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SUMMARY 
The scope of application of iteratively reweighted least squares to statistical esti- 
mation problems is considerably wider than is generally appreciated. It extends 
beyond the exponential-family-type generalized linear models to other distributions, 
to non-linear parameterizations, and to dependent observations. Various criteria for 
estimation other than maximum likelihood, including resistant alternatives, may be 
used. The algorithms are generally numerically stable, easily programmed without the 
aid of packages, and highly suited to interactive computation. 
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1. PRELIMINARIES 
1.1. An Introductory Example 

This paper is concerned with fitting regression relationships in probability models. We shall gen- 
erally use likelihood-based methods, but will venture far from familiar Normal theory and linear 
models. 

As a motivation for our discussion, let us consider the familiar example of logistic regression. 
We observe Yi,Y2, * * ,Ym which are assumed to be drawn independently from Binomial distri- 
butions with known indices nl, n2,. . .,n, Covariates {x11, i = 1,2,. ... .,m; j= 1,2, . ..,p} 
are also available and it is postulated that yix ' B(ni, { 1 + exp (- Exil31)} -1), for parameters 
,1, 02, . . ., ,p whose values are to be estimated. The important ingredients of this example from 
the point of view of this paper are: 
(A) a regression function ql = q (p), which here has the form ri - { 1 + exp (-1x11t3)} -; and 
(B) a probability model, expressed as a log-likelihood function of t , L(q), which in this case is 

m 
L = E {y log i7l + (ni -yi) log (1 - )}- 

1=1 

In common with most of the problems we shall consider in this paper notice that, in the usual 
application of this example, 
(i) q has much larger dimension than i 
(ii) the probability model (B) is largely unquestioned, except perhaps for some reference to 

goodness of fit, and 
(iii) it is the form of the regression function (A) that is the focus of our attention. 
Typically we would be interested in selecting covariates of importance, deciding the form of the 
regression function, and estimating the values of the I3s. 
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1.2. General Formulation 
We consider a log-likelihood L, a function of an n-vector q of predictors. TypicaLly n is equal 

to, or comparable with, the number of individual observations of which the likelihood forms the 
density or probability function, but we shall be concerned also with cases where individual 
observations are difficult to define, for example with one or more multinomial samples. 

The predictor vector t1 is functionally dependent on the p-vector P of parameters of interest: 
p is typically much smaller than n. We base our inference on the function q = tj (p) by estimat- 
ing the parameters p , and deriving approximate confidence intervals and significance tests. 

Initially we shall consider only maximum likelihood estimates, and suppose that the model is 
sufficiently regular that we may restrict attention to the likelihood equations 

aL T= = DTu =0 (1) 
ap 

where u is the n-vector {aL/a h }, and D the n x p matrix { ia i }/ The standard Newton- 
Raphson method for the iterative solution of (1) calls for evaluating u, D and the second 
derivatives of L for an initial value of p and solving the linear equations 

(-a2L 

tapp ) ( p*p> DTu (2) 

for an updated estimate f * This procedure is repeated until convergence. Equation (2) is derived 
from the first two terms of a Taylor series expansion for aLla f for a log-likelihood quadratic in 

the method converges in one step. 
Commonly the second derivatives in (2) are replaced by an approximation. Note that 

-a2L aL a2 a a T a2L (anl) 

a pp T anai a pP T ap an TIT ap 
and we replace the terms on the right by their expectations (at the current parameter values 11). 
By the standard arguments: 

( aL 

//2L aL 1aL\ T 
E l E E- = IA5 

say, and with this approximation (essentially Fisher's scoring technique) (2) becomes 

(DTAD) (p * - ?) = DTu. (3) 
We will assume that D is of full rank p, and that A is positive definite throughout the parameter 
space: thus (3) is a non-singular p x p system of equations for P *. 

Rather than handle their numerical solution directly, note that they have the form of normal 
equations for a weighted least squares regression: P * solves 

minimize (A -1u + D(P - p *))T A(A -lu + D( P -p*)), (4) 
that is, it results from regressing A1 u + D P onto the columns of D using weight matrix A. 

Thus we use an iteratively reweighted least squares (IRLS) algorithm (4) to implement the 
Newton-Raphson method with Fisher scoring (3), for an iterative solution to the likelihood 
equations (1). This treatment of the scoring method via least squares generalizes some very long- 
standing methods, and special cases are reviewed in the next Section. 

Two common simplifications are that the model may be linearly parameterized, q = X P say, 
so that D is constant, or that L has the form YL1(i1) (e.g. observations are independent) so that 
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A is diagonal. 
IRLS algorithms also arise in inference based on the concept of quasi-likelihood, which was 

proposed by Wedderburn (1974) and extended to the multivariate case by McCullagh (1983). 
Suppose that the n-vector of observations y has E(y) = l and var (y) = a2 V(ij), where 

q= ( p) as before, a2 is a scalar, and the matrix-valued function V( ) is specified. The log- 
quasi-likelihood Q is defined as any function of tj satisfying 

aQ 
-QV(tj) (y- n) (5) 
all 

where V- is a generalized inverse. We estimate P by solving the quasi-likelihood equations 

O=aQ =a aQ DTU 
a, ap an 

say. Since E(aQla-/t ) =0 and E(-a2Q/atp T) = V-, the Newton-Raphson equations with 
expected second derivatives have the form (3) with A = V -. 

Questions of existence and uniqueness of the maximum likelihood estimates in various cases 
are discussed by Wedderburn (1976), Pratt (1981) and Burridge (1981). The large-sample theory 
that justifies likelihood-ratio tests and confidence intervals for parameters will be found in Cox 
and Hinkley (1974, p. 294-304) and McCullagh (1983). In particular, the asymptotic covariance 
matrix for the estimate of P is cr2 [E(-a2L/a pp T)] -1 = a2(DTAD)-' 

The important connection between such theoretical results and the numerical properties of 
IRLS is that both are justified by the approximate quadratic behaviour of the log-likelihood near 
its maximum. Thus it is reasonable that IRLS should work when maximum likelihood is relevant. 

1.3. History and Special Cases 
From the first, Fisher noted that maximum likelihood estimates would often require iterative 

calculation. In Fisher (1925), use of Newton's method was mentioned, 

dL / ( d2LN 
dO / \dO2 / 

either for one step only, or iterated to convergence. Implicitly he replaced the negative second 
derivative, the observed information, at each parameter value by its expectation assuming that 
value were the true one. This technique, and its multi-parameter generalization, became known as 
"Fisher's method of scoring for parameters", and was further discussed by Bailey (1961 
Appendix 1), Kale (1961, 1962) and Edwards (1972). 

Use of the scoring method in what we term regression problems seems to date from Fisher's 
contributed appendix to Bliss (1935). This paper was concerned with dosage-mortality curves, a 
quantal response problem as in Section 1.1, except for the use of the probit transformation in 
place of the logit. The relative merits of using observed or expected information were discussed 
by Garwood (1941), and the method has become more generally known from the various editions 
of Finney's book on Probit Analysis (1947, 1952, Appendix II). 

Moore and Zeigler (1967) discussed these binomial problems with an arbitrary regression 
function, and demonstrated the quite general connection with non-linear least-squares regression. 
Nelder and Wedderburn (1972) introduced the class of generalized linear models to unify a 
number of linearly parameterized problems in exponential family distributions. These models 
are discussed in Section 3.2. 

The important connection between the IRLS algorithm for maximum likelihood estimation 
and the Gauss-Newton method for least-squares fitting of non-linear regressions was further 
elucidated by Wedderburn (1974). 

Jennrich and Moore (1975) considered maximum likelihood estimation in a more general 
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exponential family than did Nelder and Wedderburn; their approach is similar to ours, except 
that the predictors j must be the expected values of the observations. 

Important recent contributions have come from McCullagh (1983) and Jorgensen (1983), 
particularly regarding the treatment of dependent observations. 

2. PRACTICALITIES 
2.1. Multinomial data 

Much of our discussion of the detailed properties of IRLS algorithms that follows can be 
motivated by examples with multinomial data. 

First consider a single multinomial distribution with polynomially parameterized cell 
probabilities, such as often arises with data on gene frequencies. In the usual model for the 
human ABO blood system, A and B are alleles co-dominant to 0, so that under random mating 
with gene frequencies of p, q and r for A, B and 0, the probabilities for the phenotypes A, B, 
AB and 0 are p2 + 2pr, q2 + 2qr, 2pq and r2. Both sets of frequencies sum to 1, and on remov- 
ing this redundancy we obtain a regression problem with three predictors on 2 parameters, q being 
defined as the probabilities of the phenotypes, A, B and AB, and P taken as (log p, log q)T. This 
is obviously a non-linear regression, and the derivative matrix D is 

[ pr -pq1 
D = 2 -pq qr 

[ pq pq J 
Given observed frequencies Y1,Y2,Y3,Y4 for A, B, AB and 0, with Tyi=n, we have 
ui = Yi71gi -y4/74 and Ail = n(ig/ig - 1U4), wherem74 = 1 - ?h - 72 - 73 

Incidentally, if iN retains its identity as a predictor, the regression becomes of order 4 x 2 but 
A is now diagonal: this is essentially the algorithm used by Jennrich and Moore (1975) for this 
problem, with the exception that they take P - (p, q)T. 

More generally, data in the form of R multinomial samples on the same set of S response 
categories often arise in the regression analysis of categorical data. We may arrange the data 
as a two-way table of counts yrs' r = 1, 2, .. ., R; s = 1, 2,..., 5, and the log-likelihood is 
essentially L = z 2Yrs log Prs where T2Prs = 1 for all r and the RS cell probabilities Prs are suit- 
ably parameterized. There has been considerable interest in the case where the categories 
1, 2, . . ., S are ordered; see for example McCullagh (1980), Anderson and Phillips (1981) and 
Pratt (1981). Then we may be prepared to write 

Pri = ( 

for some given distribution function 4f. Here the matrix (xrj) represents covariate information, 
and the parameters are -oo=0 <01 <O...<OS=+oo,I3,02,...,I3p and T1,T2,. . ., TR, 
subject to some constraint such as log 'r = 0 to ensure identifiability. (Often, in fact, 
Tr 1.) Motivation for this model comes from considering the response categories as an arbitrary 
grouping of unobservable underlying data on a continuous scale. The Os are not usually of interest. 
This grouped continuous model also arises, of course, in the case of genuine grouped data in 
several samples from a location-and-scale family, in which case the Os are known. 

In this situation we may define the predictors tq so that either mlrs or qP(iqrs) is 
i 1 Pri, r = 1, 2, ..., R; s = 1, 2,..., S - 1. The former choice simplifies u and A and facilitates 

the comparison of several alternative distribution functions 4f: the latter alternative gives D a 
simple form. With either parameterization, A is tridiagonal: this reduces the numerical algebra, 
and saves storage space. During the iteration, it is not usually necessary to insist on the ordering 
of the 9 parameters, as results of Pratt (1981) and Burridge (1981) show that provided all cate- 
gories are observed, the likelihood will attain its maximum at a point where the inequalities are 
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satisfied. 
Use of models such as these for categorical data was motivated by the case where T is a 

logistic function and S = 2. This is the usual linear logistic model for binary data (Cox, 1970). 
An alternative model for ordinal data with a similar motivation is Anderson's stereotype model, 
a special case of the models in Anderson (1984), which we may write as 

Prs = exp ( 7sY s Z xr,jf) / E exp (-yt-(t) Xj3j) 
; ~ ~ ~~~ti 

where , y and 4) are to be fitted, under the constraints ys 0 and 1 = o > q2 > . . . > Os = 0. 
Here, the simplest parameterization for IRLS is to use rs = -s - Os Lij Xrji, r = 1, 2, . . ., R; 
s = 1, 2,. . ., S- 1. However, this model suffers from rank deficiency of D at P = 0, and there 
will be consequent numerical difficulties, and problems in the large-sample theory. Further there 
is no guarantee that at the computed maximum, the Os will be correctly ordered. 

2.2. Example 
For a straightforward application of the grouped continuous multinomial model, consider the 

data in Table 1, relating school GCE A-level score to university degree performance for fifteen 

TABLE 1 
A-level score and degree classification 

Degree class 

Score I 11(i) 11(ii) III Pass Total 

15 22 13 10 3 0 48 
14 20 21 31 9 2 83 
13 13 43 31 16 10 113 
12 7 21 35 18 5 86 
11 3 21 26 32 8 90 
10 3 17 25 20 12 77 
9 1 10 9 15 11 46 
8 1 2 4 12 6 25 
7 0 1 2 6 1 10 
6 0 0 2 1 0 3 

years' intake to a certain university first degree course. Clearly there may be heterogeneities here 
caused by changing standards with time, and it would have been preferable not to combine these 
data over the years. We examine the data for a possible linear relationship between the log-odds 
of attaining degree class s or better and A-level score. Here, s = 1, 2, 3 or 4 for degree I, H1, 112 
and III. Parallel regression lines in this domain define the proportional odds model (see McCullagh, 
1980) and are equivalent to a logistically distributed latent response variable, which is categorized 
into unknown intervals to provide the degree classification. Specifically, then, we suppose that the 
probability that a student with an A-level score of xr attains degree class i = 1, 2, 3, 4 is Pri such 
that EL 1 Pri = T(s a?xr), where T(u) = (1 + e u)1. Defining lrs = 4iq= l Pri s = 1, 2, 3, 4, 
r = 1, 2,.. ., 10, and f = (G1, 02, 03, 04, a)T, and using an unweighted least squares regression 
of the empirical log-odds ratio to provide initial estimates for I , IRLS converged in 4 iterations 
to the maximum likelihood solution 0 = (-6.803, -5.177, -3.763, -2.096)T, a = -0.3915 
(standard error 0.040). This fit gave a deviance (likelihood-ratio statistic against the saturated 
model) of 48.5 on 35 degrees of freedom: it is therefore probably adequate as a summary of the 
data. Treating A-level score as a factor rather than a quantitative covariate reduced the deviance 
to 36.5 (27 d.f.) so that based on a nominal significance test, no non-linearity is suggested. Use 
of the Normal distribution function for the latent response variable made practically no difference, 
while the Gumbel distribution (the "complementary-log-log" link, or proportional hazards model) 
fitted less well, whether degree classes were arranged in increasing or decreasing order. 
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For this example, of course, the allegedly latent response variable has an immediate 
interpretation as an examination mark underlying the degree classification. We might then know 
the cutpoints {O, }, or rather, allow an intercept and scale and write 

Z pf = i (_ ts xr) 

where {t8,} are known. For illustration, if the cutpoints t are taken as (75, 60, 45, 30)T then the 
maximum likelihood estimates of y, 8 and a are 8.773, 3.835 and 9.736, with a deviance of 51.2 
(37 d.f.). Thus each A-level point is "worth" nearly 4 examination marks; note, however, from 
the magnitude of the estimate for a that there is considerable variation about this regression line. 

The approach is not, of course, limited to the case of a single covariate. For example, we have 
successfully used IRLS to fit both the grouped continuous and stereotype models to the back 
pain study data of Anderson and Philips (1981) in which there are 6 response categories and three 
categorical explanatory factors. 

2.3. Convergence 
General experience seems to be that choice of starting values for the parameter estimates is 

not particularly critical. Jennrich and Moore (1975) make this point quite strongly, though they 
are working only in an exponential family framework. In a model where there is a danger of 
multiple maxima, it is of course important to repeat the iterative process from several different 
points in the parameter space, in order to obtain more confidence that the true global maximum 
has been obtained. 

In certain specialized problems, accurate starting values can be obtained by explicit formulae. 
For the ABO genetic example, Rao (1973, p. 371) gives formulae that render an iterative solution 
almost unnecessary. The effect of ignoring such formulae and using quite arbitrary starting points 
is illustrated in Fig. 1 for this example, using the 0, A, B, AB frequencies: 202, 179, 35 and 6, 
as used by Thompson and Baker (1981). It will be seen that convergence is successfully obtained 
from nearly every admissible point, but that the iterations can be rather wild unless a little thought 
is used to provide a sensible initial estimate. 

r=O 

Fig. 1. The ABO blood group example: trajectories of successive iterations of IRLS from three differ- 
ent initial estimates, using the parameterization J = (log p, log q)T, plotted in barycentric coordinates. 
The shaded region covers initial values for which IRLS is unsuccessful 
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For generalized linear models, it is easy to find usable starting values (See Section 3.2). In fact 
whenever the regression function is linear, TI = X , , and initial estimates of ti can be obtained 
from a simple transformation of the data, an unweighted regression of these on the columns of X 
usually yields appropriate starting values of , . Jorgensen (1983) suggests a modification for the 
non-linear case. 

