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Abstract

We present methods for inference about relationships between contributors to a DNA mixture
and other individuals of known genotype: a basic example would be testing whether a contributor
to a mixture is the father of a child of known genotype. The evidence for such a relationship is
evaluated as the likelihood ratio for the specified relationship versus the alternative that there
is no relationship. We analyse real casework examples from a criminal case and a disputed
paternity case; in both examples part of the evidence was from a DNA mixture. DNA samples
are of varying quality and therefore present challenging problems in interpretation. Our methods
are based on a recent statistical model for DNA mixtures, in which a Bayesian network (BN)
is used as a computational device; the present work builds on that approach, but makes more
explicit use of the BN in the modelling. The R code for the analyses presented is freely available
as supplementary material.

We show how additional information of specific genotypes relevant to the relationship under
analysis greatly strengthens the resulting inference. We find that taking full account of the
uncertainty inherent in a DNA mixture can yield likelihood ratios very close to what one would
obtain if we had a single source DNA profile. Furthermore, the methods can be readily extended
to analyse different scenarios as our methods are not limited to the particular genotyping kits
used in the examples, to the allele frequency databases used, to the numbers of contributors
assumed, to the number of traces analysed simultaneously, nor to the specific hypotheses tested.

Some key words: Bayesian networks, coancestry, deconvolution, disputed paternity, identity by
descent, kinship, likelihood ratio.

1 Introduction

This paper presents methods for inference about the relationships between contributors to a DNA
mixture with unknown genotype and other individuals of known genotype: a basic example would
be testing whether a contributor to a mixture is the father of a child of known genotype (or indeed
the similar question with the roles of parent and child reversed). Following commonly accepted
practice, the evidence for such a relationship is presented as the likelihood ratio for the specified
relationship versus the baseline, null hypothesis, that there is no relationship at all, so the father is
taken to be a random member of the population. Our methods are based on the statistical model for
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DNA mixtures of Cowell et al. (2015), in which a Bayesian network (BN) is used as a computational
device for efficiently computing likelihoods; the present work builds on that approach, but makes
more explicit use of the BN in the modelling.

Other questions that can be answered by a similar approach include

• is a contributor to a mixture the brother of an individual of known genotype?

• is a contributor to a mixture the niece of an individual of known genotype and the great-aunt
of another individual of known genotype?

• is a contributor to one mixture also a contributor to another mixture?

• is a contributor to one mixture a brother of a contributor to another mixture?

• is an individual of known genotype a family relative of two contributors to a mixture who are
mother and child?

A standard DNA paternity test compares the DNA profile of a putative father to that of his
alleged child; the DNA profile of the mother might or might not be available. The case we report
here (see Section 2) is one of disputed inheritance. The putative father died over 20 years ago
and his corpse was exhumed in order to extract his DNA profile. The DNA extracted from the
exhumed body sample was contaminated and appeared to be a mixture of at least two individuals.
Furthermore, the DNA of the child’s mother was not available. A preliminary analysis of this case
was given in Mortera et al. (2016). In that paper an approximate method based only the most
probable genotype of a mixture contributor was used to specify the questioned relationship. Here
we take all uncertainty about the mixture contributors into account.

Throughout the paper, our emphasis is on methodology. Real casework examples are presented,
for illustration, but our methods are not limited to particular details of the genotyping kits, allele
frequencies, number of contributors, or hypotheses in these examples.

The outline of the paper is as follows. After a brief description of the DNA mixture model and
its modification for establishing potential relationships, we introduce the motivating example on
paternity testing in Section 2. Four general methods for inference about relationships from DNA
mixtures are illustrated in Section 3. Results for a real case where we assess if an alleged father of
a typed actor is in the mixture are given in Section 4; results for a case where we try to identify an
unknown contributor to a mixture through his potential mother’s genotype are shown in Section
5. In Section 6 we illustrate a proposal for computing likelihood ratios for unions of hypotheses.
Indications on the available open-source software are presented in Section 7. A general discussion
and some concluding remarks are given in Section 8.

1.1 A model for DNA mixtures

We base the analysis of the DNA mixture on the model described in Cowell et al. (2015). This
model takes fully into account the peak heights and the possible artefacts, like stutter and dropout,
that might occur in the DNA amplification process. We give a brief summary of the main features
of the model, for further details we refer to Cowell et al. (2015). The model is an extension of the
gamma model developed in Cowell et al. (2007a) and Cowell et al. (2007b), and used in Cowell
et al. (2011).

In summary, for a specific marker m and allele a, ignoring artefacts, the contribution Hia from
an individual i to the peak height at allele a has a gamma distribution, Hia ∼ Γ(ρφinia, η), where
ρ is proportional to the total amount of DNA in the mixture prior to amplification; φi denotes the
fraction of DNA originating from individual i prior to PCR amplification, nia is the number of type
a alleles for individual i; and η determines the scale. For an amplification without artefacts of one
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heterozygous contributor, i.e. φ1=1 and n1,a = 1, µ = ρη is the mean peak height and σ = 1/
√
ρ is

the coefficient of variation. In the following we use this reparametrization. The model is extended
to take into account artefacts: stutter, whereby a proportion of a peak belonging to allele a appears
as a peak at allele a − 1; and dropout, when alleles are not observed because the peak height is
below a detection threshold C. The parameter ξ denotes the mean stutter proportion.

