BCCS 2008/09: Graphical models and complex stochastic systems:
Take-home open-book test sketch solutions and comments

1. Advantages of thinking graphically:

In model formulation: complex models formed out of simple local components, which
are easier to think about, rigorously linked mathematically; assists verbal explanation
and interpretation; encourages parsimony (preferring simple explanations to compli-
cated ones); supports (Bayesian) hierarchical models.

In computation: simplifies computation of full conditionals when constructing MCMC
methods like the Gibbs sampler; enables implementaion of junction-tree algorithms
(probability propagation); assists in algorithmic organisation in many other kinds of
computation; allows GUI representation for input and output of models.

2. (a) The likelihood is L(0) = [[;—, p(x|@), which can be simplified to
exp(—0,t,)0%% [[,[t}* /2;!]. Thus the log-likelihood is
0(0) =—0>,t;+1og() >, x;, plus terms not involving ¢, which do not affect the
next step.
Differentiating with respect to 6 (the log-likelihood is clearly differentiable for
6 > 0), we find ¢/(0) = —> . t; + (1/0) >, x;, which is zero for 0 = > . x;/ >, ti.
To check that this does give a maximum, we could either differentiate again,
or simply note by inspection that ¢'(6) is a decreasing function of . Thus the
maximum likelihood estimate of 8 is >, z;/ > t;

(b) The posterior distribution is proportional to the product of the likelihood and the
prior, that is, to

exp(—0 Zti)OZi s /2t x 86 exp(—36) /T ()
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for & > 0, 0 otherwise. Since we only care about proportionality (in ), we can
simplify to see

P01, s, . ) o oxp(—0 S 1)0% 0% exp(—30) = exp(—0[3_ ti+5)0% e,

which, by comparison with the gamma density in the question, we can recognise
as the Gamma() , z; + o, >, t; + ) distribution.

So the posterior expectation is the ratio of the parameters, that is (>, z; +
a)/(>°;ti + ). Note that if either « = § = 0, or if a and [ are negligible
compared with ) . x; and ) . ¢; (which will apply as n — o0), then the posterior
expectation equals the maximum likelihood estimator.

3. (a) Using the notes, ri(v1) = >, g1(w0,71)r0(v0) = D_,, P(To)p(w1]70)p(y1]21) X
1=, pwo,z1,91) = p(w1,91). Now proceed by induction: if it is true that
re(we) = p(@s, y<t), then repi(ze1) = D0, Gevr (@, Toyr)re ()
= thp($t+1fﬂft)p(ytﬂ\xtﬂ)p(wt, Y<t) = th P(Tt, Tey1, Y<t, Yer1) (see (*) below)
=D 0, P(Tt; Teg1, Y<ir1) = P(Teq1, Y<e1). Thus it is true for all ¢.

Finally, p(zly<i) = p(ee,y<)/py<t) = p@e <)/ Sy, (s, y<t), 50 substitute
and we are done.



(*) To see why p(zii1|e)p(Yesa|Ter1)p(2e, y<t) = P(Xt, Tegr, Y<t, Ye41), Note that it
is always true that

P(xt, Tiy1, Y<it,s ?Jt+1) = p(ﬂft, ygt)p(xtﬂ |$t; ygt)p(yt—i-l |It+1, T, ygt)-
But P(It+1|xt7y§t) = p($t+1|$t) since T4 AL Y<t ‘ T, and p(yt+1|$t+17$t,y§t) =
P(yt+1|$t+1> since Ypy1 AL x4, y<¢ | Tiy1-

(b) p(xt,y<i+1) isequal to >, p(xs, Try1, Y<i, Yr41). Then using (*) above again, we
see that the probability can be factorised as indicated.

An efficient algorithm is therefore to compute all the r,(z;) functions by forward
recursion, and then to use the identity above to find p(x, y<¢11), and finally to nor-

malise to get the required probabilities p(z:|y<iy1) = (@, Y<r41)/ D4, P(Tt, Y<it1)-

p(Te1ly<e) = Zp(xtﬂ,xt‘ygt) = ZP($t|ygt)p($t+1|xta y<t) = ZP($t|y§t)p($t+1|$t)
Tt

Tt Tt

since x;41 1L y< | ;. Similarly to (b), an efficient algorithm is therefore to
compute all the r;(x;) functions by forward recursion, use (a) to find p(x|y<¢)
and then to use the identity above to find p(zsi1|y<t).

(a) The DAG looks like this:
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(b)
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which we recognise as a Beta distribution, in fact Beta(a + r, 5 + y;). This is a
standard distribution, so Gibbs sampling is straightforward for ;.
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which is not a standard distribution, so Gibbs samphng would be problematical
for a, and similarly for 5. But we can use another standard MCMC method
instead, for example Metropolis-Hastings sampling.

Bugs code for this model looks like this (as in the NegBin.zip file, online):

model

{

for(iin1 : N ) {

y[i] ~ dnegbin(thetalil,2)
theta[i] ~ dbeta(alpha,beta)
}

alpha ~ dexp(1)

beta ~ dexp(1)

}

If you run this, following the instructions in the readme file, you obtain various
statistics and graphs from the run, summarising both the performance of the sim-
ulation, and the posterior distributions that it computes. Briefly, in performance
terms, everything seems fine, the run stabilises quickly, and autocorrelations in
the simulated series are low (less low for @ and [ than the other parameters, but
still quite good).

The posterior means for the ; range from 0.126 (619) to 0.575 (6s), with posterior
standard deviations typically about half the size of the mean or a little less. The
posterior distributions for #; are rather symmetric when the posterior mean is
large, skewed to the right when it is small. The hyperparameters o and 3 are
estimated to be about 1.21 and 2.63, and both have posterior distributions skewed
to the right.

5. To answer these questions, we need to check the global Markov property for the directed
graph, as in section 3.3 of the notes. That is, we start with the original graph, then

(1)
(i)
(i)

delete all nodes that are not in A, B or C, or ancestors of nodes in A, B or C,
and all arrows into or out of deleted nodes.

add an edge between each pair of parents that are not already connected (moral-
isation).

drop directions on all the arrows

Then we look at the resulting graph to see if C' separates A and B — that is, if it is
impossible to find a path from a node in A to a node in B that does not pass through
C'. The global Markov property says that if C' separates A and B, then A 1l B | C.

The results are

(a)

Yes (which we can see also more directly from the local Markov property, since
(b, ¢) are the parents of e).



(b) No. There is a path b — a — ¢ — f — h in the resulting graph. So you cannot
infer that b 1L h | d. Note that this is not the same as concluding that b and
h are dependent given d, it is just a question that cannot be settled given the
information stated.

(c) Yes, by the global Markov property.
(d) Yes, by the global Markov property. Also, to see this algebraically, note that

pla,c,d,e, g, h) = Zp(a, b,c,d,e, f,q,h)
—Zp cla)p(dla)p(elb, c)p(flc,d)p(gle, f)p(h|f)
Zp cla)p(d|a)p(elb, c)) Zp (fle, d)p(gle, F)p(hlf))

which shows that it is a function of (a, ¢, d, e) alone, times a function of (¢, d, e, g, h)
alone, which in turn proves that a L (g,h) | (¢, d,e) as in, for example, question
1 of exercise sheet 3.

This proof is really a special case of the one for the general case, presented in
Section 3.3 of the notes.