We have mentioned use of both the expected and observed information matrices in the iterative 
step of the algorithm. Again this decision is not usually important. Expected information used to 
be preferred because in the problems being considered it was algebraically simpler, and because 
its value on convergence was needed to compute the asymptotic variance of the estimates. For 
discussion of these points see Garwood (1941), Edwards (1972) and Cox and Hinkley (1974, 
p. 308), for example, but see also Efron and Hinkley (1978). Further, the observed information 
matrix may not be positive defmite. In exponential family models appropriately parameterized, 
observed and expected information may be the same (Nelder and Wedderburn, 1972, Jennrich 
and Moore, 1975, see Section 3.2). 

On the other hand, in certain situations the expected information is unknown (for example 
with censored survival data, the potential censoring times are not recorded for uncensored 
observations), or algebraically complicated, or involves nuisance parameters (see Section 3.1). 

Only in simple cases can the behaviour of the algorithm on iteration be properly quantified. 
At worst, all we can say is that it is a fixed point method: if it converges to a point j , then P is 
a solution of the likelihood equations. Exact Newton-Raphson is a quadratic method, so that 
convergence will be rapid near the solution, but may not be obtained at all far from this point. 
See Chambers (1977, p. 136) and Jennrich and Ralston (1979). As pointed out by Jorgensen 
(1983), we can always modify the Fisher scoring method by reducing the step size to ensure that 
the likelihood increases on each iteration. 

The iterations must be monitored in order to detect convergence (or its failure). Two obvious 
methods for doing so are to record relative changes in parameter estimates or absolute changes 
in the log-likelihood. GLIM used a modification of the latter, but the former is more readily 
adapted to alternatives to likelihood methods (Section 5) and involves simpler calculations, while 
it is less suited to automatic application. When handling an unfamiliar problem, it is important 
to follow the entire iterative history of the solution to be confident that the convergence 
criterion employed is appropriate. 

2.4. Reparameterization 
One-to-one transformation of either ti or P in the model L = L(tq (p)) will not essentially 

change the problem, but does change its specification, and can make the difference between 
success and failure in the application of IRLS. 

Suppose that 11 and , are in appropriately differentiable one-to-one correspondence with 
, and y respectively, and denote the associated Jacobians by S and R. Thus S is n x n with 
Sil = aqj/aX, and R is p x p with Ril - agi/a. If we re-parameterize the model as L = L(4 (y)) 
then by elementary calculus, u, A and D are replaced by STu, STAS and S' DR. The likelihood 
equations DTU = 0 become RTDTU = 0 and the IRLS step is 

(S -1 DR)T (STAS) (S -1 DR) (y * - y) = RTDTU, 

which reduces to 

(RTDTADR) (y * - y) = RTDTU. 

Thus, as expected, reparameterization in the TI -space has made no difference to the iterative 
solution, but in the J -space it does make a difference, unless the transformation from P to y is 
affme. 

From a numerical point of view, there may be good reason to reparameterize in order approxi- 
mately to linearize the problems. Successful use of IRLS depends essentially on the adequacy of 
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approximate linearity of aL/a P i p . If for some y , RT DTU is more nearly linear in y than is 
DTu in p , then transformation may be worthwhile. 

For a simple example of this, consider again the ABO genetic system. If the problem were 
alternatively parameterized in terms of y = (p, q)T, then the frequencies of phenotypes (A, B, 
AB) are q where q T = (71 (2 -71 - 272), 72 (2 -271 -y 72), 2'yly2) and so 

[ 7 
1' -72 -71 

DR= 2 - 72 171 _72 

7-2 'Yi 
Although this has a simpler form than does D of Section 2.1, it is found that with this set-up the 
problem is more sensitive to initial values for y . Figure 2 illustrates that starting values must be 
restricted to a much smaller part of the parameter space than with the earlier parameterization. 

p= 

r=O 

Fig. 2. As for Fig. 1, but with the alternative parameterization 9 = (p, q)T. 

Although as we have seen, reparameterizing a will make no numerical difference (if we 
neglect rounding error) it may cause considerable changes in setting up the problem as the 
information matrix STAS may have simpler structure than A. 

2.5. Contputing the Weighted Least Squares Solutions 
The numerical analysis of the linear least squares problem is well developed. Chambers (1977, 

chap. 5) provides a useful summary from a statistical viewpoint. For ordinary least squares, fmd- 
ing P * to minimize 11 y-D P * 11 = (y- D 0 *)T (y-D there are methods that are more 
stable numerically than the obvious , * = (DTD) - DTy. 

The orthogonal decomposition methods involve the explicit or implicit construction of an 
n x n orthogonal matrix Q(QTQ = I) such that 

R 
QD =[O 

where R is a p x p upper triangular matrix. Since orthogonal transformations preserve eucidean 
length, our required solution p * satisfies R 51* Qy (where Q denoted the first p rows of Q) 
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and may be obtained by back-substitution. Note also that DTD = RTR, facilitating the calculation 
of (DT D)1 etc. 

Orthogonal decompositions may be found by a modified Gram-Schmidt method, Givens' 
method, or by means of Householder transformations. This last approach is recommended for 
general use (see the procedures decompose and solve of Businger and Golub (1965), imple- 
mented as NAG routines F01AXF and F04ANF(NAG, 1981)). 

From a strictly numerical-analytic point of view, the back-substitution for f * should be 
followed by an iterative improvement, in which the residuals from the least squares solution 
become the right-hand sides for a new least squares problem. Providing the transformation has 
been saved this does not entail further decomposition; nevertheless, it is not likely to lead to any 
improvement relevant to data-analysis, particularly when the least squares solution is, as here, 
only a part of an iterative step. 

Ordinary least squares solves our IRLS step (4) when A is a scalar matrix: the "modified 
dependent variate" y is A-' u + D P . When A has a more complicated form, we need to use 
weighted least squares. Two possibilities are open to us: 
(i) to transform the problem to ordinary least squares, or 
(ii) to generalize the orthogonal decomposition method. 
When A is diagonal, diag (vi?) say, the ttansformation (i) is trivial. With y defined as above, 
we minimize (y - D p *)T A(y - D = Ev2 (yi - E2di/,3*)2 by component-wise multiplication 
of the entries in y and the rows of D by the square roots of the diagonal elements of A, and 
using ordinary least squares. This gives the simple prescription: 

Regress - + vi z dikIk on {vidi1} (6) 
Vi 

Chambers (1977 p. 120) suggests this procedure, and there seems no point in looking for a method 
of type (ii). 

For general, non-diagonal, A, conversion to ordinary least squares entails construction of the 
Cholesky square root matrix B and using: 

Regress (B -1 u + BTD II) on columns of BT D (7) 

An alternative approach would be to decompose D in the geometry determined by A, by con- 
structing an n x n matrix Q for which 

QTQ=A,QD [= j 

and solving R J * = Qy = Q(A1u + D jJ) = QA-1 u + R JP as before, by back substitution. 
This hybrid Householder/Cholesky decomposition may offer advantages in efficiency or 

accuracy, but we have experienced no difficulties with the routine use of a separate Cholesky 
decomposition followed by ordinary least squares. Note that A may be of special form (e.g. 
tridiagonal) which may be exploited in the decomposition. 

With this approach, no special purpose software is needed for any of these computations. For 
example, the interactive general purpose language APL has all the array-handling capabilities that 
are required. 

Of course, weighted least squares procedures are available in many statistical packages and sub- 
routine libraries. In the BMDP series (Dixon, 1981), for example, the P3R and PAR programs fit 
non-linear regressions and the manual describes their usage for maximum likelihood estimation. 
The facilities in GLIM (Baker and Nelder, 1978), and GENSTAT (Alvey, et al., 1977) for fitting 
generalized linear models will be reviewed in Section 3.3. Generalized least squares in which the 
weight matrix is not diagonal does not seem to be available in packages. 
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2.6. Alternative Numerical Methods 
The Newton-Raphson method, whether or not the second derivatives are replaced by their 

expectations, is conceptually the simplest numerical procedure for maximizing the likelihood 
function. It would be naive to suggest that it can be used universally for these problems, but we 
have argued that one principal reason why it may break down (an inadequate approximation of 
L by a quadratic near its maximum) may also mean that maximum likelihood estimation is not 
appropriate. 

However, two other reasons in particular may suggest that other numerical methods are more 
suitable -slow convergence far from the optimum, and the necessity of supplying analytic second 
derivatives. These difficulties can be overcome by use of Quasi-Newton methods (see for example, 
Gill and Murray (1972)). This has been recommended by Anderson and Philips (1981) and 
Anderson (1981) for the multinomial problems discussed in Section 2.1. Quasi-Newton methods 
seem highly suited to maximum likelihood estimation, and should perhaps be generally recom- 
mended if IRLS fails. 

Other optimization methods that may be needed in particular applications include search 
methods (e.g. Powell (1964), Nelder and Mead (1965)) and the conjugate gradient algorithms 
(Fletcher and Reeves, 1964). These latter are economical in storage when the number of para- 
meters is large, and are advocated by McIntosh (1982) for the fitting of linearly parameterized 
models on small computers. Search methods are probably most suited to problems where the 
objective function is rather less well behaved than most log-likelihoods. 

Useful reviews of these methods are given by Chambers (1977, chapter 6), and Jennrich and 
Ralston (1979). 

For certain problems, special purpose algorithms are available. For example, in log-linear 
models for multi-way contingency tables, one rival to the IRLS method is the iterative 
proportional fitting algorithm (see, for example, Bishop, Fienberg and Holland, 1976). This will 
normally be preferable, but in a sparse contingency table the difference is less clear. Brown and 
Fuchs (1983) provide a valuable discussion of these points. 

The MLP package (Ross, 1980) uses several different algorithms, including a modified Newton 
method, for various special maximum likelihood problems, including probit analysis and genetic 
linkage. User-defned models can be analysed, and the program will handle non-linear para- 
meterizations. 

We should also touch here on the relationship to the EM algorithm (Dempster, Laird and 
Rubin, 1977). This is not a numerical method for maximum likelihood estimation in the same 
sense as IRLS. It is rather a general principle for handling problems in which the likelihood takes 
a particularly complicated form because of unobserved latent or missing variables. In particular 
cases there can be a close connection with IRLS. For example, Hinde (1982) shows that, for a 
Normal-Poisson compound distribution, when a numerical integral in the EM-algorithm is 
evaluated by Gaussian quadrature, the result is an IRLS algorithm. Brillinger and Preisler (1983) 
use a similar method for a variety of compound distributions. 

3. NUISANCE PARAMETERS 
3.1. Introduction 

Not all of the parameters in a model need hold the same interest or have the same logical 
status. In certain cases, such "nuisance parameters" K are additional to those naturally entering 
the regression function tq (P), and that is the situation considered here. (It is a different 
distinction, for example, than that made between treatments and blocks in a designed 
experiment.) It is generally profitable to recast the model as L = L( t , K) where tj = i(I). 

There are now two sets of likelihood equations 

aL 
- =D u=O (8) 
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aL 
- =0. (9) 
aK 

We continue to use the first set, but by analogy with the case of the variance in Normal linear 
regression we may replace (9) by some other criterion if convenient. We may in fact not wish to 
estimate K , but need to do so because of its implications for J; solution of (8) may depend 
on K , and estimates of the variance of P may involve Kc. 

In some situations, the dependence on K may essentially factor out of the problem. 
Jorgensen (1983) discusses models which may be expressed in the form: 

L-=C(V, K) + t(y, n ?K (10) 

where the vector y represents the observed data, and ?(i) is a type of "precision" factor 
dependent on the nuisance parameters. Jorgensen calls this the extended class of generalized linear 
models, but in fact no linear structure q = X P is necessarily intended. 

With the model (10), we have 

aL DT at - l(K)DT- 

and 

a2L / a2t at a271 
appT a-(K) a T a a1p7) (1 1) 

The Newton-Raphson method for estimating P thus seems to involve K only through the pre- 
cision parameter p, and indeed this appears to cancel from the two sides of (2). However, while 
the second term on the right in (11) disappears on taking expectations of the second derivatives, 
(or would vanish anyway if q were linear in P ), the expectation of a2 t/aj,qT generally involves 
K . As Jorgensen observes, this will be the case unless (10) is an exponential family with q the 
minimal canonical parameter (which covers Nelder and Wedderburn's models). Jorgensen advo- 
cates the compromise of ignoring the second term of (11) but not taking expectations in the 
first term. This iterative method, which he terms the "linearization method", can be realised 
by taking u = {at/a 1 } and A = {-a2 t/a q T }. This will allow estimation of P without inter- 
ference from the nuisance parameter K . The new difficulty that may arise in thus using 
"observed" rather than "expected" information is that A may not be positive-definite (or even 
semi-definite), at some points in the q -space. IRLS would then break down completely. 

If so, then an alternative to treating P and K in the same manner may be available if (9) is 
explicitly soluble for K given fixed P . Often K iS one-dimensional, and enters (9) in a simple 
way. If this is the case, we can attempt a solution for ( , K) by means of a 2-part iteration: 
(i) holding ic fixed, use IRLS to update P; 
(ii) holding ,B fixed, solve (9) for an updated Kc 
The convergence theory of this is even more inaccessible, but some results are available for the 
linear regression case (Section 4.1). 

3.2. Generalized Linear Models 
Nelder and Wedderburn (1972) proposed a class of likelihood functions for n independent 

observations {yj } which may be written 

n 

L b= a c(ri(y) r - b(0p)) + c(}i, a s (12) 

where b(-) and c(-) are prescribed functions, {7ri} a set of known "prior weights", 0 a 
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nuisance precision parameter (known or unknown), and the canonical parameter Oi is functionally 
related to the linear predictor t1i = I x1 13. 

This falls into our general framework, and in fact forms a subclass of Jorgensen's extended 
generalized linear models. In the notation of Section 1, D is constant (the model or design 
matrix X), A is diagonal since the observations are independent, and u has a special form: 
because of the exponential family assumption (12) it involves only yi - b'(01) =yi - E(Yg). 

Standard examples include: 
(i) Yi \- N(71i, 2 ) 
(ii) yi v Poisson, with mean exp (71a) 
(iii) yi X Binomial, with probability (1 + exp (- tai))- 
(iv) yi X Gamma, with mean??-' 
(v) yi ̂ v Binomial, with probability 1D(71i) 
(vi) y1 Gamma, with mean rn 
(vii) yi X Negative binomial, with probability (1 + exp (- 1i))- 
where in each case rn = E x11(3. Thus many standard analyses, including linear regression, log- 
linear models and logit and probit analysis fit into this structure. 

Using the IRLS approach described in Section 1 for generalized linear models has additional 
justification when the canonical parameter Oi in (12) is identical to t1i. This includes the first four 
of the standard models listed above. If this holds then it is easy to see that the second derivatives 
of L with respect to q or A do not involve y: the observed and expected information matrices 
therefore agree, and we are using Newton-Raphson exactly. Statistically this property implies the 
existence of sufficient statistics: in the case where the prior weights are all unity and 4 is known, 
we see that the likelihood L in (12) can be rearranged to exhibit Xry as sufficient for P . For 
examples (v) to (vii), the observed and expected second derivatives differ: exact Newton-Raphson 
will work for (v) and (vii) but not (vi). 

3.3. GLIMand CompositeLinkFunctions 
The unity of generalized linear models has been exploited in the development of the GLIM 

program (Baker and Nelder, 1978) which is essentially an IRLS algorithm coupled with data- 
handling facilities, automatic specification of several standard models, and a high-level syntax 
for manipulating design matrices. Similar features are now available in GENSTAT (Alvey, et al., 
1977). GLIM permits the fitting of non-standard ("user-defined") models by way of the OWN 
directive and its associated macros. 