The evidence E consists of the peak heights z as observed in the electropherograms, as well as
any potential genotypes of known individuals. For given genotypes of the contributors, expressed
as allele counts n = (nia, i = 1, . . . I; a = 1, . . . , A), given proportions φ, and given values of the
parameters (ρ, ξ, η), all observed peak heights are independent and for a given hypothesisH, the full
likelihood is obtained by summing over all possible combinations of genotypes n with probabilities
P (n |H) associated with H:

L(H) = Pr(E |H) =
∑
n

L(ρ, ξ, φ, η | z,n)P (n |H),

where
L(ρ, ξ, φ, η | z,n) =

∏
m

∏
a

Lma(zma)

and

Lma(zma) =

{
g{zma; ρDa(φ, ξ,n), η} if zma ≥ C
G{C; ρDa(φ, ξ,n), η} otherwise,

(1)

with g and G denoting the gamma density and cumulative distribution function respectively, and
Da the effective allele counts after stutter. See Cowell et al. (2015) for full details: we use their
notation above.

The number of terms in this sum is huge for a hypothesis which involves several unknown
contributors to the mixture, but can be calculated efficiently by Bayesian network techniques that
represent the genotypes using a Markovian structure, the allele counts for each individual being
modelled sequentially over the alleles. The maximum likelihood estimate (MLE) parameters are
obtained using the R package DNAmixtures (Graversen 2013) which interfaces to the HUGIN API
(Hugin Expert A/S, 2012) through the R package RHugin (Konis 2014).

In this paper we follow Cowell et al. (2015) in estimating parameters by maximum likelihood.
In all computations of likelihood ratios, parameters in both numerator and denominator are fixed
at the MLEs under the null hypothesis. Other choices are possible, depending on the demands
of the legal environment, for example the likelihoods in the numerator and denominator could be
separately maximised over values of the parameters; this would entail some additional computation.

1.2 Relationship inference with DNA mixtures

In this work we wish to establish whether one (or more) contributors to the DNA mixture has
a potential relationship with one or more individuals whose genotypes are known and who have
a known relationship to each other. To do this, we make more explicit use of the BN used as a
computational device in Cowell et al. (2015).

This network represents the probabilistic dependence of the peak heights z on the allele counts
n for the unknown contributors to the mixture, and the parameters (φ, ρ, ξ, η) of the gamma model.
This dependence is represented in the right hand part of the directed acyclic graph in Figure 1.

Our general strategy is to modify the Bayes net formulation of the model of Cowell et al.
(2015), in ways described in the following sections, and then, as in that earlier paper, perform
the necessary computations to deliver the required likelihood ratios, as laid out by Graversen and
Lauritzen (2015), appropriately generalised. More details on this are given in the Appendix.
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Figure 1: A DAG pictorial representation for establishing a potential relationship with a contributor
to the mixture. The blue nodes represent the gamma model (Cowell et al. 2015). The yellow nodes
denote the putative relationship between the mixture contributor Ugt and relatives with genotypes
R, under the control of the hypothesis H.

2 Motivating example: paternity testing

2.1 A case study

We now illustrate a real case from the Forensic Institute, Sapienza Università Roma, which provides
the motivating example for this paper.

A man B, met a young lady C and began a secret relationship. One of C’s sons A, learns as
an adult that he is not the son of C’s husband but probably B’s son. Some years after B’s death,
A claims his share of B’s substantial inheritance. After his mother’s death and over 20 years after
B’s death, B’s body is exhumed and DNA is extracted from a bone. This is to be used to establish
whether A could be the son of B.

This DNA is highly contaminated and appears to be mixture of at least 2 individuals. Table 1
shows an extract of the data used for this paternity testing case. For each marker, the first two
columns of Table 1 show the unordered pair of alleles in the putative son A’s genotype. The mixed
profile extracted from B’s bone, is shown in columns 4 and 5, where for each marker, we have the
alleles together with their corresponding peak heights.

This paternity testing problem offers two complicating features: the profile from B appears to
be a mixture of at least two contributors and the genotype of A’s mother is not available. The
alleles in the mixture shared with A’s genotype are italicized. In order to analyse this case we need
to use the information in the peak heights.

Figure 2 shows a portion of the original electropherogram (EPG) obtained from the bone. There
are signs that the DNA is subject to contamination, presumably due to the fact that the DNA was
extracted from a bone of a corpse inhumed for over 20 years.
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Table 1: Extract of the paternity testing data. The first two columns show the unordered pair of
alleles in the child’s genotype, the third column gives the markers, whereas the alleles and peak
heights from the amplification of the bone are given in the last two columns. Italics are used to
emphasise where the same allele appears in both the mixture and the son’s genotype.

Alleged son Data from B’s bone
A’s genotype Marker Alleles Peak height

X Y AMEL X 3257
Y 1736

10 11 D16S539 11 83
12 182

15 16 D8S1179 12 398
13 1406
15 1395

30 32 D21S11 29 139
30 815
31 88
31.2 241
34 151

13 16 D18S51 12 59
13 60

14 14 D2S441 14 3683

14 14 D3S1358 14 858
15 708

15.3 17 D1S1656 16 387
17 326

17 23 D12S391 17 165
18 83

· · · · · · · · · · · · · · ·
14 20 SE33 20 139
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Figure 2: Extract from an electropherogram (EPG), showing the green dye lane.

2.2 Weight of evidence in disputed paternity

In this case of disputed paternity we want to compare the hypotheses:

Hp: The father of A has contributed to the mixture vs.
H0: no contributor to the mixture is related to A.

The evidence consists of E = {cgt ,mixture}, where cgt is the genotype of the alleged son A,
and the mixture consists of the alleles and corresponding peak heights on all markers obtained from
the EPG.

The weight of the evidence is reported as a likelihood ratio LR

LR =
L(Hp)

L(H0)
=

Pr(E |Hp)

Pr(E |H0)
. (2)

The likelihood ratio LR, termed the paternity index, was introduced by Essen-Möller (1938), who
also gave a guideline transforming the LR and posterior probability, based on uniform priors, onto
a scale of verbal predicates.

