the driver is a resident of the city</td>
</tr>
<tr>
<td>age</td>
<td>driver’s age</td>
</tr>
<tr>
<td>male</td>
<td>an indicator whether the driver was male</td>
</tr>
<tr>
<td>race</td>
<td>the race of the driver, with levels A, B, H, W</td>
</tr>
<tr>
<td>hour</td>
<td>the hour of the stop (24-hour clock)</td>
</tr>
<tr>
<td>month</td>
<td>an ordered factor indicating in which month the stop took place</td>
</tr>
<tr>
<td>citation</td>
<td>an indicator of whether the driver received a citation</td>
</tr>
</tbody>
</table>

Source

This is simulated data to demonstrate how to use twang to adjust estimates of racial bias for important factors. This dataset does not represent real data from any real law enforcement agency.

References

http://www.i-pensieri.com/gregr/rp.shtml

Examples

data(raceprofiling)

the first five lines of the dataset
raceprofiling[1:5,]
stop.methods Object only used for backward compatibility

Description
In older versions of twang, the ps function specified the stop.method in a different manner. This stop.methods object is used to ensure backward compatibility; new twang users should not make use of it.

Details
This is merely a vector with the names of the stopping rules.

See Also
ps

summary.mnps Summarize an mnps object

Description
Computes summary information about a stored mnps object

Usage
S3 method for class 'mnps'
summary(object, ...)

Arguments

<table>
<thead>
<tr>
<th>object</th>
<th>a ps object</th>
</tr>
</thead>
</table>

... additional arguments affecting the summary produced

Details
Compresses the information in the desc component of the ps object into a short summary table describing the size of the dataset and the quality of the propensity score weights.

Value
See ps for details on the returned table

See Also
ps, mnps
Summary.ps

Summarize a ps object

Description

Computes summary information about a stored ps object

Usage

```r
## S3 method for class 'ps'
summary(object, ...)
```

Arguments

- `object`: a ps object
- `...`: additional arguments affecting the summary produced

Details

Compresses the information in the desc component of the ps object into a short summary table describing the size of the dataset and the quality of the propensity score weights.

Value

See `ps` for details on the returned table

See Also

- `ps`
Index

*Topic datasets
 AOD, 2
 egsingle, 10
 lalonde, 12
 lindner, 13
 raceprofiling, 23
*Topic models
 balNtable, 4
 descNwts, 7
 dxNwts, 8
 mnps, 15
 plotNmnps, 17
 plotNps, 18
 ps, 20
 summaryNmnps, 24
 summaryNps, 25
*Topic multivariate
 balNstat, 3
 mnps, 15
 plotNmnps, 17
 plotNps, 18
 ps, 20
*Topic print
 printNdxwts, 19
*Topic utilities
 getNweights, 11
 meansNtable, 14
 stopNmethods, 24

AOD, 2

balNstat, 3, 8
bal.table, 4, 22
boxplotNmnps, 5
boxplotNps, 6

descNwts, 7
dxNwts, 4, 8, 19, 20

egsingle, 10

gbm, 15, 20–22
getNweights, 11
lalonde, 12
lindner, 13
meansNtable, 14
mnps, 4, 14, 15, 18, 24
plot, 16, 21
plotNmnps, 17
plotNps, 18
printNdxwts, 19
ps, 4–9, 11, 19, 20, 20, 24, 25
raceprofiling, 23
stopNmethods, 24
summaryNmnps, 24
summaryNps, 25