It may be shown that for a generalized linear model, after cancelling out the nuisance para- 
meter 4 as in Section 3.1, ui = iri(yi - p1)/'ri2 8i and Aii = ir1 rj 22, where t4 = E(yi), 
ri2 = 0ri var (yi) and 8i = d?1l/dgi. Given a problem specified in terms of our u, A and D, it 
seems impossible for GLIM to handle non-diagonal A. If A is diagonal, the user's macros should 
define the GLIM vectors %YV, %FV, %VA, %DR and %PW (y, ja, X 2, 6 and X ) to satisfy the 
above relations for ui and Aii, and then use the columns of D in the FIT directive. Because of the 
redundancy in notation, there are several ways of setting up such a problem. 

Considerable ingenuity has been expended in coding some rather unamenable problems into 
the GLIM command language following this prescription. In particular, Thompson and Baker 
(1981) demonstrated a useful extension of standard generalized linear models by way of com- 
posite link functions. A number of important models including the genetics example and the 
grouped continuous models that we have discussed fall into the distribution family (12) but with 
a non-linear regression function. Burn (1982) and Roger (1983) have extended this application 
of GLIM to a wide variety of multinomial problems arising in genetics. 

The forthcoming replacement for GLIM will provide considerably better facilities for user- 
defined models, including composite link functions. 
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4. LINEAR REGRESSION 
4.1. Three IRLS Methods 

We now turn to the linear model 

Yi= Xi/f+ afe (13) 
in which the {ei } are independent and identically distributed with density f. We consider 
estimating P and a according to one of three principles: (i) maximum likelihood, for known f; 
(ii) robust regression, providing estimates protected against departures of f from Normality; and 
(iii) resistant regression (which is deferred to Section 5.2). 

Define i and w by ;(t) = tw(t) = - (d/dt) log f(t), and write qi = 2xilf3 and ri = (yi - qi) 
The log-likelihood is L = - n log a + z log f(ri), so the likelihood equations are 

aL - aL=a l4(ri)xi,=O (14) 
at/ 

and 

aL 
-= a' (I (r1) ri - n) = O. (15) 

Letting asterisks denote updated items, if we substitute w(ri) (y1 - 7*)Ia* for 4P(r1) then (15) 
and (14) yield 

ao n w(ri) (Yi - 7(16) 
and 

2 w(ri) yix i = , E w (r1) XiixXi k* (17) 
Of these, (16) updates a* from ii * explicitly, while (17) are normal equations for a weighted 
least squares regression, obtained without any appeal to the Newton-Raphson procedure. 

Proceeding more formally, and differentiating (14), we derive the Newton-Raphson equations 

k (rd) xil E P(rd) XiXik k * ) (18) 
ia i k ( 

These least squares equations may be used directly, or &'(ri) can be replaced by one of two 
approximations. Firstly, noting that 4'(r) = w(r) + rw'(r), we can just ignore the second term (note 
that w( ) = constant for a Normal distribution). In this case (18) reduces to (17). Alternatively, 
Fisher scoring uses 

4i'(r) 2E(4i'(r)) 
= i{f 

f(r)} 
2dr 

say, known as the intrinsic accuracy of the distribution (Fisher, 1925), so that (18) is replaced by 

E P(ri) xi1 = a X -Xik(k - ) (19) 
* a a i k 

We have derived three altemative IRLS procedures for updating p, based on (17), (18) and (19) 
respectively: 
(I) Regress V/(w(ri))y on V/(w(ri))xii, (17') 

(II) Regress a 4d(ri+ ) on \/(L'r(d))x11; (18') 
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(III) Regress ??i + a (yr - ?1j) on Xi. (19 ) 

Of these procedures, (1) was used by Beaton and Tukey (1974), (11) is exact Newton-Raphson, 
and (III) is similar to that used by Huber (1973) and Bickel (1975), with the exception that 
they used an empirical estimate of a, in the absence of assumptions on f. 

The three procedures coincide in the Normal case. In general, Newton's method (II) has the 
strongest justification, but it is usually more complicated to program, and is only defmed when 
0'(r) >0 for all r: that is, when 4 is strictly increasing (f, log-concave). Methods (I) and (III) 
are about equally simple to program, and (TII) has the advantage of using only the unweighted 
design matrix X. 

Maximum likelihood for the error distribution fAt) = kcllk exp (-c I t Ik)/(2r(k l )) coincides 
with Lk regression, which minimizes S I y3 - z xgft31 I These models, and asymmetric versions 
in which the exponent multiplier depends on the sign of t are the only regressions in the class 
of models of Section 3.1: numerical solution is in principle easier since a factors out of (14), and 
(15) has an explicit solution for a. However, these models are notoriously difflcult to fit when 
k < 1. IRLS cannot be recommended when k < 2: separate methods based on linear programming 
are available for L1 regression (Barrodale and Roberts, 1973). 

Dempster, Laird and Rubin (1980) discuss maximum likelihood regression, using method (I), 
for error distributions from the "Normal/independent" family, which includes the t distributions. 
They demonstrate that the IRLS algorithm so implemented is an example of an EM algorithm, 
so that theoretical results about convergence are available here. 

Standard errors for the regression coefflcients are readily obtained. We noted above that the 
expected negative second derivatives with respect to 1 are 

E _ 2L ] r 
a ppT J 

so that the estimated asymptotic covariance matrix for the estimates of P is a1 (XTX) -1 
Turning now to robust regression, the principle of M-estimation (Huber, 1973) suggests esti- 

mating p by minimizing , p((yi - , xj1Pj)/a) for a suitably chosen loss function p. If p is 
-logf for some density function f then this is numerically equivalent to maximum lkelihood 
again, assuming that f is the correct density. 

We proceed as above using 4 = p', except that in method (III) the intrinsic accuracy a must be 
replaced by an empirical estimate. Essentially the only other differences are in the basis for choice 
of the function v (from robustness considerations rather than a probability model), and in the 
treatment of a. In robust regression it is usual to use criteria other than the maximum likelihood 
equation (15), and often, not to iterate on scale. 

Holland and Welsch (1977) provide a useful discussion of these points, and of the choice of 
4, function. No convergence theory is known for iterating on scale unless the Huber function 
41(r) = sign (r) min { I r l, H} (Huber, 1973) is used. They recommend using this first, and then, if 
a different 4 function is preferred, continuing without further change in a. They compare eight 
different 4 functions in their paper, some based on likelihood models, and evaluate efficiencies 
and robustness properties by numerical integration and simulation. 

4.2. A Regression Example from Materials Science 
Delayed fracture in brittle materials may be demonstrated by observing the change in bend 

strength over a range of constant stress rates to failure. Braiden, Green and Wright (1982) use 
the classical Weibull model for distribution of brittle strength to derive a failure model in which 
y, the logarithm of the fracture stress, turns out to be related to x, the logarithm of the stress 
rate, by the linear regression y = I3 + 02x + ae. The error e has a Gumbel distribution, and 02 
and a are simply related to the stress corrosion and brittle fracture parameters that are of primary 
interest. 
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Raw data from one particular experiment is presented in Table 2. Note that the experiment 
was conducted at five different stress rates, with twelve independent observations at each, that 
there is considerable random variation in the data, and that a Normal linear regression, even after 

TABLE 2 
Stress fatigue data. Double torsion test on specimens of tungsten 

carbide 6%o cobalt alloy with ground surface finish. Fracture stress (MN m -2 
at five different stress rates 

Stress rate (Mnm2 S -1) 

0.1 1 10 100 1000 

1676 1895 2271 1997 2540 
2213 1908 2357 2068 2544 
2283 2178 2458 2076 2606 
2297 2299 2536 2325 2690 
2320 2381 2705 2384 2863 
2412 2422 2783 2752 3007 
2491 2441 2790 2799 3024 
2527 2458 2827 2845 3068 
2599 2476 2837 2899 3126 
2693 2528 2875 2922 3156 
2804 2560 2887 3098 3176 
2861 2970 2899 3162 3685 

See Braiden, Green and Wright (1982). 

taking logarithms, would have suggested that there are several outliers. Each of the three IRLS 
methods of the previous section converges quickly to the maximum likelihood estimates of PI, j2 
and c: the resulting estimates appear in Table 3. For each of the methods, 7 iterations were needed 
to obtain the three estimates to relative accuracies of 10-5, 10 4 and 10-3 respectively, and 11 
iterations to obtain all three to 10-5. There is nothing to choose between the methods on grounds 
of performance. 

TABLE 3 
Linear regressions of the natural logarithms of the data in Table 2 

Estimates (s.e. 's in parentheses) 

PI 2 a 

Least squares 7.8089 0.021115 0.12887 
Maximum likelihood: 

Ungrouped data 7.8667 0.021867 0.10594 
(0.01 675) (0.00420) 

Grouped data: 
Cut points 7.5(0.05)8.1 7.8663 0.020454 0.09947 

(0.01654) (0.00408) (0.01052) 
7.6(0.1)8.0 7.8657 0.021717 0.09662 

(0.01678) (0.00459) (0.01198) 

As an experiment, the same model was fitted after grouping the data, using the method for 
multinomial data outlined in Section 2.1. Remarkably, even with a very coarse grouping, the 
parameter estimates and their estimated standard errors are close to those for the ungrouped data. 
This is illustrated in Table 3 for two different groupings. 

Braiden, Green and Wright (1982) gave further details of the analysis, which included a 
Monte-Carlo assessment of the adequacy of the Weibull model. 
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5. RESIDUALS AND RESISTANT METHODS 
5.1. Defining Residuals in Non-linear Models 

Residuals are traditionally thought of as (possibly standardized) discrepancies between 
observations and fitted values y - E(y). More recently, definitions have been sought which yield 
residuals uncorrelated under the assumed model and thus form a better basis for diagnostic deter- 
mination of model inadequacy. 

We have already met one such definition implicitly. Following the Householder decomposition 
for the simple linear model, we use the first p components of Qy to determine P * by back 
substitution. The remaining (n -p) components are uncorrelated with variance 2, if the original 
data follows the given model and is uncorrelated with variance a2. Model inadequacy can thereby 
be diagnosed, but we cannot identify data inadequacy-the correspondence of "residuals" with 
"observations" has been lost. 

Moving away from simple linear models, how are we to defne useful "residuals" that can form 
a basis for assessment of model adequacy, detection of discrepant observations, and (to 
anticipate the next Section) accommodate possibly discrepant observations by their use in 
resistant analyses? 

One basis for a general definition is to assign residuals not to the observations, but the pre- 
dictors tq. The philosophy is that our model is prescribed by a likelihood function L(1i) where 
t varies a prior in an n-dimensional space. We then introduce restrictions on the freedom of 11 to 
vary by requiring q = q (p), a given function of a p-vector P which is now the target of our 
inference. The (n -p) degrees of freedom lost by thus parameterizing ti force discrepancies 
between the data and the model L( tj ( P)). The residual assigned to each component of q should 
then measure the enforced change in q. 

A natural definition from this point of view would be to define a vector of residuals as 
q- t (P) where ij maximizes L( q) and PI maximizes L( q (fp)). This agrees with the usual 

definition for Normal linear regression y N( i , e I); however, it is not invariant to trivial 
reparameterizations of q . It is better to examine changes in q on the L-scale, so we define 
the n-vector of raw deviances A by 

4 = 2 ( sup {L(( P + te)} -L(11(P))) - (20) 
t 

(where ei is the unit vector in the ith direction), that is, Ai is twice the increase in log-likelihood 
attained by freeing i? from its dependence on P . 

In the case of Normal linear regression, A, = (y, - n1)2 /a2, where i7 and a2 are the fitted mean 
and variance of yi. More generally, if we can write 

L(ql)= EL(R) (21) 

for example if we have n independent observations each parameterized by one t7, then 

Ai=2 (L-(nL))-(i) 
\ niJ 

and we have the useful property that 

E Ai = constant -2 L(i). (22) 

Thus in this case maximum likelhood is equivalent to minimum sum-of-deviances. 
If (22) is deemed important, yet (21) does not hold, the only option seems to be to define 

deviances sequentially: for example, let 

A* = A+- A,+-, where A+ = 2 ( sup {L( 1')} -L(n)) (23) 

for all/ > i 
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Then the analogue of (22) holds for {A3 and this definition is equivalent to (20) if (21) holds. 
A similar definition could be given for any ordering of the components of q in (23). 

For elucidation of definition (23), suppose that L can be replaced by its approximating 
quadratic L( n) = c + bT I T A where c, b, and the non-negative definite matrix A are 
all constant. Then 

aL 
-=b-Ai =uand-{a2L/aui,T}A. 

It may be shown that 
Ai+=UT A` (s T (i) (ii) U(i) = Z(i) 

where the subscripts in parentheses truncate after the ith row and column, z = B-1 u, and B is the 
Cholesky square root of A. Thus we have A* = z2. This analysis is exact for the (correlated) 
Normal case, and otherwise only approximate. 

For generalized linear models we have Al - z4 where Zi - / e(vi - pi)/71 is just the ith 
observation standardized, after cancelling out the precision parameter 0; these are referred to as 
standardized residuals in the GLIM program and manual. 

In general, note from (7) that the IRLS algorithm is seeking j such that z = B-1u is uncor- 
related with the columns of BT D. It is easy to calculate z (by forward substitution since B is 
lower-triangular), and the IRLS algorithm can be programmed to use these values directly for 
updating P . Jqrgensen (1983) has also suggested the use of B-'u as a vector of "score 
residuals". The above discussion suggests that they could be used interchangeably with the 
deviances. 

However it is easy to find situations, even where the observations are independent, in which 
the use of score residuals does not make sense. In the case of linear regression (see Section 4.1) 
we have 

aL a 
a ff 

/-a 2L C 
Aiij=E (2) M 

so that, whether we use zi as above, or without using expectations in the denominator, these 
residuals will not be defined and useful unless 'P is strictly increasing. This is precisely the 
condition for method (II) of Section 4.1 to work-that is, f must be log-concave. 

This failure does not extend to the deviances-it is actually the quadratic approximation used 
above that breaks down. In fact, by (20) and (23), 4 = A = 2 log (fma/1f(r,)) where fmax is the 
supremum value attained by f. If f is bounded and continuous, this gives a sensible definition. 

Residuals for diagnostic purposes in logistic regression have been discussed by Pregibon (1981). 
Of the various possible available scales, he finds Al (or its signed square root) most useful, but 
also uses zi. His paper, while nominally addressed to the binomial/logistic model, is relevant to all 
generalized linear models. Our discussion suggests that deviances should be of wider applicability, 
but that care is needed if independence (21) does not apply. 

5.2. Resistant Alternatives to Likelihood Methods 
The principle of resistance in statistical data analysis (as distinct from robustness) dictates 

that fitted models should be almost invariant to large changes in individual observations. 
As applied to linear regression, this usually means that the least squares criterion: 

Choose ,J to minimize T z (24) 
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where zi -= zi(p) = yi - I xig3, is replaced by 

Choose P to minimize I w(zi) 2 (25) 

where w(z) is a weight function chosen to be 1 for small I z I and declining as I z I increases, in 
order to give less weight to "discrepant" observations (discrepant in the sense only of fitting the 
model less well). As implemented by Tukey (1977) and others (e.g. McNeil (1977)), resistant 
regression is achieved not through (25) but by 

Solving Z w(zi) zixi1 = 0 for allj. (26) 

Thus the normal equations, not the sum-of-squares criterion, are weighted. This distinction has 
led to some confusion. The obvious IRLS approach of updating P to J * by regressing 

{w(zi) }yi on {w(zi) }2xi to get (* (27) 

converges, if at all, to a solution of (26), not (25). If it is really intended to solve (25), then 
differentiation leads to normal equations of form (26) but with w(-) replaced by a different 
weight w*(z) = w(z) + ' zw'(z). 

Unfortunately, for many sensible weight functions w(*), including Tukey's bi-square, 
w(z) = (max { 0, 1 - cz2 I)2, w*( . ) is not a valid weight function as it does not remain 
non-negative. Thus this IRIS approach will not apply for such w(*). 

In this section we discuss the resistant methods obtained when (24) is regarded as maximum 
likelihood for Normal linear regression, and this model is replaced by an arbitrary one. In view of 
the points made above, it seems most natural to regard (26) rather than (25) as to be generalized. 

At least in the case where L(lq)= S1L1(q1) we are led to consider weighted likelihood 
equations: aL* 

Z WI -2=0 for allj (28) 

where the weights wi depend on the discrepancy between the data and the fitted model. For 
measures of discrepancy, we usually use the deviances of the previous section. Pregibon (1982) 
discusses such resistant fits for the binomial/logistic model, again in terms of deviances, but 
specified by analogy with (25) as minimizing IX(A1) where X(-) is a differentiable non- 
decreasing function. Again, this can be cast in the form (28). 