With uniform prior probabilities Pr(Hp) = Pr(H0), we have by Bayes’s theorem the posterior
probability of paternity

Pr(Hp|E) =
LR

(1 + LR)
. (3)

Essen-Möller (1938) suggested a threshold of 0.9973 (a LR of 370) for “paternity practically proven”
when putative father, mother and child’s DNA are available. In some European countries, legis-
lation sets a threshold (in Germany it is 0.999). We prefer not to set a threshold probability but
simply report the LR.
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3 Methods for inference about relationships from DNA mixtures

Let Ui = U be a specified contributor to the mixture, and let Ugt denote the genotype of U . We
are interested in assessing a potential relationship between U and one or more other individuals
who have a known relationship to each other ; the genotype information on these other individuals
is denoted R.

Figure 1 shows a directed acyclic graph (DAG), a pictorial representation for establishing a
potential relationship with a contributor to the mixture. The blue nodes represent the gamma
model for the peak heights. Specifically, node (φ, ρ, ξ, η) corresponds to the model parameters,
node z to the peak heights and n to vectors of allele counts representing all possible combinations
of genotypes, which in turn determine the distribution of the putative relatives’ genotypes R,
under the hypothesis H. For example, under the paternity hypothesis Hp, the putative father with
genotype distribution Ugt (green node) is the father of the alleged child with known genotype cgt ,
a component of R.

We have that R is conditionally independent of z given Ugt

R ⊥⊥ z | Ugt,

as implied by the DAG in Figure 1. Two common examples are where R denotes (i) the genotype of
a child, or (ii) the genotypes of a child and its mother, where in both cases the potential relationship
under test is that U is the father of the child.

The hypothesis that U does have the specified relationship with the individuals whose genotypes
are in R is Hp; the contrary hypothesis H0 is that U is unrelated to the individuals whose genotypes
are in R. We let

LRUgt =
P (R|Hp,Ugt)

P (R|H0,Ugt)
=
P (R|Hp,Ugt)

P (R|H0)

since under H0, the individual Ui is unrelated to those typed in R, so Ugt and R are independent.
Then our required LR (for Hp against H0) is

LR =
P (R, z|Hp)

P (R, z|H0)
=

P (R, z|Hp)

P (R|H0)P (z|H0)
=

∑
Ugt P (R, z|Hp,Ugt)P (Ugt|Hp)

P (R|H0)P (z|H0)

=

∑
Ugt P (R|Hp,Ugt)P (z|Hp,Ugt)P (Ugt|Hp)

P (R|H0)P (z|H0)

=

∑
Ugt P (R|Hp,Ugt)P (z|Ugt)P (Ugt)

P (R|H0)P (z)

=
∑
Ugt

LRUgt × P (Ugt|z). (4)

Conditional on the values of parameters φ, ρ, ξ, η, the markers are independent, so the overall
likelihood ratio is the product of (4) over the markers.

In order to compute the likelihood ratio, for each marker, we present four different methods.
These all address the same question, but strike different balances between structural and algebraic
computation.

A first method, termed weighted likelihood ratio (WLR), uses the distribution of a contribu-
tor’s genotype obtained from the mixture deconvolution and then computes the likelihood ratio
algebraically. A second method, termed additional likelihood nodes (ALN) is a modification of
the Cowell et al. (2015) model, incorporating one or more additional auxiliary variables based on
the relationship under question. The WLR and ALN methods are alternative computational ap-
proaches to calculating the required LR by first conditioning on Ugt and then integrating out over
the distribution of Ugt given the peak height data, as in (4).
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A third method, meiosis Bayesian Network (MBN), modifies the genotype Bayesian network
by directly introducing meiosis or segregation indicators (Thompson 2000; Lauritzen and Sheehan
2003), maintaining the Markovian allele count representation. Thus, instead of computing LRUgt

algebraically, the Bayesian network is extended to include all the individuals described by R, and
the evidence R incorporated by explicitly setting the genotypes in this network.

The fourth method, replacing probability tables (RPT), modifies the relative probability tables
based on the potential relationship we wish to establish: LRUgt = P (R|Hp,Ugt)/P (R|H0) is in-
verted with the aid of Bayes theorem to give P (Ugt|Hp, R), and these values used to replace the
default P (Ugt) (based on Hardy-Weinberg equilibrium in the assumed population) in the network.

Each of these approaches is elaborated in more detail below, for the specific example of paternity
testing.

The last three methods give exact solutions. However, the first method yields a very good
approximation, its accuracy limited only by the fact that the high-probability genotypes are iden-
tified in the Hugin deconvolution code using simulation. In the weighted likelihood ratio method
the DAG of Figure 1 is computed in two separate parts; the blue and green nodes from the DNA
mixture model; and the yellow nodes for computing the likelihood ratio for paternity. The other
methods use the entire DAG by introducing specific modifications to the Bayesian networks.

Kaur et al. (2015) have presented a method to handle a paternity relationship based on DNA
mixtures. Their method consists of enumerating the possible combination of genotypes in the
mixture and then computing the likelihood ratio using a formula similar to (4) but weighing the
different potential genotypes by the allele frequencies in a database (rather than, as we have done
correctly, by the posterior probabilities of genotypes given the EPG data). Chung et al. (2010)
describes familial searching on mixtures based solely on detected alleles and not accounting for
artefacts. Slooten (2016) only consider sets of detected alleles for familial searching on DNA
mixtures with dropout. The commercial software STRmix is claimed to implement familial searches
against a database, for close relatives of contributors to mixed DNA. Testing whether mixtures have
a donor in common or whether a relative of one mixture donor is a donor to a second mixture has
been investigated in Ryan et al. (2016) and Slooten (2017). All these papers deal with simpler
scenarios to those analysed here; few of them use peak height information at all, and none of those
that do incorporate it fully coherently through a probabilistic model.