However the weights are obtained, it seems natural to attempt to solve (28) by IRLS. In matrix 
notation we have DTWu = 0 where W = diag (wi). In general, all of u, W and D depend on P , but 
in the spirit of our earlier discussion it is tempting to approximate the "second derivatives" by 
treating W and D as fixed. 

Updated estimates are thus obtained from the equations DTWAD( J * - J) = DTWU, so that 
* is chosen to minimize 

(Wu + WAD( p*))T (WA) -1 (Wu + WAD(p-p*)) 

2 

= Xwgt-+ri X dif(o-f 3)) (29) 
i Vi~ I 

Thus the only complication is an additional set of weights in the regression. Here of course wi, as 
well as ui, vi and di, are calculated at the current value, ,I. 

A program to fit the model conventionally may easily be modified to produce a resistant fit. 
It will be seen from (29) that it is necessary only to multiply ui and v2 by wi immediately before 
the least squares step. In the case of generalized linear models this can be achieved using GLIM 
by either multiplying the prior weights ir1(= %PW) by wi, or dividing the variance function 
ri2(= %VA) by wi. Using the second alternative an OWN fit may be specified. It will usually be 
necessary also to redefine the deviance terms %DI to give a sensible convergence criterion. 
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It is found that the presence of { wi } adversely affects the convergence properties of this IRLS 
method. If the process does converge, it will be to a solution of (28), but it may not converge at 
all. Some experimentation with different starting points, for example using L1 rather than 
unweighted least squares initially, is often needed. It is occasionally necessary to start with 
constant weights (wi 1), and gradually change them towards the desired values as the iterations 
progress. These suggestions may seem subjective and ad hoc, but it is not the aim of resistant 
data-analysis to provide a unique "objective" solution, but rather to examine whether any doubt 
should be cast on a model fitted conventionally. 

When the likelihood is not of the form z Li(nij), the only way of proceeding seems to be to 
replace 

Maximize L = Minimize E 4 

by 

Minimize X(Ai*) = Solve 2wi - =0 for allf. 

Formally this can be treated just as above, although the problem is now not diagonal. We can 
proceed as if 

a^* / _a-2 A* 
ur = -I Ars Wil 

anr 

but this method is untested. Note that the definitions of A* assume an ordering on the compon- 
ents of iq , and so the behaviour of the algorithm, and its solution, may depend on this ordering. 

5.3. An Example from Probit Analysis 
For an illustration of a resistant analysis we consider the experiment described by Finney 

(1952, p. 69) which assessed the relative potency of three poisons. The data are given in Table 4. 

TABLE 4 
Relative potency of three poisons 

Observation 
number Kill Out of Poison Log dose 

1 44 50 R 1.01 
2 42 49 R 0.89 
3 24 46 R 0.71 
4 16 48 R 0.58 
5 6 50 R 0.41 
6 48 48 D 1.70 
7 47 50 D 1.61 
8 47 49 D 1.48 
9 34 48 D 1.31 

10 18 48 D 1.00 
11 16 49 D 0.71 
12 48 50 M 1.40 
13 43 46 M 1.31 
14 38 48 M 1.18 
1 5 27 46 M 1.00 
16 22 46 M 0.71 
17 7 47 M 0.40 

Poisons: R - rotenone 
D - deguelin 
M- mixture 

From Finney (1952), p. 69. 
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Following Finney, we perform a series of probit analyses in which it is assumed that the kill 
probability for a log-dose x of poison r (r = 1, 2, 3) is 4({ar + Pr x) where 4> is the standard Normal 
distribution function. Of interest here is the possibility that the a's or the 1B's are equal. Deviances 
from maximum likelihood fits are given in Table 5: clearly there is ample evidence that the 
regression lines are neither the same nor parallel. Interpretation is easier if the lines are parallel, as 
this situation corresponds to constant relative potency at all levels of response. We therefore 

TABLE 5 
Maximum likelihood analyses for Finney's data 

Number of Observations Degrees 
parameters* omitted Deviance of freedom 

2 - 70.8 1 5 
4 - 30.3 13 
6 - 20.1 11 
4 2 11 15 14.4 10 
4 11 14 15 13.7 10 
4 11 16 17 7.7 10 
2 11 16 17 67.7 12 
6 11 16 17 7.1 8 

*2:oa,f; 4:aj ,%2,13)0; 6t a as1$' 

persevere with the four-parameter model (oil, a2, a3, ) and attempt a resistant analysis. For 
comparison, three alternative weight functions were used, selected from those listed by Holland 
and Welsch (1977) for robust linear regression: 

Bi-square: w(z) = (max(O, 1 - (z/B)2 ))2 
Cauchy: w(z) = (1 + (zIC) ) 1 
Huber: w(z) = min (1, H/I z 1) 

In each case there is a tuning constant, taken as + oo for an ordinary likelihood analysis, and 
reduced for greater resistance. For residuals z we use the score residuals, which are simply the 
observations standardized by their fitted means and standard deviations for this exponential 
family model. Both least-squares and least-absolute-deviations fits were used to provide initial 
estimates. For each weight function the tuning constant was gradually reduced until stability 
was achieved; see Table 6. This procedure generated various possible groups of candidate 
observations to be labelled discrepant. Likelihood analyses were performed with these omitted 

TABLE 6 
Resistant analyses offour-parameter model for Finney 's data 

Initial Observations 
Weight Tuning values Weighted severely 

function constant (2 = L2, 1 = L1) deviance down weighted 

B 9 1 or2 28.2 
B 6 1 or2 25.5 11 2 
B 4.5 lor2 17.5 11 16 2 
B 3 2 5.3 11 17 16 
B 3 1 5.9 11 14 15 
C 6 2 28.1 - 
C 4 2 25.8 11 2 
C 2 2 17.7 11 2 
C 1.4 lor2 9.3 11 17 16 
H 2 2 29.3 - 
H 1.5 2 26.0 11 2 
H 1 1 or2 19.2 11 2 
H 0.5 2 9.8 11 2 15 
H 0.4 1 or2 7.8 11 2 15 
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(Table 5) revealing in particular that a dramatically better fit for the 4-parameter, parallel 
regression line, model is obtained if observations 11, 16 and 17 are neglected. There is no evidence 
to suggest that the 2 or 6 parameter models are preferable, having omitted these observations. 

We therefore settle with the conclusion that all observations except numbers 11, 16 and 17 are 
consistent with the four-parameter model in which the kill probabilities are 4(- 2.673 + 3.906 x), 
FD(-4.366 + 3.906 x) and 'I(-3.712 + 3.906 x) - for Rotenone, Deguelin, and the mixture. 
Following inspection of the data, Finney omitted the same three observations from his analysis 
altogether, a course of action defended on the grounds that the chief interest here is in the 
behaviour of the poisons at high concentrations. He then fits parallel probit curves and his 
estimates are similar to ours. 

Note that we would not advocate the use of resistant methods in order simply to reject 
inconvenient data: such discrepancies should normally be followed up with the experimenter. It 
is obviously unsatisfactory to have to discard three observations from 17. Note also that the result 
here is not just a better fit, but a better fit to a simpler and more interpretable model. 
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DISCUSSION OF DR GREEN'S PAPER 

Dr Bent J4rgensen (Odense University): I am glad to see tonight's paper, and I find the 
paper difficult to criticize, because it promotes ideas that I have also been suggesting recently. 
My own starting point was an attempt to understand how GLIM fits generalized linear models. 
It is not so easy to understand Nelder and Wedderburn's (1972) paper, but it helps when one 
realizes that Fisher's scoring method may be interpreted as an iterative weighted least squares 
procedure for any type of distribution, not just for the exponential family. I wonder what led 
Dr Green on the track? 

The iterative methods considered in the paper are all essentially of the form 

p p t +b, 

b = (DT AD) Yi DT aL/at1. (a) 

where D = 3t/a#T and A is a positive-definite symmetric matrix. Since D has full rank, DTAD 
is positive-definite. Hence (a) is a gradient method, and the steplength 8 > 0 may be chosen 
to give an increase in the value of the likelihood compared with the previous iteration (Kennedy 
and Gentle, 1980, p. 430). 

Although the computations in (a) may be performed via least-squares methods, I would like 
to suggest that the term iteratively reweighted least squares should only be used in connection 
with exponential families or quasi-likelihood estimation. Otherwise, I find the term too diffuse 
and ambiguous. I call (a) the delta-algorithm with weight matrix A, a reminder of the similarity 
between the form DTAD and the way asymptotic variance matrices are transformed by the 
6-method. 

I would like to stress the importance of calculating the steplength properly, because this often 
makes the difference between success and failure of gradient methods, even for the Newton- 
Raphson algorithm used with a concave log-likelhood. In Section 2.6 it is asserted that the con- 
vergence of the algorithm is slow far from the optimum, but if the steplength is properly com- 
puted, the convergence is in fact quick far from the optimum, and the choice of starting value is 
not important. But the convergence may be slow near the optimum, because the matrix - DTAD 
may be a poor approximation to the second derivative of L, particularly if D is non-constant. 

For the resistant estimating equation (28) there is no objective function, so the steplength 
can not be calculated in the usual way. It may be useful to define 8 as the smallest positive 
solution to the equation 

U*TW*D*(DTWAD)- DTWU, 

where 8 enters the equation through the updated quantities u*, W * and D*. For maximum likeli- 
hood estimation, corresponding to W =I, this value of 8 corresponds to the smallest local 
maximum of L(j (.)) on the half line { p + 5b: 8 > 0} . 

As suggested in the paper we may take A as either the observed or expected information 
matrix for t , but other choices for A are possible. If observed information is used when L(tj) 
is not concave, a simple modification of the Cholesky decomposition (Kennedy and Gentle, 
1980, p. 445) may be used to obtain a positive-definite A. If the log-likelihood is of the additive 
form (21), two possible choices for A are as a diagonal matrix with elements either 

aL1 - 

Aii=- (,qi - 7li) (i= L2 .. I,n) 
ami 

or 

Ai - )J{2(Li(ni) -L(rz))1 (i- 1,...,n), 

where r maximizes Li(77i). These choices are applicable if Li is unimodal, and the first generalizes 
(17), whereas the second corresponds to an algorithm proposed by Ross (1982). I have used (17) 
to do L1 regression in GLIM, and with a minor modification of Aii for qm near mi this works 
well, and converges in less than twenty iterations. This and other exercises with the delta-algorithm 
suggest that by judicious choice of A, the delta-algorithm may often cope with "notoriously 
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difficult" problems. The choice of weight matrix for the delta-algorithm is discussed by Jorgensen 
(1983b). 

The proper definition of residuals depends on the purpose for which they are intended, but as 
a rule there should be a one-to-one relation between residuals and observations, such that a large 
residual may be interpreted as an outlying observation. In general, the concept of an observation is 
somewhat elusive, but often we may parametrize the model in such a way that the components of 
q correspond to observations, in some sense. In the case y -Nn (tj, ), with 2 known, any 
definition should ideally produce y - as the vector of residuals, so let us try to apply the various 
definitions of residuals in Section 5.1 to this example. The score residuals give the vector of 
residuals BT(y - i,), where B is the square root of TL -1, and hence fail the telt, because the 
ith residual is a function of several yi -77i. Similarly, (23) fails, whereas a-t(() = y - wj ( ) 
are the correct residuals. For (20), it may-be shown that a one-step appr:oximation to determine 
the supremum, taking one step of Fisher's scoring method starting at a (%), gives Ai as the square 
of the ith component of the vector 

K -'(s- _ -1T- D(DT 2: -l D)-1 DT s 1)(y_ 

where K is diagonal. The main term of this expression is K1 -1 (y- ), so this definition also 
fails. 

The definition I prefer is to take d1/2 A1 u as the vector of residuals, where d = diag {A1l, . . 
Ann }, although this may be problematic if the log-likelihood is not concave. For the multivariate 
normal distribution this definition yields (Yi - fg)/,1 /2 as the ith residual. Obviously, more work 
needs to be done on this subject. 

My final comment is on the resistant fitting methods discussed in Section 5.2, and it probably 
reveals my ignorance on the subject. Apparently, resistant methods discard outlying observations 
from the fit, but according to the ultimate paragraph of the paper, this is not the purpose of the 
method. If one intends to find outlying or influential observations, one might instead use the 
regression diagnostic methods of Pregibon (1981). But then, what is the purpose of resistant 
methods? 

Iterative techniques for maximum likelihood estimation resemble scientific investigation, in the 
sense that many small steps are taken in the direction of an unknown optimum. The difficulty 
with scientific investigation is that the objective function is not always clearly defined, and the 
weights attached to various issues vary from individual to individual. But I find that tonight's 
paper takes a good step in the right direction, and it is a pleasure for me to propose the vote of 
thanks. 

Mr R. Thompson (Animal Breeding Research Organisation, Edinburgh): My first comments 
are related to the very generality of the approach, giving me difficulty in embedding specific 
problems into the framework. The colour inheritance of North Ronaldsay sheep (Ryder et al., 
1974) illustrates the point. Over 10 years ago I went through algebra similar to that in the ABO 
example, with a succession of models with over 100 terms to be differentiated and little structure 
in the equations. Later I realized that the models could be concisely represented by a loglinear 
model for the underlying genotypes and a composite matrix, C, linking the phenotypes to geno- 
types. The generalized linear model approach needed only slight modification using functions of 
the distribution as weights, and working dependent and regressor variables. In other examples 
the C matrix allows transformation from one scale allowing easy expression of the expectation of 
observations to another allowing independence of the observations, for example in Dr Green's 
Example 2.2. I hope that the next version of GLIM will allow the concise specification of C with 
model formulae, although the calculations are easily programmed in GENSTAT. 

Again on the subject of generality I would like to have rules for parameterization for quick 
convergence. Why should log p be better than p in the ABO example? Although I seem to be the 
only person to have used them, the calculations for the speed of convergence of the EM algorithm 
(Dempster et al., 1979) seem useful. 

On the definition of residuals it seemed, at least in the written version, that the non-diagonal 
infoymation matrix, A, was motivating the sequential definition of residuals. Estimation of para- 
meters imposes correlation between residuals and this is taken account of in the cross- 
validatory definition (20). The definition of residuals should depend on the use intended for them 
and if A is non-diagonal then some statistic dependent on cross-products of suitable residuals 
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might be informative. Can one expect the definition of residuals to be useful with binary data, 
when the residual deviance can be uninformative? 

Given the confusion between (25) and (26) can the resistant methodology be interpreted as a 
formal model being a mixture of the data and the fitted model? 

Over the years I can remember coming to hear important papers by Lindley and Smith, Curnow 
and Smith, Wilkinson et al. and Nelder and also managing to attend Smithfield Show. This year is 
no exception and I think Dr Green's paper will be as well-thumbed as these papers and so it gives 
me great pleasure to second the vote of thanks. 

The vote of thanks was carried by acclamation. 

Professor Murray Aitkin (University of Lancaster); This paper is a welcome addition to the 
small number of papers demonstrating the power and flexibility of IRLS approaches to maximum 
likelihood. As a confirmed GLIM user I will restrict my comments to three GLIM-related points: 

(i) Censoring of observations presents an awkward problem for GLIM because of the different 
link function and (implicit) error model for the censored and uncensored observations. Composite 
link functions are complicated and not constructed easily, if at all, in this case. Alternative 
maximum likelihood procedures using special features of the likelihood function work for right- 
censored observations from the Weibull and extreme value distributions (Aitkin and Clayton, 
1980) and for the left- and right-censored observations from the logistic and log-logistic 
distributions (Bennett, 1983). For the normal and lognormal distributions the EM algorithm can 
be used (Aitkin, 1981), but the general IRLS approach described by the author is much simpler. 

(ii) The discussion of robust and resistant methods is not reassuring. Without a probability 
model the "tuning constant" approach seems completely ad hoc. Model-based procedures are not 
difficult to construct, as the author notes in referring to the t-distribution method of Dempster 
et al. A likelihood-based "sensitivity analysis" equivalent to the tuning constant approach is 
possible by fitting the t-distribution for a fixed degrees of freedom k, and constructing a profile 
likelihood over k. This would clearly demonstrate the need, if it existed, for robust estimation. 

(iii) The example in Section 5.3 seems to me an alarming example of the misuse of resistant 
methods. Dr Green has made it clear that this example is an illustration of how such methods fit 
into the IRLS approach, rather than an example of their value. On the probit scale, the regressions 
are not parallel for the complete set of data, so a simple comparison of relative potency of the 
three treatments is not possible. However the lines for Deguelin and Mixture are nearly parallel, 
and can be set equal with little change in deviance. Thus the relative potency of R to D or M 
depends on dose level, but that of D to M does not. The "discrepant observations" 11, 16 and 17, 
when removed, allow a common slope to be fitted. The simpler model is achieved at the expense 
of, not three observations, but 142. Surely this is bad modelling practice, even if one is interested 
only in the relative potencies at high dose levels. 

Examination of the full probit model for the full data shows a bad fit of the model at points 10 
and 11. Curvature of the Deguelin points on the probit scale is quite noticeable. 

A complementary log-log link gives a considerable improvement, with a deviance of 16.09, 
instead of 20.13 for the 6-parameter model-and this is unchanged if the slopes for M and D are 
set equal. On the CLL scale there are no large residuals. 

Surely it is better to present a model for the whole data which includes a necessary inter- 
action, rather than removing the part of the data which establishes the need for the interaction 
and presenting a simpler model. To repeat, this is not a criticism of the paper, which I have found 
stimulating and valuable. 

Mr R. Burn (Brighton Polytechnic): I would first like to comment on the use of IRLS for 
fitting multinomial models in genetics. Loglinear models with linear composite link functions 
(Thompson and Baker, 1981) which, as Dr Green points out, constitute a special case of his 
general class of models, are proving to be a convenient way of formulating multinomial models in 
which the cell probabilities are polynomial functions of the parameters to be estimated. With it 
denoting the vector of expected cell counts, the structure of these models is 

p=Cy, y =exp(tj), tzX$ , 

where P is usually a vector of log gene frequencies or other genetic parameters. Although Dr 
Green's direct IRLS approach to such problems, exemplified by the ABO problem, is interesting, 
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the composite link formulation appears to have at least two advantages. Firstly, there is no need 
to find analytic derivatives, which could require considerable effort for some problems. Secondly, 
the C matrix usually has some genetic meaning. In many cases C is an expression of the dominance 
relationships among the various alleles. For both of these reasons, together with the relative ease 
with which these models can be fitted in GLIM or GENSTAT, composite link models offer the 
prospect of a routine practical method for estimating genetic parameters. On the other hand, 
multinomial models do occur in which the cell probabilities are more complicated functions of the 
unknown parameters. There are problems, for instance, in which they are rational functions. Such 
models do not fit so naturally (if at all) into the composite link framework, and Dr Green's direct 
attack on the likelihood would be a useful alternative. 

The other point that I would like to make concerns Dr Green's remark that packages such as 
GLIM or GENSTAT have no facilities for fitting models with a non-diagonal weight matrix. 
Although this appears to be true, it is still possible to implement the general algorithm, at least in 
GENSTAT, by first diagonalizing the matrix A. Since A is assumed positive definite and 
symmetric, there is an orthogonal matrix P such that PTAP = A, say, where A is the diagonal 
matrix of eigenvalues of A, which are positive. The IRLS step then becomes: regress A-1 ' + D u 
onto the columns of D with weights A1, where u = PTu and D= PTD. 

I have tried this in GENSTAT on two of the examples in the paper, the ABO problem and the 
grouped continuous multinomial model for the A-level score data, with essentially the same results 
as the author. I would not suggest that this is necessarily an efficient way of computing IRLS 
solutions, but it may be convenient for those familiar with GENSTAT. 

I would like to join the previous discussants in thanking Dr Green for a stimulating paper. 

Dr Susan R. Wilson (Australian National University): Tonight's paper offers an overview of 
relevant literature on an important topic, namely the numerical evaluation of maximum likelihood 
estimates. The reasons for choosing one type of numerical method rather than another are 
complex, and some of these are outlined in Section 2.6. One further advantage of iterative least 
squares procedures is that they are more likely, than the alternative methods, to have convergence 
difficulties. Often closer inspection of the data will then reveal that the model is not at all 
appropriate for the data. One example where use of a quasi-Newton procedure led to an unaccept- 
able model being adopted is given in Guerrero and Johnson (1982). The data were being used to 
predict the probability of female participation in the Mexican labour force as a function of 
dichotomous variables, locality, age, income and schooling. Guerrero and Johnson considered a 
model with the Box-Cox power transformation (with parameter X) of the odds ratio as a linear 
function of the explanatory variables, thereby extending the logistic regression model (X = 0). 
They concluded that X = -6,6, and that the interaction between age and income was significant. 
The (correct) implementation of this extended model in GLIM (involving updating the model 
matrix on each iteration) fails to converge for these data. This enforces closer examination of the 
logistic regression model fit which reveals the reason. There is an aberrant observation, correspond- 
ing to "factor combination ac" (locality, income). Removal of this observation, and re-fitting the 
logistic regression model, a satisfactory fit is obtained, with now an interaction between locality 
and income in the linear part of the model. (Further details I have given elsewhere.) That their 
final model was inadequate should have been obvious from the parameter estimates and their 
corresponding standard errors (Guerrero and Johnson, 1982, Table 2). Also, other procedures, 
such as "resistant analysis" described in Section 5.2, and the use of graphical tools for determining 
the influence of individual observations on the power transformation, would alert one to the 
aberrant observation. In general, it should not be necessary to go so far in the overall analysis to 
find such a glaring discrepancy. To summarize, if IRLS fails, go back and examine the data care- 
fully, before considering use of quasi-Newton methods. 

Use of iterative least squares procedures for sparse contingency tables, where there are zeros in 
any of the marginal configurations defined by a log-linear model, is not well understood. In com- 
menting on Brown and Fuchs (1983), Aston and Wilson (1984) describe how the implementation 
given by equation (4) cannot identify directly that some of the estimated cell frequencies for the 
model may be identically zero. Hence some of the parameter estimates and their standard errors 
will not be correct, although the fitted values will be correct. Stabilization of the parameter 
estimates and their standard errors can be readily achieved by identification of the occurrence of 
zeros in any of the marginal configurations, and then constraining the corresponding (zero) cells to 
have estimated cell frequencies of zero exactly. 
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Finally, I would like to add that the description of GLIM in Section 3.3 is a very limited one. 

In using GLIM's own directive and associated macros, I find the schematic diagram Fig. Dl (ignor- 
ing weights) helpful. Using a notation resembling that in tonight's paper, the diagram shows how 
the GLIM vectors (given in brackets) can be used, via the macros Ml, M2, M3 and M4 to imple- 
ment a generalized IRLS. Then it can be seen, that the GLIM notation is sufficiently flexible (not 
redundant), that by overwriting the GLIM vectors appropriately a wide variety [far wider than 

- ~ _ 

y, (%LP) NN 

/, (%FV) 

y, (%YV) -> U,LI (YI-,)/vib 

M2 6, (%DR) 

v, (%VA) ,=y+A1u 

A` =diag (v.6b2) 

= (DTAD)-' DAz 

(34) Deviance 

Fig. Dl 

just the composite link function regression mentioned in Section 3.3 and the discussion] of pro- 
blems can be solved in this framework. Although usually A, D, u, y and so on will correspond 
respectively to A, D, U, y they will not necessarily. For example, if A is not diagonal then a 
singular value decomposition can be used to produce a diagonal A with D being correspondingly 
altered to D and so forth. At which stage one abandons such manipulations and opts for writing 
a one-off program will depend on the individual. Most statisticians find it usually more efficient 
in terms of their own time to use a readily-available and familiar package. GLIM also has an 
OFFSET facility which enables iterative proportional fitting types of steps to be implemented, 
and so an even wider range of (conditional) maximum likelihood problems can be readily solved 
(further details are given in Adena and Wilson, 1982). 

Dr J. A. Nelder-(Rothamsted Experimental Station): First an etymological quibble: why 
"reweighted"? If you are iterating you can and do change the weight, but you may also be chang- 
ing the dependent variate, the covariates, etc. I propose IWLS, not IRLS. 

I agree with the proposer in finding sequentially defined residuals unsatisfactory; however, 
cross-validatory residuals can be defined for non-diagonal covariance structures, giving a (1, 1) 
correspondence between data values and residuals. They will of course be correlated, but so also 
are such residuals when the data are independent. 

Professor Aitkin has commented on the fact that so-called resistant methods are not resistant 
to changes in the assumption about the link function. The same is true for variance functions; 
different variance functions will often lead to quite different subsets of points being given low 
weight. There are particular dangers in applying resistant methods to binary data, for if for a given 
unit the fitted value p is small then there are two possible residuals one small and negative if the 
datum value y = 0 and one large and positive if it is 1. In a substantial data set there will be a few 
ones, and these are highly informative about the size of p, yet a resistant analysis will "down- 
weight" them drastically. I believe that "resistant" is a word that promises much more than it can 
deliver. 

Finally, since the speaker has built his paper around an algorithm, could he not give us a classi- 
fication of the models that can be fitted, characterized algorithmically, i.e. if some or all covariates 
change per iteration; similarly the dependent variate, weight, etc? This might be illuminating. 
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Mr G. J. S. Ross (Rothamsted Experimental Station): Dr Jorgensen has already referred to 

my use of what McCullagh and Nelder (1983) call "deviance residuals". These are quite simple 
to calculate, and enable the log likelihood to be expressed directly as a sum of squares when the 
error distribution is non-Normal (except in the unlikely case where the mode of the log likelihood 
is other than at q =y). They may be differentiated, and used in any optimization algorithm for 
minimizing sums of squares, of which the Gauss-Newton method is the simplest. Details of the 
method are given in Ross (1982). 

Direct comparison with IRLS may be made by solving the same problem by both methods 
from different initial parameter estimates. A graphical comparison in two dimensions is obtained 
by plotting contours of the log likelihood for the next iteration: large open contours indicate fast 
convergence. In all comparisons made so far the Gauss-Newton on deviance residuals is an 
improvement on IRLS. The reason is that the solution locus, when plotted in the space of deviance 
residuals, is more linear than in data space. 

Further improvements may be achieved by stable parameter transformations, particularly with 
general non-linear models, but the improvements would also apply to IRLS. Stable 
transformations improve linearity and orthogonality within the solution locus. 

As a contributor to statistical packages (MLP, GENSTAT) I would claim that it is preferable 
to use their optimization facilities rather than rely on the IRLS method, especially when the 
problem is unfamiliar. IRLS needs the correct algebraic specification, good initial estimates, but 
may still be slow or divergent. The optimization applications require only the model formula and 
the distribution of errors, there is protection from divergence, and parameter transformations are 
easily incorporated. 

I cannot agree with Dr Wilson that the inefficiency of a method is a virtue if it shows data to be 
inadequate. There is no excuse for failing to interpret results fully. 

I thank the author for a paper that has stimulated a useful discussion. 

Professor D. M. Titterington (University of Glasgow): One approach to the approximate 
solution of equations (3) which has not been touched on in the paper is the recursive one. Let 
Vn-l denote the matrix DTAD based on n observations and suppose the observations are 
independent. Then VJl - V!1j is a matrix of rank 1 and Vn is easily computed from Vn_,.. A 
sequence of recursive estimators for 0 can then be generated by 

ln = sn-1 + Vn-1 S(Yn, Pn-1), n =1, 2,. .. 
where S(y, P ) denotes the score vector for a single observation, y. Admittedly { 0 n } usually 
depends on the order in which the observations are dealt with but the recursion is simple and 
sometimes reassuring asymptotic properties can be obtained via stochastic approximation theory. 
The case of linear logistic regression is dealt with by Walker and Duncan (1967); see also Goodwin 
and Payne (1977, Chapter 7). Titterington (1984) looks at recursive estimation based on incom- 
plete data and also notes an interesting parallel between the general method of scoring and the EM 
algorithm. The former is defined by, say, 

Pr= Pr-1 +{nI(Pr.l)}1 aL(P r-0 P r, = 1,2, ... 
where I( p) is the information matrix from one observation, typically hard to compute and invert 
in incomplete-data problems. An alternative iteration is obtained by using, instead of I(p), the 
much simpler Ic(p), corresponding to a complete observation. This iteration is sometimes exactly 
the EM algorithm and often very close to it. 

Professor A. C. Atkinson (Imperial College, London): This interesting paper complements 
both the recent published and unpublished work of Jorgensen and also the book of McCullagh 
and Nelder (1983). My comments are however addressed mainly to Section 5.2 of the paper. 

I remain unclear about the operational difference between robust and resistant procedures. In 
principle the distinction is clear, but, as Huber comments (1981, p. 7), the procedures are, for 
all practical purposes, the same. Even so, because of the effect of leverage, (25) or, not 
equivalently, (26), may not provide what is required. For observations at remote points in the 
space of the carriers, that is with hi = xT(XTX)Y' xi approaching one, the least-squares residuals 
will be small, regardless of the observed value of the response. Such observations will not be down- 
weighted and the procedure will not be resistant. Procedures which do allow for the effect of 
leverage include the limited influence regression of Krasker and Welsch (1982), further dis- 
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cussed by Huber (1983). But there remain some problems of interpretation (Cook and Weisberg, 
1983). 

If there are outlying observations at points of high leverage, use of the author's robust/ 
resistant procedure may lead to the down-weighting of observations with low leverage, some of 
which may have large residuals due to the distortion of the fitted model by the outliers. An 
example of this is provided by Ruppert and Carroll (1980) whose robust method was trimmed 
least squares. In their analysis of some data on salinity, the conclusion of one analysis was 
that observations 1, 13, 1 5 and 17 should be trimmed. I have elsewhere (Atkinson, 1982) 
contrasted this rather muddy conclusion with the results of a diagnostic analysis which clearly 
demonstrates that observation 16 has an extreme value of one of the carriers. It has however to 
be admitted that this value, although not its importance, can be detected by visual inspection of 
the marginal values of the explanatory variables. 

Dr R. Gilchrist (Polytechnic of North London): It is a pleasure to add my congratulations to 
Peter Green on a thought-provoking paper. In the time allowed, I shall confine myself to discussing 
three aspects of the paper. Firstly, Dr Green is indeed correct that for "nuisance parameters", a 
two-stage algorithm can be more successful in achieving convergence than a single-stage updating 
algorithm. For example, in Scallan et al. (1984), it is shown how such an algorithm can be usefully 
employed in the exponential family framework to estimate what we call a parametric link 
function, i.e. where E(Yi) = pg = h(l xqj,B, k), for some known function h. This works well, for 
example, for the Box-Cox link with unknown exponent or for estimating the shape parameter and 
asymptote of the generalized logistic curve defined by ln (pg) = ln(kl) - k2 ln (1 + exp (-71i/k2). 

Moreover, this two-stage technique is easily incorporated into GLIM and is closely related to 
direct likelihood inference, as discussed by Aitkin (1982). For example, for one-dimensional k, 
our technique maximizes the likelihood by moving up the "profile likelihood". Dr Green is correct 
in asserting that GLIM 3 is not designed to handle non-diagonal A. However, as several other dis- 
cussants have noted, it is possible to handle non-diagonal A in GLIM 3. For example, you can use 
a Cholesky decomposition as in Section 2.5 and incorporate this in the design matrix. Examples 
of this procedure for some standard time series models should shortly appear in the GLIM News- 
letter (Scallan, 1984); however, this technique is clearly somewhat tricky for the non-specialist. 
It would not be difficult to change the GLIM code to allow non-diagonal A, although at the cost 
of some efficiency. However, the problem remains as to what form of A should be made available. 

My final comments concern residuals. Firstly, orthogonal residuals have some appeal to me, 
despite their lack of independence for non-Normal models. For example, the Givens algorithm 
(available in GLIM 4) gives the so-called recursive residuals used by Brown et al. (1975). These 
can be useful for detecting changes in a model over time, even if they do not pinpoint discrepant 
observations. Secondly, the discussion in Section 5.1 may not make it crystal clear that the 
standardised residuals of GLIM 3 do not take into account the correlation between an observation 
yi and its fitted value ji . Thus Gilchrist (1981) and Pregibon (1982) have suggested what Gilchrist 
refers to as adjusted residuals, which to some extent take into account this correlation. Moreover, 
Pregibon (1982) shows that it is these residuals which give the score test statistic corresponding to 
the hypothesis that a given observation is an outlier. (These adjusted residuals are trivially 
computed in GLIM 3 by dividing GLIM's standardized residuals by /(I - hi), where 
h = %WT*%VLI%SC.) Moreover, this technique can be applied in a similar way to the case where 
the observations are correlated. Finally, Dr Green's consideration of changes in n on the L-scale 
certainly seems valuable; however, I have the feeling that selected transformations of 77 - 77() 
may yield better tests against certain alternative hypotheses. 