3.1 WLR method

In the WLR method, the required distribution for Ugt given the mixture data is obtained by
deconvolution, leading to an approximation to P (Ugt|z). The Ugt-specific likelihood ratios LRUgt

are derived algebraically, and the weighted sum (4) computed.

3.2 ALN method

In the ALN method, an additional likelihood node is introduced into the BN, the allele counts for
the specified contributor to the mixture as its parents. The values of LRUgt are used in defining the
CPTs for this node, as described in more detail below, and the weighted sum (4) then implicitly
computed during the equilibration of the network.

3.3 Example: mother and child genotyped

Here the relationship data R represents the genotypes of two individuals, a child and its known
mother. Under Hp, the father is Ui, while under H0 the father is an unknown random member
of the population. As usual, in deriving the Ugt-specific likelihood ratios LRUgt we can work
marker-by-marker.
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In the absence of mutation, we are only concerned with cases where the mother and child
genotypes have alleles in common. Then all relevant combinations of cgt and mgt are covered by
the following

LRUgt =
P (cgt|mgt,Ugt,Hp)

P (cgt|mgt,H0)
=


nia/2qa if cgt = {a, a},mgt = {a, a} or {a, b}
nib/2qb if cgt = {a, b},mgt = {a, a} or {a, c}
(nia + nib)/(2(qa + qb)) if cgt = mgt = {a, b}

where a, b, c are distinct alleles and qa and qb are the allele frequencies in the population. Note that
the only allele counts for Ui that appear explicitly as parents when these expressions are used in
defining the CPT for the likelihood node are those (a and/or b) in cgt.

3.4 Example: only child genotyped

If the mother’s genotype is not available, R represents only the genotype of the child. The hy-
potheses Hp and H0 are as before.

By similar logic, we find

LRUgt =
P (cgt|Ugt,Hp)

P (cgt|H0)
=

{
nia/2qa if cgt = {a, a}
nia/4qa + nib/4qb if cgt = {a, b}

(5)

where a, b are distinct alleles. Again, the only allele counts for Ui that appear explicitly as parents
when these expressions are used in defining the CPT for the likelihood node are those (a and/or b)
in cgt.

Figure 3 shows a Bayesian network representation, as in Cowell et al. (2015), under paternity
Hp for a homozygous child with genotype cgt = {2, 2}, but with an additional likelihood node
Clikd (red). This is a graphical child of the father’s relevant allele counts. For a heterozygous child
cgt = {a, b}, the Clikd node is graphical child of the father’s allele counts na and nb and a boolean
node, which switches between the two allele values. The network is constructed after knowing the
child genotype, so Clikd is linked to at most two allele count nodes, thus avoiding creating big
cliques.

The blue/green nodes in Figure 3 refer to the Markov genotype representation of the first/second
contributor to the mixture via the allele counts nia and their partial sums Sia. The auxiliary boolean
Oia nodes allow the exact evaluation of the likelihood function Lma(zma) in (1) for the peak heights
by probability propagation. For further details see Cowell et al. (2015).

3.5 MBN method

Figure 4 shows the meiosis Bayesian network representation for a single marker, under the paternity
hypotheses Hp for a subset A = 4 alleles. The network is Markovian over allele values. The blue
nodes refer to the father’s allele counts n1a and their cumulative sums S1a. The pink nodes refer to
the child’s maternal allele counts Cma and their cumulative sums CmSa, so unlike the other allele
counts these sum to 1 over alleles (not 2 as other cumulative sums). The red nodes are the alleged
son’s allele counts Cna. They are simply sums of maternal Cma and paternal Cpa allele counts.
The novelty is in the way that meiosis is captured for the child’s paternal allele counts using the g
nodes.

Each node ga takes values 0, 1, 2, where

• ga = 0 means that one of the alleles 1, 2, . . . , a is present in the father, and that this allele
has been passed to the child.
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Figure 3: Bayesian network representation for an application of the ALN method, showing the
additional child likelihood node for a case where there are A = 4 alleles, and cgt = {2, 2}.
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• ga = 1 means that none of the alleles 1, 2, . . . , a is present in the father.

• ga = 2 means that one of the alleles 1, 2, . . . , a is present in the father, and that this allele
has not been passed to the child.

The novel conditional probability tables are defined by:

P (Cpa = 1 |n1a, ga−1) =


0 if n1a = 0

ga−1/2 if n1a = 1
1 if n1a = 2

of course, Pr(Cpa = 0 |n1a, ga−1) = 1 − Pr(Cpa = 1 |n1a, ga−1), while Pr(ga |n1a, Cpa, ga−1), is
defined by the deterministic relationship:

ga |n1a, Cpa, ga−1 =


2 if n1a ≥ 1, Cpa = 0 and ga−1 = 1
0 if n1a ≥ 1, Cpa = 1 and ga−1 = 1

ga−1 otherwise.

The second contributor to the mixture’s allele counts n2• and their partial sums S2• are shown
as green nodes. Finally, the boolean nodes O1• are where the information about the peak heights
is incorporated.

Figure 4: Meiosis Bayesian network representation of father–child relationship for a case with A = 4
alleles, showing that is Markovian over alleles.

3.6 RPT method

This method replaces the default P (Ugt) tables (based on Hardy-Weinberg equilibrium in the
assumed population) in the network, with tables for P (Ugt|Hp, R), e.g. the father’s genotype
tables, given cgt. The Markovian genotype structure is maintained.
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The Sia are re-defined to be the cumulative sums of the nia excluding the IBD allele (the one
passed to the child), so its values can only be 0 and 1.