Mr A. C. Davison (Imperial College, London): I have a few remarks pertaining to the deviance 
residuals Ai defined at equation (20) of the paper. 

Suppose that independent observations Yi have common continuo'us distribution function 
F(y; 7i, oz), predictors 77i = 77i(j), and that a is a shape or scale parameter common to all the 
observations: a in the Normal linear model, the shape parameter of the gamma or Weibull 
distributions, and so on. 

In such a situation one would often work with the signed square roots 

rD(Yi; 7i, a) = sgn (tmax) 
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of the deviance residuals Ai, where tmax is the value of t for which the supremum in (20) is 
attained, and wish to treat them as approximately independent standard Normal variates. In 
particular, when the rD are ordered and plotted against Normal order statistics, the resulting graph 
should be close to a straight line of unit slope through the origin if the rD are to be useful in assess- 
ing closeness of fit of F(.) to the data. How useful is this graph for a given distribution F(.)? 

This problem may be studied by considering the function 

G(w) = rD (F 1 (?(W); , 0); , t), 

which may depend on oa, as a function of w. For 

F(x; 71, ot) = 1D((x -q)/0t), 

that is, the standard Normal-theory linear model, 

rD (Y; 17, ac) = Iy - 17) /01, 

F 1(1(w);'q,a) =q.+aw, 

and so G(w) = w, as we would require of a sensible measure of closeness to Normality. 
For the Weibull distribution, a Taylor expansion shows that the function G(w) is to second 

order in w the expression -0.345 + 1.023w + 0.0035w2 independently of the value of a: very 
close to the required straight line for values of w in the usual range but with a negative 
intercept. 

For the generalized Pareto distribution 

F(y; , a) = 1-(1 -ay/)/llt, 

which is exponential when a = 0, a distribution useful in some extreme-value contexts, the 
function G(. ) depends on the value of a but is quite close to the line G(w) = w for the usual 
values of w and a. 

Adjustments to bring the observed deviance residuals rD close to the line G(w) = w may some- 
times be made; but it may be sufficient to know approximately the size and direction of the 
allowance the eye should make when inspecting the rD. 

The implication seems to be that appropriately defined deviance residuals for continuous 
distributions F(.) often have properties very close to those of standardized residuals in the 
Normal-theory linear model, and therefore are likely to be easily interpretable and of potentially 
wide ap plicability, even for measuring how close to F(.) the distributional form of the data is. 
The effect of the data actually having distribution H(.) rather than F(.) may be assessed in an 
obvious way. These remarks do not take into account the likely effect on the rD of their mutual 
correlation: that may be quite a different story, and may perhaps be tackled by methods 
analogous to those of Cox and Snell (1968). 

Professor T. Lewis (The Open University): Paraphrasing Vanzetti (Frankfurter and Jackson, 
1929, p. xi), I wish to congratulate Dr Green on most of his paper. But Professor Aitkin's remarks 
on the probit example (Section 5.3) need following up. 

Students wondering about what work to take up and what statisticians do are often advised 
to look at the journals and the RSS discussion papers. It would grieve me to think of them taking 
at face value Dr Green's words: 

". . . clearly there is ample evidence that the regression lines are neither the same nor 
parallel. Interpretation is easier if the lines are parallel.... We therefore persevere with the 
four-parameter model. . ." 

-in other words, bugger the data! 
As Dr Green mentioned, the data in Table 4 come originally from Martin (1942). He feels a bit 

queasy about omitting the three points 11, 16, 17. Martin, the experimenter, who also omitted 
these points, talked about breaks in the regression lines, but in fact the deviations that bothered 
him are non-significant. Dr Green defends his omission of the three points by saying Finney did 
the same. So what? He cites Finney's argument (Finney, 1947, 1952) that only the behaviour at 
high concentration x is of interest. On this argument, the low-x points 3, 4, 5 should have been 
omitted along with 11, 16, 17. But they were conveniently retained. 

In the third edition of his book (Finney, 1971, p. 233), Finney has a new text: 
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"So far as fair interpretation of Martin's experiment is concerned, the rejection of 
anomalous observations may be questioned, but argument about this after so many years is 
unprofitable. Here the three low doses are omitted, solely for the purpose of illustrating 
numerical procedures." 

Had Dr Green stated that his resistant analysis was solely for the purpose of illustrating numerical 
procedures, all would have been fine. But on the contrary, he claims 

" . that the result . . . is not just a better fit, but a better fit to a simpler and more inter- 
pretable model." 

Professor Finney magisterially distances himself from the earlier analysis, as if it had nothing to do 
with him. Actually, if we go back to Martin's paper (Martin, 1942, pp. 69-81), we find it 
immediately followed by a companion paper by Finney (Finney, 1942, pp. 82-94). Mutual 
acknowledgements in the two papers suggest that Martin was the experimenter, Finney the 
statistical guru. Would Martin have thrown out his three points if his guru had advised against? 

It is easy to criticize; the comeback is "Can you do better?" I do not know, but here is an 
attempt. First note points 8 and 7 as reminders of the magnitude of the standard errors attaching 
to the observations. Now look at the same-x points 1(R), 15(M), 10(D), at the closer group 3(R), 
1 6(M), 11(D), and then at 17(M), 5(R), remembering that M is a mixture of R and D and not just 
any old poison. Are the lines obliged to be parallel? Might they not be concurrent? This would 
make sense, because at the concentration at which Rotenone and Deguelin have the same toxicity 
the mixture would plausibly also have this toxicity. Using all 17 points, I fitted the 5-parameter 
model 

Yr = "1(Pr) = 7 + fr(x ) (r = 1, 2, 3). 
The fitted Qoint of concurrence (Q, X) was (0.4,-1.2), the fitted slopes were OR = 4.17, ,M = 2.83, 
OD = 2.26 (OR >1M >13D, O.K.). The deviance on 12 df was about 24, p -2 per cent-rather 
high, but the model is credible. It implies of course that for high concentrations Rotenone is more 
toxic than Deguelin, and for low concentrations the reverse. 

I know nothing about these things, but is it possible? Well, I thought, if Dr Green can wheel in a 
leading authority to back up his case, why shouldn't I try? So I went and asked Steven Rose, the 
professor of biology at the Open University. He said, yes, indeed, it is perfectly possible for a 
poison A to be more toxic than poison B at high concentrations and less toxic than B at low con- 
centrations; he could think of a variety of biochemical mechanisms that would generate such a 
phenomenon. As I was disappearing through the door he also, I think, murmured something about 
biologists often being too hung up on linear models-but I may have misheard him . . . 

Dr A. J. Lawrance (University of Birmingham): Tonight's paper seems to me to be important, 
lucid and clever. The section which most interested me was the one dealing with residuals. It is 
indeed difficult to define widely acceptable residuals or to agree on the properties they should 
have. Dr Green mentions the importance of uncorrelated residuals for diagnostic determination of 
model adequacy. Now I must declare my own interest in residuals from non-linear time series. It 
is a pity that the main ideas in the present paper do not have easier applications to simply 
dependent data, such as arise from time series. For non-linear autoregressive models the natural 
definition of residuals is not entirely clear. Peter Lewis and I have taken to defining linear residuals 
from non-linear models; such residuals are uncorrelated when the model is appropriate, but 
because of non-linearity, are not independent. The analysis of the higher order dependence 
properties of uncorrelated residuals is a problem needing further attention. In the time series 
domain we have worked graphically, and with various correlation functions of the residuals and 
their squares. Another trouble with most sorts of residuals is that they are omnibus, and not aimed 
at picking up particular types of departure from the proposed model. With non-linear time series, 
one may, for instance, consider further sorts of residuals which are sensitive to the directionality 
of the process, when this is of interest. Methods based on the standard second order properties 
will overlook this aspect. I also feel that what is needed now in time series is a class of models 
which can take advantage of the impressive progress made in regression over the last decade. 

In conclusion, I join with other contributors in congratulating the author; there is certainly 
no need to transgress the bounds of RSS english in the discussion of this paper. 
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The following contributions were received in writing after the meeting. 
Mr J. E. Besag (visiting Carnegie-Mellon University): It is a pleasure to congratulate my 

colleague Peter Green on his wide-ranging paper. 
I wish briefly to comment on Section 5.2, concerning resistant variants of least squares and 

likelihood methods, for it seems there is a danger that the author has added to the confusion he 
seeks to avoid. Certainly, it may on occasion have been remarked that IRLS updating, as in (27), 
seeks to minimize z w(zi)z2, a claim which is false unless w(z) oc I z I-P and p < 2. However, such 
statements, from which I shall not admit Dr Green once saved me, are entirely incidental, since the 
minimization of S w(zi)z?, in itself, makes little sense as a general criterion for resistant 
estimation. The rationale for IRLS here is equivalently, either through the normal equations, as 
mentioned by Dr Green, or, as I prefer, in terms of successive updating of the weights in weighted 
least squares (Mosteller and Tukey, 1977, p. 357; Besag, 1981, Section 2). Thus, in the latter 
framework, one chooses weights, applies these to obtain a weighted least squares fit, calculates 
corresponding residuals and, in the light of these, forms new weights to apply at the next 
iteration. Simultaneous minimization is irrelevant: for example, one might even contemplate use 
of the weight function w(z) = Z-2, though probably not for long. 

Lastly, I remind Dr Green that the suggestion of using IRLS with generalized linear models to 
obtain resistant variants of maximum likelihood fits is not a new one: see Besag (1981, Section 2). 

Professor D. R. Brillinger (Univbrsity of California, Berkeley): This is a most timely paper. 
The procedure of iterative reweighting has already found many uses and solved important practical 
problems, yet its greatest successes would appear to lie ahead. The procedure proves flexible, 
easy to program, and to have important byproducts. To mention one example of the procedure's 
power, with a "flick-of-the-wrist" it changes a given estimation method into a robust/resistant one. 

The first group of scientists to make substantial use of IRLS were quite possibly the 
seismologists. They continually find themselves dealing with non-linear models and outlying 
observations. Jeffreys (1936) made use of the procedure in the construction of tables for the travel 
times of earthquake waves. Bolt (1960) used it in the determination of the location of earthquakes 
or explosions given data on the arrival times of the waves at various observatories. Incidentally 
this last reference introduces the technique of robust/resistant regression some years before 
statisticians began to study it. 

Preisler and I (1983, 1984) have employed iterative reweighting together with numerical 
integration to fit models involving random effects and latent variables. (Two related references are 
Bock and Lieberman, 1970 and Hinde 1982.) In the first of our papers we fit a compound Poisson 
model to multiply-subscripted count data, Yijk, given the covariate xijk, with yjjk assumed Poisson 
of mean rr + PiXijk u1 given the latent variate ui. (There is substantial physical background justify- 
ing such a detailed model.) GLIM and iterative reweighting lead quickly to the values of the maxi- 
mum likelihood estimates. In Section 5.1, Green discusses the definition of residuals in non-linear 
models. There are also difficulties in defining residuals for random effect and latent variable 
models. In Brillinger and Preisler (1983) we found "uniform residuals" to be useful in detecting 
an unsuspected phenomenon. (Uniform residuals are defined to be the values one obtains on 
applying the fitted cumulative distribution functions to the individual observations. They provide 
a definition of residual for any stochastic model.) 

A problem, of quite a different sort, that may be handled via the procedure of iterative 
reweighting is studied in Brillinger and Preisler (1984). The model 0(yil) = 01 (xl ij) + ?2 (x2 ij) + 
ei +e is fit, with the functions 0, 0 ?2 unknown, with e1 a random effect and with ei1 error. The 
solution is obtained by numerical integration, iterative reweighting and repeated use of the ACE 
procedure of Breiman and Friedman (1984). (ACE determines functions 0, 41, 02 to maximize 
the sample correlation between the values 0(yi) and the values fi (x1 i) + ?2 (x2?). It seems destined 
to find many exciting applications in practical statistics.) The option of using weights was added 
to ACE as an afterthought. This occurrence, and the importance that Green's paper shows IRLS 
to have, suggest that developers of statistical algorithms should provide weighted versions 
whenever possible. 

A word of caution needs to be added, and Green does address this issue. The very simplest of 
non-linear iterations can lead to oscillating and other non-convergent sequences. (May, 1976 is 
an easily approached reference to this phenomenon.) Now, because of the finite accuracy of com- 
puters even linear relationships become effectively non-linear. Proofs of theoretical convergence 
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may not be pertinent. Our experience is that one wants to proceed with the greatest precision 
allowable. 

It seems that IRLS may come to dominate much of statistical computation. Green's paper is 
a very important one. 

Dr R. W. Farebrother (University of Manchester): The author assumes that A = BBT is positive 
definite but does not consider the possibility of small elements on the diagonal of B. In this 
context Kourouklis and Paige (1981) would recommend the use of 

minv'v S.T. u+ADP =ADP* +Bv 

rather than the author's equation (7) which may be rewritten as 

minvv S.T. B -u+BTD,l=BTDP*+v. 

A similar problem arises in Section 4.1 when ftr) cc exp(- c I r Ik) as w(r) = ck I r Ik-2 and 
W (r) = (k - l)w(r) will take very large values if r is small and 1 < k < 2. But the author need 

not despair of IRLS as Ekblom (1974) and Sposito and others (1977) have published variants of 
algorithms (17) and (18) which perform satisfactorily in this context and Gentleman's (1974) 
algorithm is designed for use with non-constant weights. 

Further we recommend that the early stages of the iterative process should be subjected to 
small random shocks as it is possible that the simple iterative procedure will diverge from an 
apparent solution if subjected to random shocks. See Bohlin's discussion of this point in Wold 
(1981, pp. 48-50). 

Dr M. Green (Polytechnic of North London): My only objection to Dr Green's excellent 
paper is his suggestion that IRLS is ". . . easily programmed without the aid of packages . . 
His choice of example in 5.3 is interesting since it provides a perfect counter-example to this 
suggestion. If we follow Finney a little further we find several alterative models that take into 
account the fact that the "third" poison is a mixture of the other two. I will consider two such 
alterative models that could be easily understood by a toxicologist lacking the sophistication in 
Mathematics and Computing necessary to fit such models by programming the IRLS algorithm. 
Following Finney these models can be called the Independent Action model and the Similar 
Action model. 

Independent Action Model 
If we suppose that the poisons act in different physiological ways we could assume that the 

probability of survival from a mixture is the product of the probabilities of survival from each 
poison if administered separately. This leads to a model for survival probability of 

@(D(1 + 01 X1I ) (D(a2 + 02 X2 ) 

where xl and x2 are log doses for poisons 1 and 2. 

Similar A ction Model 
If we suppose that the poisons act in exactly the same physiological way we could assume 

that the mixture of poisons at doses d, and d2 is equivalent to a certain dose of poison 1. Taking p 
as the relative potency of poison 1 this leads to a model for kill probability of 

L(ox + , log (d1 + pd2))- 

Both models are plausible but face the modeller with the unenviable task of translation into an 
IRLS algorithm. The overwhelming success of packages such as GLIM is that for many models 
the user has only to understand the Statistics and how to use the package and facilities are 
provided for the extension of the class of fittable models relatively easily without recourse to 
programming an interactive system. 

The model for Independent Action can be formulated as a simple case of the Composite Link 
Function models (Thompson and Baker 1981). The specification and analysis of such models can 
be automated by use of macros, as described in an unpublished paper by Roger and Colman 
presented at the GLIM82 conference held at PNL. The model for Similar Action can be analysed 
simply by use of a macro that calculates the derivatives of the function 

a +/3log (d1 +pd2) 
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with respect to the parameters a, ,B and p. Use of this macro and a standard GLIM gives estimates 
for ae, ,B and p of -1.834, 1.216 and 0.4940. In both cases GLIM automatically provides the 
framework for estimation and extra information such as the deviance (36.26 for the Similar 
Action model) without the user having to program such calculations. 

Professor R. I. Jennrich (University of California at L.A.): The author is to be congratulated 
for identifying a basically simple idea that has many important applications. We have all too few 
of these. By noting the broad spectrum of applications of IRLS he has illustrated the funda- 
mental role of regression in statistical analysis. Carrying this perhaps to an extreme, I have long 
been a proponent of the following unified field theory for statistics: "Almost all of statistics is 
linear regression, and most of what is left over is non-linear regression." 

This proposition arose from extensive work on the development of statistical software, 
primarily BMDP. The heart of almost every program, from ANOVA to multidimensional scaling, 
looks a good deal like a regression program. Programs that iterate look like non-linear regression, 
those that do not like linear regression. 

Viewing analyses like maximum likelihood and robust estimation from the perspective of IRLS 
produces not just a convenient computing device, but some basic insights as well. Fitting expected 
responses to observed responses using IRLS with weights inversely proportional to variances is a 
very natural thing to do. For the exponential family this is precisely maximum likelihood 
estimation as has been noted by many including this discussant. As is demonstrated, IRLS 
provides an insightful way to view robust estimation. The weights play a natural role in reducing 
the effect of outlying observations and the regression formulation has suggested a number of 
approximate standard error formulae. 

With regard to their use as a computing device, the author notes in his abstract that IRLS 
algorithms are easily programmed without the aid of packages. I agree, but for me one of the most 
rewarding uses of IRLS is that of formulating problems so they can be analysed by standard non- 
linear regression programs without the need to program anything more than the function to be 
fitted and the weights used. The key to success here as the author points out is finding a 
formulation that uses ordinary weights rather than generalized weights. The latter are not accepted 
by most package programs. 

I will conclude with a technical comment. The starting point for the discussion of maximum 
likelihood estimation is the Fisher scoring algorithm 

where sp = dL/d, is the score vector for the parameter vector ,BIpp = Ep(spsT) is the correspond- 
ing information matrix and AO is the Fisher scoring step. In the process of factoring (*) to give 
his basic equation (3), the author assumes that L(f)- is a composite function L(0I(G)) and that 
L(i?) is a likelihood function. The second assumption is not required and dropping it leads to a 
useful generalization. Assume only that L(13) is composite. Let u = dL/dr and A = E,(uuT). Then 
I,s = DTAD and so = DTu and (*) becomes formally identical to the author's equation (3). All 
that is lost are two of the three equations above his equation (3). For example, u may not have 
expectation zero and hence may not be a score vector. 

To see what can be gained by this generalization consider the multinomial likelihood 
L = Z2Yi log pi- Let L(n) = Yi log i7 without assuming the ig sum to 1. Then ui= Yi/Pi, 
Ai; = 6g/pi and Dij = api/a13. A scoring step is obtained by regressing y on D with weights 
Wi pjl. This is a more symmetric and I think natural formulation of IRLS for the multi- 
nomial than that in Section 2.1, and because the weights are now simple any of a variety of 
standard non-linear regression programs may be used to carry out the required calculations. 
Moreover, it is not necessary to eliminate a cell to fit the general theory. 

Dr A. Pazman (Mathematical Institute, Slovak Academy of Sciences, Bratislava): An 
alternative to the measures of discrepancy given in Section 5 could be the Rao distance between "7 
and 7r(f3) in the space of the predictors 71. By definition, this distance is given by 

Fi d7y aL aL dyl ( 
D: =min ET(E ) - dt (1* 
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where the minimum is taken over all twice differentiable mappings (curves) from t E < t , ty > 
to y(t) 6 Rn which are such that 7 [t' y = 7y [t'y ] -(,). The distance D is invariant under any 
differentiable reparameterization of i7, and in the normal linear case D2 is the residual. 

There is no difficulty to compute D if Yip.. .1 Yn are independent and if L(77) = iLi (Ii) (as 
in equation (2.1)). In this case 

ly ~~2 F/2 

D m ti[ (dy1j dLi(n1i\) 
T 

D m J| L k[} t ) Et(t) dX ]i 
] dt. 

Hence D is simply the Euclidean distance after the reparameterization 

77i, + Vi0n): = Eni [dL ) 2] d??i (i= 11 .. *n). 

For example, if we take the logistic regression in Section 1.1 we have 

mi = y/n1 
and 

[(dL1i 2 ] r/_I__ 

Thus 

VI(7fl) = 2\/n1 arcsin /7I? 
and 

A D2 =D2(: 
A 

[VI(17) - (R()i 

ii 

=41ini[arcsin -1-arcsin /ni( jj (2*) 
ni 

where i7r(j) is given in (A), Section 1.1. It follows from (2*) that 

-D2(1) =- 2 j ni [arcsin Y/ - arcsinv'/1(3)] 
1 ni( 

x 
o/{nI(o") [1 -nimoI} aoi 

= 
ni 

yj/g-7g13 + o(If7-r(i)fI1) E -V01 n1i(g 

_ t7 + o (11 r7 ( ) 11). 

Hence for ? which is near to the set {,q(f): ,B E:R }, the ML estimate is almost equal to the 
estimate obtained by minimizing the Rao distance. 

Dr A. N. Pettitt (University of Technology, Loughborough): I was interested to read Dr 
Green's reference to use of the IRLS method in the linear regression problem in Section 4. I have 
been working on methods of making estimation techniques robust with censored and grouped 
observations. One approach is with ranks; see, for example, Pettitt (1983). Another is to use the 
EM algorithm (Dempster et al., 1977) when applied to the regression problem with normal errors 
and censored and grouped observations. This gives IRLS as the method of estimation. Similarly, 
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as the author notes in Section 4.1, when the EM algorithm is applied to the regression problem 
with "normal/independent" errors, such as the t distribution, the IRLS method again results. If 
one combines the "normal/independent" errors with censored and grouped observations, then, 
again, the EM algorithm results in IRLS estimates. 

In this particular case two expectations in the E stage have to be carried out and it is important 
to get the order correct or otherwise IRLS estimates do not result. Explicit results can be found 
for finite scale mixtures of normal distributions and for the t distribution with even degrees of 
freedom, therefore giving IRLS estimates which are robust to outliers. Estimates can be found 
using GLIM, for example. 

My point, as the author correctly notes, is that when the IRLS estimates result as an application 
of the EM algorithm, then the theory of the EM algorithm guarantees that the full iterated values 
are local maxima or turning points of the likelihood function. Obviously, there is no guarantee of 
a global maximum unless special circumstances prevail. 

No such theory exists for the IRLS method in general. It would appear necessary to compute 
the observed information, not the expected information, at the fully iterated root, in order to 
check that the root gives a local maximum and to evaluate the likelihood or quasi-likelihood at the 
steps of the algorithm in order to check the convergence of the technique. 

The IRLS technique may result in convergence, but it should be asked to what; otherwise, 
statisticians are showing an extremely cavalier attitude to the general problem of optimization. 

Dr J. H. Roger (Reading University): The general formulation outlined in this paper includes 
those models described by Thomson and Baker (1981) as Composite Link functions. Composite 
Link functions form a technique which allows one to fit any non-linear link function to a model 
with exponential family error function, using a package such as GLIM, by altering the design 
matrix at each iteration and is numerically equivalent to that described here as the Newton- 
Raphson method with Fisher scoring. I have used this approach for fitting both Variety Environ- 
ment interaction models (Finley and Wilkinson, 1979) and Probits with adjustments C and D for 
natural responsiveness (Finney, 1971, p. 126). The major problem encountered is making the 
iterative process converge when the starting values for the parameters , are far from the optimum. 
It is necessary to monitor the changes in the log-likelihood at each step and alter the step length 
appropriately. Such a procedure while certainly not guaranteeing convergence to a global optimum 
has allowed the solution of several practical problems. The choice for the form for the matrix A 
seems to be of less practical importance. Indeed the use of a suitable parameterization of the 
model seems to be more crucial. 

The package GLIM has been used by several workers to solve certain IRLS problems. However 
it is not ideal. There is a need for a computing environment which has the array manipulative 
features of APL, device independent graphics, a powerful macro facility (with editing), text 
handling and finally a simple IRLS procedure. 

Dr A. H. Seheult (University of Durham): It is a pleasure to congratulate my colleague on a 
lucid and valuable paper. 

My comments concern residuals, particularly when the representation (21) does not hold. 
Although it may appear natural to define residuals in the observation space, surely this is 

directly valid only when observations and parameters are structurally related, as in linear models. 
In the absence of such a structure, a definition of discrepai*y in terms of likelihood, such as 
deviance in equation (20), seems more natural. Often, however, such measures are interpretable 
as signed squared residuals in the observation space. 

In the notation of the paper we would like to write 
L( 

A 

)L(r ( p) i 

where Al = 2 [Li (1) - Li (r1(p))] is the deviance associated with yg; this partition is exact when 
equation (21) holds. One way of partially resolving the difficulties in the general case referred to 
by Dr Green is to use jackknife techniques. Denote by E(in) = n -1L(t) the average likelihood per 
observation and define the pseudo-likelihood generated by yi to be 

L7(tj) = nL(rT ; y) -(n - 1) L(;Y()) 

where y(g) is y without yg. Now define the pseudo-deviance associated with yi to be 
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AIo = 2(L? Li ( a( ) 
Note that A? = Ai when (21) holds. 

Finally, it is interesting to note that Li (q) log Pr yi I Y(i)) so that L0(q) = z Li( ) is the 
"log-likelihood" used by Besag (1975, 1977) to determine maximum pseudo-likelihood estimates 
for conditionally specified spatial models involving awkward normalizing factors in the full 
likelihood. The above definition of A? assumes that i} and ,B are proper maximum likelihood 
estimates but this is not necessary and they could be replaced by pseudo estimates. 

Mr W. D. Stirling (Massey University, New Zealand): Dr Green's paper extends the IRLS 
algorithm for generalized linear models to a wide range of other important models. Stirling (1984) 
independently derived the algorithm for models where responses are independent and involve 
linear functions of parameters; further applications are described in that paper. 

In many problems expected second derivatives cannot be easily specified or evaluated. When 
q = X 0 , Newton-Raphson iterations are an alternative to Fisher's scoring technique and they 
can also be found by IRLS. Since 

a2Iipo 

a step is given by equation (3) with 
a2L 

A =-- 
annT 

Whereas Fisher's scoring technique ensures that A is positive semi-definite, making (4) a valid 
least squares problem, for Newton-Raphson iterations it may not be positive semi-definite. This 
however is not a problem since (4) still describes the Newton-Raphson step and can also be easily 
solved. In particular many weighted least-squares algorithms such as Gauss-Jordan, and Givens 
methods also work with negative weights allowing (4) to be solved when the responses 
are independent with A diagonal. Since DT AD should be positive semi-definite near the 
solution, and often in a large region of the parameter space, the algorithms are usually still 
numerically stable. Gill and Murray (1974) suggest a modification to ensure convergence. A 
consistent estimate of parameter variances is still given by (DTAD) -1 . 

The 2-part iterations for ( ,c) suggested at the end of Section 3.1 converge very slowly if 
j8 and iK are highly correlated. However, if (9) is explicitly soluble for ic, c can be eliminated by 
replacing it by its maximum likelihood estimator for fixed 1j, K (wi) thereby reducing the problem 
to simple IRLS on L(, i (q )). 

Finally I wish tQ suggest an alternative to the use of ad hoc weight functions in Sections 5.2 and 
5.3. Robust/resistant M-estimators for normal linear models are equivalent to maximum likelihood 
assuming a longer-tailed distribution than the normal. Similar methods can be applied to Poisson 
and binomial data by fitting negative binomial or beta-binomial distributions with the same means. 
The extra nuisance parameter can be adjusted to give the desired degree of robustness. An 
advantage of this approach is that the nuisance parameters can also be estimated from the data 
allowing tests of whether robust/resistant fits are needed. 

Dr G. Tunnicliffe Wilson (University of Lancaster): This paper wi be extremely valuable 
to those, like myself, who have been aware for a long time of the importance of IRLS but have 
failed to appreciate the overall structure of the subject. 

My contribution is confined to a small point in Section 4 on Linear Regression. Most of the 
densities f which one sees in use for the error term are smooth and symmetric, in which case the 
weight function w(t) is well defined. It is, however, still quite possible to define w(t) for a smooth 
asymmetric density provided it is centred on its mode. 

I have found this useful in a time series context where the residuals in a univariate 
autoregressive model for a river flow series appeared to have approximately an exponential 
density. It is pointed out by Dr Green that even for a two-sided exponential density, IRLS cannot 
be recommended. However, the error model I adopted was the sum of two independent 
components: e =eI +e2, where el is exponential with mean X and e2 is Normal (O, ). With 
A/c - 5 say, this gives a reasonable model of the observed error density, and has a plausible inter- 
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pretation. The resulting density is smoothed by the presence of e2. It is reasonably tractable, its 
mode is easily found numerically, and the corresponding weight vector w evaluated. Using only 
one or two steps of IRLS substantially improves the precision of the autoregressive parameter, 
and the model fit. 

Many statistical packages have linear and non-linear least-squares estimation facilities (including 
time series modelling) with the option of a fixed weight vector supplied by the user. Internally, 
they solve the equations (17) with fixed weights. When coupled with calculation and loop facilities 
this allows the full power of IRLS to be exploited. In GENSTAT, for example, calculation of the 
above-mentioned weight vector required only three extra lines of code. Dr Green's paper 
stimulated me to try out this example, and I hope it will encourage many others to use the method 
of IRLS. 

Professor C. F. J. Wu (University of Wisconsin, Madison): If the IRLS method is for minimiz- 
ing an objective function M, be it a log likelihood or not, it is better to use the changes in M for 
monitoring convergence. This is because the IRLS or a suitable modification yield a monotone 
sequence of M values, while the behaviour of the sequence of parameter estimates is less 
predictable. In the context of the EM algorithm, Boyles (1983) gave an example that exhibits 
convergence in the likelihood values but oscillates in the parameter estimates. The convergence 
behaviours of the EM algorithm according to these two criteria are quite different (Wu, 1983). 
If no such M function exists as in resistant regression, the changes in the left-hand expression of 
(26) may be used for monitoring convergence. When the iterative estimation of a is incorporated 
in Method (I) (17'), more general convergence results are still available from Dempster et al. 
(1980) since their treatment depends on the assumption that the 4 function comes from the 
normal/independent family. Incidentally this restriction to the N/I family can be relaxed by 
applying the Zangwill's Theorem as in Wu (1983). My only question is on the appropriateness of 
the definition of A7 in the dependent situation since it may be quite sensitive to the ordering of 
the components of 7. 

I congratulate the author for a stimulating paper which has greatly extended the utility of the 
IRLS method. 

The author replied later, in writing, as follows. 
I am very grateful to all the contributors for their stimulating comments. Together they provide 

a substantial discussion that says much about the power and flexibility of the IRLS method. I 
have arranged my replies by topic rather than in order of discussant, in the hope of picking out 
and concentrating on common themes. My intention is to reply to points with a computing 
emphasis, and then move on to the more statistical aspects, whilst recognizing that the distinction 
is necessarily blurred. First, however, let me comment on some of the less technical matters raised. 

My motivation for looking at the subject of this paper was similar to that of Dr Jorgensen. 
When re-reading Nelder and Wedderburn's paper, I too felt that a more elementary presentation 
must be possible. The generality arose naturally from this re-formulation and the practical comput- 
ing details followed from using the method outside generalized linear models, and from attempting 
to implement resistant alternatives. 

Dr Jorgensen and Dr Nelder both criticize my "IRLS" terminology. However, the term has the 
advantage of sounding like a computational method (which it is) and remaining neutral as to the 
statistical principles leading to it (which is appropriate as there are several). I agree with Dr Nelder 
that the first syllable of "reweighted" is redundant, but feel that the term has by now caught on 
rather widely and would be difficult to check. It also makes for a more desirable acronym, 
especially when generalized, 

I am not sure of the utility of the classification of problems requested by Dr Nelder. As I see it, 
the key feature leading to IRLS is the specification of a regression model as a composite likelihood 
function L( iq( ji)). When the IRLS step is reduced to ordinary unweighted least squares, (6) or (7), 
which is how it will usually be performed, none of the working covariates or the dependent 
variable remain fixed between iterations, except in extremely special cases. The useful 
simplifications seem to be essentially those mentioned in Section 1.2: that of a diagonal 
information matrix A, and that in which there is an underlying linear predictor X , (not 
necessarily the same as ij ) so that the working model matrix changes only in a simple way. 