In the homozygous case, suppose the child has genotype (a′, a′). Then the father must be (a′, a)
where a is drawn from the gene pool. The binomial distribution given in equation (2.4.1) of Cowell
et al. (2015) is replaced by

ni,a+1|Sia ∼ δa+1,a′ + Bin

(
1− Sia, qa+1/

∑
b>a

qb

)
where

δi,j =

{
0 if i 6= j
1 if i = j

For a = a′, the table for Sia is redefined to suit the new definition of nia, for the other values of a,
the existing tables (created by functions in DNAmixtures) are correct already.

In the heterozygous case, the child is say (a′, b′), a′ 6= b′, an extra boolean node is introduced,
‘ibdyet ’, with no parents and probabilities (.5, .5). The children of this node are nia and Sia for
a = a′ and b′. The role of this node is to discriminate between the cases where it is a′ or b′ that
the father has passed to the child. If ibdyet is True then

ni,a+1|Sia ∼ δa+1,a′ + Bin

(
1− Sia, qa+1/

∑
b>a

qb

)

while if it is False

ni,a+1|Sia ∼ δa+1,b′ + Bin

(
1− Sia, qa+1/

∑
b>a

qb

)
and the tables for Sia′ and Sib′ are modified accordingly.

4 Results for alleged father in mixture

4.1 Child only typed

In this section we demonstrate the results and performance of our methods on the case study
presented in Section 2, based on the complete data on 17 markers (including Amelogenin) in the
NGM SElectTM PCR Amplification kit. Here we assume known allele frequencies from the Italian
population (Previdere et al. 2013; Presciuttini et al. 2006), and adopt a threshold of C = 0.001
rfu.1

Unless otherwise stated all computations are made conditional on the information that the
major contributor U1 to the DNA mixture is a male. In the case, as here, where the AMEL
marker is among those included in the mixture, the evidence that the putative father Ui is Male is
introduced by setting the allele count nodes ni,a = 1 for each of the alleles a = X and Y , in the
BN, in addition to the other modifications to the BN used in most of our 4 methods.

The MLEs of the parameters that characterize the DNA mixture model, together with their
approximate standard errors are given in Table 2. Here we assume that there are two unknown
contributors, U1 and U2, to the DNA mixture. The results on relationship inference presented
below use parameters fixed at the MLE values in Table 2.

The estimated proportion φU1 of DNA contributed to the mixture by the major contributor U1

is roughly 98%.

1Mortera et al. (2016) used a higher threshold.
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Table 2: Parameter estimates and approximate standard errors for 2 unknown contributors with
maleness evidence, for the example in Section 4.1.

Par. Est. SE

µ 807 163
σ 1.18 0.14
ξ 0.007 0.006
φU1 0.978 0.013
φU2 0.022 0.013

Table 3: Extract of the top-ranking genotypes and their probability, for the example in Section 4.1.

Marker Top-ranked Alleged son’s Probabilities without
genotype genotype, cgt and with maleness

D16S539 11 12 10 11 0.9669, 0.9671
D8S1179 13 15 15 16 0.7279, 0.7292
D21S11 30 31.2 30 32 0.3528, 0.3531
D18S51 12 13 13 16 0.9815, 0.9816
· · · · · · · · · · · · · · · · · · , · · ·
SE33 20 20 14 20 0.9925, 0.9926

We first illustrate the WLR method applied to the paternity case. Table 3 shows that U1’s
top-ranking predicted genotype is compatible with cgt on all markers. The additional information
on the maleness slightly increases the probability of the top-ranked genotype. All the predictive
probabilities are greater than 0.5 except for marker D21S11.

Table 4 shows the ranking of Ugt with corresponding predictive probability for a marker D21S11.
The first three genotypes are compatible with cgt whereas from rank 4 on they are not, yielding a
null contribution to the LR.

Table 4: Ranking of Ugt with corresponding predictive probability for a marker D21S11, for the
example in Section 4.1.

Marker Rank Ugt Prob. Pr(cgt |Ugt,Hp) Pr(cgt |H0)

D21S11 1 30 31.2 0.353 0.0055 0.0051
2 30 34 0.258 0.0055 0.0051
3 30 31 0.190 0.0055 0.0051
4 31 31.2 0.079 0 0.0051
5 31 34 0.058 0 0.0051
6 29 31 0.053 0 0.0051
7 34 31.2 0.0047 0 0.0051
8 29 31.2 0.0022 0 0.0051
9 29 34 0.0016 0 0.0051

Table 5 shows a comparison between the top-ranked genotypes from the deconvolution, and the
methods WLR, ALN, MBN and RPT. Using only the top-ranked LR does not take into account
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Table 5: Comparison between marker-wise likelihood ratios and overall LR for top-ranked genotypes
and methods WLR, ALN, MBN and RPT, for the example in Section 4.1.

Likelihood ratios
Marker Top-ranked Alleged Top-ranked WLR ALN MBN

Ugt cgt & RPT

D16S539 11 12 10 11 0.761 0.744 0.744
D8S1179 13 15 15 16 1.76 1.51 1.51
D21S11 30 31.2 30 32 1.08 0.869 0.869
D18S51 12 13 13 16 1.70 1.72 1.72
· · · · · · · · · · · · · · · · · · · · · · · ·
SE33 20 20 14 20 10.18 10.14 10.14

log10 LR 5.6708 5.4253 5.4251

any uncertainty. In this example, WLR is a good approximation to ALN, MBN and RPT which
give exact results. In all cases the evidence in favour of the hypothesis of paternity is overwhelming.
Under a uniform prior probability this would lead to a posterior probability of paternity of 0.999996.
For any prior on Hp greater than 0.01 the posterior probability of paternity is greater than 0.9996,
extremely strong evidence in favour of paternity.

4.2 Mother typed too

For an illustration both of how genotype information on additional relatives can strengthen infer-
ence, and of the flexibility of our general approach, we augment our motivating disputed paternity
example with a fictional genotype profile for the mother shown in the second and third columns of
Table 6. Here we do not consider the possibility of mutation.

Table 6 shows a comparison between methods WLR, ALN, MBN and RPT, without and with
information on mgt. The results for the WLR method with mgt differ from the exact methods only
in the 4th significant digit and are thus not given. The information on mgt increases the overall
LR roughly 540 times.

The top-ranked profile for the father is in this case identical to that without the mgt information,
and if this profile were directly observed, the log10LR for paternity would be 8.4022.

Table 6: Comparison between marker-wise likelihood ratios and overall LR for the exact methods,
ALN, MBN and RPT, with and without mgt, for the example in Sections 4.1 and 4.2.

Mother’s genotype Likelihood ratios
Marker mgt without mgt with mgt

D16S539 10 11 0.744 1.25
D8S1179 10 16 1.51 3.02
D21S11 26 32 0.869 1.74
D18S51 13 16 1.72 1.85
· · · · · · · · · · · · · · ·
SE33 14 22 10.14 20.28

log10 LR 5.4251 8.1571

14



4.3 Computation time

Table 7 gives a comparison among the computation times, listed in increasing order for the 4
methods, for the task described in Section 4.1. These were obtained on an Intel i7-4790 processor
clocked at 3.60GHz. Here ALN runs the fastest, closely followed by RPT. In general, however,
comparison between the methods will depend on the complexity of the relationship in question.
For example, using the ALN method in a paternity case, the additional likelihood node is linked to
only 1 or 2 allele counts. In more complex relationships one could need more links and computation
would be slower. See also the Discussion, Section 8.

Table 7: Comparison among computation times for the 4 methods, for the example in Section 4.1.

Method Time (seconds)

ALN 1.32
RPT 1.66
MBN 2.82
WLR 46.90

5 Results for unknown in mixture, potential mother typed

We have also analysed a criminal case where we have data on 3 crime traces, denoted T1, T2 and T3,
amplified with the NGM amplification kit consisting of 17 markers including Amelogenin. We used
US Caucasian allele frequencies (Butler et al. 2003). The genotype of the victim V and mgt, that
of the alleged mother of a contributor to the mixture, were also available. We assume that there
are at most 3 contributors to each mixture, the victim V and two unknown contributors denoted
by U1 and U2, with the unknown contributors labelled in the same way in each of the 3 traces.
Here we set the threshold to C = 50 rfu.

In this problem, the roles of child and parent are reversed compared to the situation of Section
3.4: this time it is the child who is hypothesised to contribute to the mixture while the parent (the
mother) is separately genotyped. However, under Hardy-Weinberg equilibrium, ignoring mutation,
and in the absence of genotype information for the other parent, the genotypes of the child and
mother (or father) are exchangeable random variables. So under both Hp and H0, the conditional
distribution of the mother’s genotype given that of the unknown contributor who may be her son,
is as in (5), with cgt replaced by mgt. Exactly the same codes can then be used to implement the
ALN, RPT or WLR methods for the present problem.

Table 8 shows the maximum likelihood estimates of the parameters based on the combined
information from T1, T2, T3. Note that in the first trace T1 the major unknown contributor is
estimated to have a fraction φU1 = 0.712 of DNA, more than 3 times that of the victim φV = 0.221,
whereas the proportions of DNA they contribute to the second mixture T2 are roughly equal, and
in the third trace the victim contributes a greater amount φV = 0.626 of DNA than U1.

Furthermore, the second unknown contributor U2, whose presence can explain the presence of
allelic dropin, contributes a small amount to T1 and T2, but a negligible amount to the third trace
T3. The mean stutter proportion is estimated as around 13% for T1, reducing to less than half
(4.8%) in T2 and almost vanishing in T3.

In this criminal case we might want to compare the hypotheses:

Hp: U1 is the child of mgt vs. H0: no unknown contributors are related to mgt
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Table 8: Maximum likelihood estimates for the mixture parameters based on combined information
on T1, T2, T3, for the example in Section 5.

Parameter T1 T2 T3
µ 3858 1289 1836
σ 0.408 0.671 0.562
ξ 0.127 0.048 0
φV 0.221 0.526 0.626
φU1 0.712 0.448 0.374
φU2 0.067 0.026 0

Table 9: Extract of mgt and the predicted profiles of the major unknown contributor U1 based on
combined information on T1, T2, T3 with and without information on the mother’s genotype, for the
example in Section 5.

probability
Marker mgt Ugt with mgt without mgt

D21S11 29 29 29 30.2 1 0.9919
28 30.2 0.0072

30.2 30.2 0.0004
32 30.2 0.0004

D22S1045 15 16 15 16 0.9865 0.9865
16 16 0.0096 0.0096
15 15 0.0039 0.0039

D2S441 11 14 14 11.3 1 0.9989
11.3 11.3 0.0011

TH01 6 9 6 9 0.9989 0.9987
6 6 0.0011 0.0012
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Table 10: Comparison of the likelihood ratios based on T1, T2 and T3 separately and the likelihood
ratio based on combining the information from T1, T2, T3, for the example in Section 5.

separate traces combined traces
T1 T2 T3 T1&T2&T3

LR 192578 357.24 169.65 188330
log10 LR 5.28 2.55 2.23 5.28

where U1 is the major unknown contributor to the mixture. The following inferences about rela-
tionships are based on parameter values fixed at the MLEs of Table 8. Using the ALN or RPT
methods gives a likelihood ratio in favour of Hp of log10 LR = 5.275 (or LR = 188330.3). If instead
we were to compare the hypothesis Hp: U2 is the child of mgt to H0 the likelihood ratio would be
much smaller, log10LR= 1.569 (LR=37.05).

Table 9 shows a comparison of an extract of the predicted profiles of the major unknown con-
tributor U1 based on the combined information in T1, T2, T3 when analysis is made with and without
information on the mother’s genotype. For most markers, as for D2S11 and D2S441, using the in-
formation on U1’s mother’s genotype yields sharper predictions, but all very similar to those based
solely on the three traces.

Table 10 shows a comparison between the likelihood ratios obtained for comparing the hypothe-
ses Hp to H0 by analysing each single mixture trace separately and the likelihood ratio we obtained
before, based on the combined evidence from the 3 traces. Trace T1, where the proportion con-
tributed by U1 is around 70% (φU1 = 0.712) is very informative and the LR is slightly greater than
the LR based on the combined evidence. Whereas, using trace T2 yields a LR about 539 times
smaller than that based solely on T1, and using trace T3 alone yields a LR about 1135 times smaller
than that based on T1.

6 Leaving the contributor unspecified, and likelihood ratios for
unions of alternative hypotheses

In modelling of DNA mixtures, the contributors have to be labelled to ensure all parameters are
identifiable; the convention used in DNAmixtures is for the contributors to be numbered from 1, in
decreasing order of the estimated proportion they contribute to the mixture in the first trace. This
labeling affects the specification of hypotheses about relationships with the contributors. In our
numerical examples, we have chosen to interpret, for example, the hypothesis that ‘a contributor
to the mixture is the father of the specified child’ as ‘contributor U1 is the father of the specified
child’. Exactly the same method could be used to evaluate similar hypotheses referring to U2, U3,
etc. This is partly for reasons of practicality and convenience: to deal precisely with a paternity
hypothesis about an unspecified contributor to the mixture requires a more complicated BN, with
increased storage and time requirements.

In some situations, it is perfectly appropriate to formulate hypotheses about relationships in
terms of the major contribution U1; this is the case in the examples in Section 4, where we be-
lieve that we have a DNA mixture dominated by DNA from the bones of the deceased singer,
subsequently contaminated.

In other situations, we may prefer to assess a relationship with an unspecified contributor; this
is formally a case of evaluating an alternative hypothesis Hp that is the union of two or more
corresponding hypotheses about specified contributors, Hp = H1 ∪ H2 ∪ · · · , where Hk is the
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hypothesis that the relationship in question is with the kth contributor. The problem of defining a
LR for Hp against H0, given the likelihood ratio LRk for Hk against H0, k = 1, 2, . . . is a generic
one.

A possible generic solution is to take LR = max LRk; this is similar to standard practice in
evaluating generalised likelihood ratios in regular parametric problems, but is probably unaccept-
able in judicial work. More satisfactory in the present context would be to follow the Bayesian
interpretation of the likelihood ratio. A simple application of Bayes’ theorem gives

LR =

∑
k LRkP (Hk)∑

k P (Hk)
=
∑
k

LRkP (Hk|Hp)

which, as the second form above makes clear, depends on the relative prior probabilities for the
alternative hypotheses, but not their absolute probabilities. If specifying these relative prior prob-
abilities is difficult or impossible in context, appropriate bounds could be reported. In a criminal
trial, one might suggest reporting mink LRk, to avoid exaggerating how incriminating the evidence
is; but this may be considered over-conservative, especially if an exclusion is obtained for some k,
when mink LRk = 0. For a civil court, and possibly in some criminal trials, one could report the
range of LR over a reasonable range of priors.

Applying these ideas to the example in Section 5, the relevant contributor-specific likelihood
ratios are LR1 = 188330.3 and LR2 = 37.05. Then mink LRk = 37.05, while if we used priors with
P (H1) = P (H2) we would report the arithmetic mean (188330.3 + 37.05)/2 = 94183.67.

7 Software

Our calculations are performed in R using a suite of functions called KinMix, available online at
https://people.maths.bris.ac.uk/~mapjg/KinMix/. These additional functions call functions
in the RHugin package to augment the capabilities of the DNAmixtures package.

8 Discussion

This paper gives the first coherent way to model inference about relationships from DNA mixtures.
The methods can be readily extended to analyse different scenarios. A variety of simple problems
are illustrated. The code for the analyses presented is available as supplementary material. We also
show how the additional information of specific genotypes relative to the relationship under analysis
greatly strengthens the resulting inference. The analysis concerning mixtures with hypotheses on
familial relationships could also be useful for identifying disaster victims. Here we have treated the
allele frequencies as fixed and known, however, the analysis could be extended to include uncertainty
in allele frequencies as shown in Green and Mortera (2009).

We have also not considered the possibility of mutation. Each of our methods can be extended
to handle mutation. There are simple extensions to the expressions for LRUgt in both Sections 3.3
and 3.4 for any mutation model; these can readily be used in the WLR method. The modifications
can also be used in coding the ALN method, for which there will need to be a link to the child
likelihood node from nia for every allele a from which mutation is possible to an observed allele in
the child genotype. In particular, for a one-step mutation model, there will be at most 6 links (or at
most 3 if the child is homozygous). Adapting the RPT or MBN methods requires more significant
elaborations to the Bayes nets. In each case there are likely to be increased computational costs.

Although the computation time comparisons in Table 7 suggest rather clear-cut preferences
between the 4 methods presented, we believe that each of the 4 may be useful in extending our
methods to particular further cases of relationship inference based on DNA mixtures. Whenever an
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algebraic expression for LRUgt can be obtained reliably with a modest amount of labour, it seems
preferable to adapt the ALN method to the new problem, as this expression appears explicitly
in the code where the conditional probability tables are established; it may be necessary to add
additional nodes and edges to the Bayes net, and this requires some understanding and expertise
of RHugin. The WLR method uses the same algebraic expression for LRUgt explicitly, and requires
no Bayes net coding or computation at all beyond that already set up in DNAmixtures, but of
course incurs a heavier computational price; it will be useful in prototyping. For the RPT method,
it is necessary to invert the expression for LRUgt to obtain a new conditional probability table for
Ugt, but once that is done, this method has similar computational cost to ALN, while retaining
exactly the graph topology of DNAmixtures. Finally, if the pedigree connecting all of the actors is
sufficiently complicated that reliable algebraic derivation of LRUgt is problematic, then the MBN
method may be preferable; it does however entail much more extensive modification to the Bayes
net.

Our emphasis here is on methodology and the general approach, but some qualitatitive con-
clusions might be drawn from the numerical results. For the examples in Sections 4.1 and 4.2,
we saw that log10 LR values of 5.6708 and 8.4022, respectively, would have been obtained if the
top-ranked genotype profile for the putative father had this profile been directly observable for this
individual. Based on the mixture evidence instead, these values become 5.4251 and 8.1571 (in each
case, reduced by a factor of about 1.75 in the LR). In both settings, these represent extremely
modest reductions in the weight of evidence, an encouraging sign for the usefulness of this kind of
analysis.
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Appendix: Bayes net computations for DNA mixtures

In this appendix, aimed at the more technically-interested reader, we give more details on the
modelling and computational strategy introduced in Section 1.2.

All of our proposed methods modify the Bayes net formulation of the model of Cowell et al.
(2015) and then, as in that earlier paper, perform the necessary computations to deliver the required
likelihood ratios, as laid out by Graversen and Lauritzen (2015), appropriately generalised.

With set values for the parameters, and with the observed peak heights z entered as data (via
auxiliary boolean nodes as described in Graversen and Lauritzen (2015)), all nodes in the network
equilibrate to represent the marginal distributions of the corresponding variables, conditional on
the values of φ, ρ, ξ, η and z. These distributions can be usefully interrogated, and the network
elaborated if necessary to facilitate the delivery of distributions of other variables of interest, such
as Ugt, the genotype of a specified unknown contributor.

For example, with the parameters in the model estimated via maximum likelihood, the peak
heights and corresponding alleles in the DNA mixture can be used to deconvolve the mixture in
order to predict, for each contributor to the mixed profile and for each marker, a set of possible
genotypes, together with their marginal predictive probabilities.
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The methods devised in this paper, and fully described in Section 3, make use of this deconvo-
lution, and other distributions obtained from the equilibrated BN, to make inference on putative
relationships involving contributors to the mixture.
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Essen-Möller, E. (1938). Die beweiskraft der ahnlichkeit im vaterschaftsnachweis. Theoretische
grundlagen. Mitteilungen der Athropologischen Gesselschaft in Wien, 68, 2–53.

Graversen, T. (2013). DNAmixtures: Statistical Inference for Mixed Traces of DNA. R package
version 0.1-3, dnamixtures.r-forge.r-project.org/.

Graversen, T. and Lauritzen, S. (2015). Computational aspects of DNA mixture analysis. Statistics
and Computing, 25, 527–41.

Green, P. J. and Mortera, J. (2009). Sensitivity of inferences in forensic genetics to assumptions
about founder genes. Annals of Applied Statistics, 3, 731–63.

Kaur, N., Bouzga, M., Dørum, G., and Egeland, T. (2015). Relationship inference based on DNA
mixtures. http://www.ncbi.nlm.nih.gov/pubmed/26541994.

Konis, K. (2014). RHugin. R package version 7.8.

Lauritzen, S. L. and Sheehan, N. A. (2003). Graphical models for genetic analyses. Statistical
Science, 18, 489–514.

Mortera, J., Vecchiotti, C., Zoppis, S., and Merigioli, S. (2016). Paternity testing that involves a
DNA mixture. Forensic Science International: Genetics, 23, 50–4.

Presciuttini, S., Cerri, N., Turrina, S., Pennato, B., Alu, M., Asmundo, A., Barbaro, A., Boschi, I.,
Buscemi, L., Caenazzo, L., Carnevali, E., DeLeo, D., DiNunno, C., Domenici, R., Maniscalco,
M., Peloso, G., Pelotti, S., Piccinini, A., Podini, D., Ricci, U., Robino, C., Saravo, L., Verzelletti,
A., Venturi, M., and Tagliabracci, A. (2006). Validation of a large Italian database of 185 STR
loci. Forensic Science International, 156, 266–8.

Previdere, C., Grignani, P., Alessandrini, F., Alu, M., Biondo, R., Boschi, I., Caenazzo, L., Carboni,
I., Carnevali, E., DeStefano, F., Domenici, R., Fabbri, M., Giardina, E., Inturri, S., Pelotti, S.,
Piccinini, A., Piglionica, M., Resta, N., Turrina, S., Verzeletti, A., and Presciuttini, S. (2013).
The 2011 GeFI collaborative exercise. Concordance study, prociency testing and Italian popu-
lation data on the new ENFSI/EDNAP loci D1S1656, D2S441, D10S1248, D12S391, D22S1045.
Forensic Science International:Genetics, 7, 15–8.

20



Ryan, K., Williams, D. G., and Balding, D. J. (2016). Encoding of low-quality DNA profiles
as genotype probability matrices for improved profile comparisons, relatedness evaluation and
database searches. Forensic Science International: Genetics, 25, 227–39.

Slooten, K. (2016). Familial searching on DNA mixtures with dropout. Forensic Science Interna-
tional: Genetics, 22, 128–38.

Slooten, K. (2017). Identifying common donors in DNA mixtures, with applications to database
searches. Forensic Science International: Genetics, 26, 40–7.

Thompson, E. A. (2000). Statistical Inferences from Genetic Data on Pedigrees. IMS, Beachwood,
OH. NSF-CBMS Regional Conference Series in Probability and Statistics.

21