I found the historical comments from PrQfessor Brillinger very interesting; yet again we find 
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that a popular data-analytic technique was fostered outside statistics. With his delightful "unified 
field theory" and his other remarks, Professor Jennrich has given new insight into the fundamental 
role of regression in statistical estimation. 

As I had expected, a number of contributors to the discussion commented on the use of GLIM 
for fitting non-standard models by IRLS. Mr Thompson and Mr Burn find the generality of my 
approach confusing in comparison. It is I think important to retain this generality of description 
in order to convey the unity of such a wide variety of estimation problems. That is not to imply 
that in particular problem areas there is no middle ground between this generality and a specific 
package solution. The user will not necessarily be required to differentiate hundreds of terms. Let 
me use as an example the multinomial problems with cell probabilities polynomial in the para- 
meters arising in genetics, and mentioned by Mr Thompson, Mr Burn and also Dr Roger. These 
could be handled directly, but it is more convenient to use the "Poisson trick" and treat the cell 
frequencies as independent Poisson observations. Thus, y Poisson (ii) where ii = C 'y and 
y = exp (XP). In the notation of the paper, u is (y/,t) - 1, A is diag (1/tq), D is C diag ('y)X 
and the deviance is 2 1 {Yi log (yi/71i) -yi + ni }. (Here the division and exponentiation operate 
component-wise.) The differentiation is already done, yet a package is not needed. This 
specification is just that given via composite link functions by Thompson and Baker (1981), but 
expressed in terms of the score function rather than GLIM terminology. 

In a similar vein, I am delighted to see that the other Dr Green and I are in such close agree- 
ment: I in turn find that he provides a perfect counter-example to his point about packages. He 
takes the probit example in Section 5.3 a little further, exploiting the information that one poison 
is a known (1: 4) mixture of the others by considering two models suggested by Finney. But the 
methods he suggests for fitting these two models in GLIM are different, and both are different 
from that by which probit models are fitted without using this mixture information. In fact all 
of these models, the more general model for synergistic action given by Finney in which the kill 
probability is 'F(oz + , log (d1 + pd2 + KV/did2)), the model with complementary-log-log link used 
by Professor Aitkin, and Professor Lewis's concurrent line probit model, all have the same 
structure: ui is ((yij/ni) -r )Aii, where Aii is ni/(7?i(1 - 71i)), and the deviance is 

21 {Yi log (yi/ngfli) + (ni -yi) log ((ni -yi)/ni(l -7i))} 

The differences lie only in the functional form of 11(p) and the matrix D of its derivatives. The 
unity of structure can be reflected in use of essentially the same program, but not, according to 
Dr Green, if you use GLIM. 

Mr Thompson, Professor Aitkin, Mr Burn, Dr Gilchrist and Dr Roger all raise points about 
estimation problems that are clearly within the scope of IRLS yet are awkward or impossible 
to handle in GLIM. I agree with all these points, and assume they are directed towards people 
with more influence in these matters than I. Considerable ingenuity has been shown by some 
discussants, including Mr Burn, Dr Gilchrist and Dr TunnicLiffe-Wilson, in coding some other 
difficult problems, including some with non-diagonal A, into GLIM or GENSTAT. 

Dr Wilson finds my description of GLIM limited but I think she will find that, apart from her 
comment about a singular value decomposition for non-diagonal A, her points are contained in 
the second half of the second paragraph in Section 3.3, admittedly rather briefly. 

A number of contributors add some flesh or technical details to the bare bones of the IRLS 
method as I described it, while others propose alternative procedures. Dr Jorgensen is to be con- 
gratulated on a very complete coverage of matters such as choice of step length and alternatives 
to the information matrix A. The basic IRLS method can indeed be adapted to an even larger 
class of problems, but the programming effort may be greater. As Dr Wilson comments, there is 
a point at which one gives up and writes a one-off program (or consigns the problem to a general- 
purpose optimization package). Mr Stirling also discusses choice of A, including possibilities where 
it does not remain positive semi-definite. These probably take IRLS out of the reach of those who, 
like Professor Jennrich, prefer to use standard weighted regression packages. The same is true of 
the very interesting and highly desirable modifications to the IRLS method via constrained 
optimization, suggested by Dr Farebrother. 

Several points are raised about convergence and divergence, and monitoring the iterations. 
Professor Brillinger reminds us of the unpleasant oscillatory behaviour that may arise in fitting 
non-linear models and recommends maximum precision, as some of the non-linearity is round- 
ing error. Dr Roger and Professor Wu both advocate monitoring changes in the likelihood. Dr 
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Roger thereby adjusts the step lengths. The situation described by Professor Wu is disturbing: 
should there be convergence in the likelihood, but not the parameter estimates, I would like to 
know! Dr Pettitt notes the absence of any theory in general about the solution to the iteration. 
The one point on which one can rely is that when iteration ceases at a finite point in parameter 
space the likelihood equations (1) are satisfied. Quite clearly, many factors may prevent this being 
an acceptable solution to the estimation problem. My own approach is to note that most of such 
difficulties will be identified by properly monitoring all aspects of the iteration. It may make for 
an untidy screen or print-out, but it seems to me essential to write out the current parameter 
estimates and log-likelihood on every iteration unless the model is an extremely familiar one. 

At the end of Section 3.1, I made some brief remarks about use of a two-part iteration in the 
presence of nuisance parameters. I have found this approach successful in a variety of situations. 
Dr Gilchrist describes use of this technique when fitting models with parametric link functions, 
and claims that it is easy to carry this out in GLIM (only for low-dimensional K , I would suspect, 
but this is the usual case). Mr Stirling points out that convergence of this two-part process may be 
slow if P and K are highly correlated, and suggests eliminating K by solving equation (9). To me, 
this rather begs the question, since the result will generally be to destroy the otherwise simple 
form for tj that led me to term the additional parameters a "nuisance" in the first place. 

Dr Farebrother recommends incorporating small random disturbances into the early iterations, 
and this seems to me to be a desirable and convenient complement to the good practice of running 
the iterative solution from several different starting values: both help to see whether the fitted 
maximum may be a global optimum. Mr Thompson would like rules for correct parameterization 
to obtain quick convergence-the experience of Dr Roger shows that these would be valuable- 
and Mr Ross's mention of stable parameter transformation seems to provide an answer. 

Mr Ross also draws our attention to an important rival to IRLS of which I should have been 
aware. In a model with an additive unimodal log-likelihood, use of the deviance residuals allows 
the negative log-likelihood to be expressed as a sum-of-squares and hence minimized by the Gauss- 
Newton method, or some variation of it. Dr Jorgensen points out that this can still be regarded as 
IRLS, with a suitable choice of A. In fact, in the notation of the paper, but writing zi = _VAi 
(whether signed or not), the Gauss-Newton step is to regress z on the columns of the matrix 
(Di ui/z1) to obtain P -p . Thus, remarkably the programming effort may be even less than 
with Fisher scoring. The information matrix A is still needed for the asymptotic covariance matrix 
(DTAD)-1, or it may be approximated by diag (u2/z12). Can the idea be extended to the case of 
dependent observations? 

Professor Titterington suggests the recursive solution of equation (3). This approach seems 
particularly attractive for very large data sets, where the inherent slight inefficiency does not 
matter, and especially where observations are acquired sequentially and processed in real time. 

Ten contributors in all refer to the discussion of residuals in Section 5.1. I certainly agree with 
Dr Jorgensen, Mr Thompson and Dr Lawrance that the appropriateness of a definition depends 
on the use to be made of the residual. In the present context of parametric regression function 
and probability model, my aim was to suggest methods for assessing the relative importance of the 
various contributions to the likelihood equations; these might then also be used to determine 
weights on those contributions in resistant alternatives to maximum likelihood. Viewing the likeli- 
hood equations (1) as a sum over components of the predictor vector i, it is natural to attach 
residuals to these predictors rather than the observations. Observations are in some contexts some- 
what illusory, so that I am not concerned that there is not necessarily a one-to-one correspondence 
between tj and y. The diagnostic use of residuals will involve examining the form of the 
probability model L(j) to find the data points which are associated with a given "discrepant" 
predictor 17i. 

From this standpoint, I agree with the prevailing opinion that the deviances (20) or their signed 
square roots, the deviance residuals, are appropriate when the likelihood is additive (21). My only 
purpose in extending the discussion was to treat the case where A, the information matrix for 
,j, is not diagonal. Dr Nelder and Professor Wu criticize the sequentially defined A* (23). These 
have the merit of restoring some additivity to the likelihood equations, but the demerit of losing 
symmetry between the components of tq by depending on the ordering of these components. 
Where observations are obtained sequentially, this is perhaps acceptable, but in general it may be 
preferable to retain the symmetry. 

If "greater than" is replaced by "not equal to" in (23) then the {Ai} reduce to the ordinary 
deviances {Ai} of (20). Mr Thompson and Dr Nelder mention "cross-validatory" residuals, where 
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Mr Thompson is referring to (20); I would prefer to reserve this term for deviances calculated 
when the corresponding predictor is omitted from the fitting altogether. Dr Seheult provides an 
original approach via conditional distributions, again with a cross-validatory flavour, and in which 
residuals are associated with observations not predictors. But providing that estimates are still 
obtained by maximizing likelihood not pseudo-likelihood, and that all observations are used in this 
fitting, Dr Seheult's {iAi } are equal to {Al} in some cases even when (21) fails. For example, this 
is true for y - N(q, E) with l known, not diagonal, and also for the multinomial distribution 
with an appropriate interpretation of "missing" observation. How widely does this connection 
hold? Dr Seheult's suggestion does not succeed in restoring the truth of equation (22), but does 
provide a useful new viewpoint and deserves further study. 

On other residual matters, Mr Davison has provided additional theory for the deviance residuals, 
which will aid their interpretation, especially for non-Normal linear regression, and Dr Pazman 
provides an alternative by using the Rao distance; although the interpretation as euclidean distance 
in a transformed predictor space is appealing, I wonder if these are not too complicated to use in 
practice? I cannot agree with Dr Jorgensen that in the simplest non-trivial situation, y - N( il, 1) 
with L known but not diagonal, the ith residual should be yi - 7Zi, scaled. Surely, if for example, 
a single observation yi is suspected of being in error, it is its departure from its conditional mean 
given the fitted model and the other observations that should be examined? As above, this leads 
exactly to Dr Seheult's proposal and the ordinary deviances (20). 

Dr Nelder, Dr Gilchrist and Dr Lawrance refer to correlation between residuals. We seem to 
have learnt to compensate for this in linear models, and I am unhappy at losing the correspondence 
between residuals and predictors (or observations). Routine use of Gilchrist's adjusted residuals 
seems entirely practicable and desirable, and the idea should apply to a wider variety of models. 
Dr Gilchrist's point about assessing '- (P) directly rather than through L(q) - L(1(4)) is 
I think answered by considering the case where the former is large and the latter small -does this 
not imply that apparent discrepancies do not much affect the likelihood for these observations and 
hence are not of interest? 

Professor Brillinger's use of uniform residuals is most interesting. It is a pity that statisticians' 
vision is trained to assess a nominal Normal distribution in residual plots, but of course uniform 
residuals can always be re-transformed onto any other preferred baseline distribution. 

Several contributors mention models and situations where residuals remain difficult to define. 
I entirely agree with Dr Nelder and Mr Thompson about binary data, and would not advocate 
these methods for this case. I have nothing to offer Professor Brillinger for latent variable models 
or Dr Lawrance for non-linear time series, except perhaps that the latter at least might be happy 
to define deviances sequentially. 

Several contributors express puzzlement or concern over the description in Section 5.2 of 
resistant alternatives to maximum likelihood estimation in non-linear models. Such ideas, at least 
for generalized linear models, are not new; see Besag (1981) and Pregibon (1982). As to the 
purpose of such methods, I can only repeat my assertion that it is not the aim of resistant data- 
analysis (in the context of model-fitting) to provide a unique objective solution, but rather to 
examine whether any doubt should be cast on a model fitted conventionally. It therefore seems to 
me eminently reasonable to report a bad fit of, say, a probit model to data from a dosage- 
mortality experiment, coupled with a considerably better fit to all but a few of the data points. 

The "operational difference" between robust and resistant procedures, sought by Professor 
Atkinson, is surely not eliminated by the fact that at the numerical level the same computations 
may be carried out in each. In robust regression typically one proceeds with a fair amount of faith 
in a certain error distribution, but takes out an insurance policy to cover departure from this 
assumption; the resulting robust procedure is used once, in place of a "classical" method, and the 
fit is quoted as objective. Resistant methods, on the other hand, may involve the same numerical 
procedures, but used experimentally at varying levels of resistance, and as a supplement to classical 
methods. 

Mr Thompson's intriguing suggestion that resistant methods fit a "model" that is a mixture of 
the data and intended model is I think true, even if the idea is a little circular. It ought to aid our 
understanding of such methods, but I do not know of any principle for fitting the mixing weights 
in practice that leads to the resistant estimating equations (26) or (28). 

Professor Aitkin and Mr Stirling make related points about the desirability of replacing "ad 
hoc" weight functions and tuning constants by prescribed alternative probability distributions and 
(possibly estimated) additional nuisance parameters. To the extent to which these approaches are 
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actually different, I wonder if we would not then be over-modelling? It should be recalled, 
incidentally, that since in the resistant approach, the tuning constant used is divided into a 
standardized residual, it does itself have a standardized scale; thus for example with the bi-square 
function, B 9, 6 and 3 correspond to mild, moderate and high degrees of resistance, for any set 
of data. 

Mr Besag presents an alternative but equivalent rationale for IRLS in resistant methods, and 
makes the valuable point that there is no need to iterate to convergence, nor indeed any necessity 
for ultimate convergence at all. This would clearly require careful monitoring of the changing para- 
meter estimates, which as I have stressed is always advisable. There are cases, for example in Table 
6, where the fully iterated solution depends on the initial values used, and some where in addition 
to the fit will not iterate away from the maximum likelihood estimates. There may in general be 
many solutions to the weighted likelihood equations (28) and some of these will not at all corres- 
pond to a "fit" in the ordinary sense. Therefore, we ought perhaps to restrict ourselves to initial 
estimates that do represent credible models: apart from the exploratory and experimental 
emphasis, the approach does come close to examining the "robustness" of such models. 

Dr Nelder observes that resistant methods are not "resistant" to changes in the link or variance 
functions. This seems entirely appropriate if we are using a model-based notion of discrepancy. 
However I certainly agree with Dr Nelder about the risks of using resistant methods with binary 
data. For example, slight changes in the way in which the method is formulated leads the resistant 
fit to the vaso-constriction data presented by Pregibon (1982) to go badly wrong: the slopes 
become infinite and a "perfect" fit is obtained by down-weighting only three observations. 

Professor Atkinson notes the omission of any reference in the paper to high leverage and model 
fit. This is an important matter, but space was restricted. For the binomial/logistic model, I again 
refer to Pregibon (1982). 

Before leaving the subject of resistance, I must return to the probit analysis example that alarms 
and grieves Professors Aitkin and Lewis. It is of course rather a small data-set (and rather old) to 
be subjected to such intense scrutiny. I wonder how many different models must be tried before 
the choice becomes as subjective as the use of resistant methods? 

Twelve models or minor variants are suggested in the paper and discussion, including those 
from Dr Green, and all of these fit considerably better without observations 11, 16 and 17. (If 
Professor Lewis had estimated his parameters by maximum likelihood, incidentally, he would have 
found a slightly closer fit; also these estimates are heavily influenced by points 1 1, 1 6, 17.) 

For a data-set of this size, I would hesitate to abandon an apparently accepted probit trans- 
formation. Professor Aitkin's use of the complementary-log-log link yields a reduced deviance 
overall, but closer inspection of this fit reveals that the almost imperceptible curvature in Deguelin 
is little altered, while clear curvature and uniformly larger residuals appear for Rotenone. 

Further, Professor Lewis finds Rotenone to be more toxic than Deguelin for high 
concentrations, and less toxic for low: presumably, therefore, the poisons work through different 
biological mechanisms, so why should the line for the mixture be concurrent with the others? 

Among the remaining points with a statistical flavour, I am grateful to a number of contributors 
for bringing new problems to my attention. These include Dr Pettitt with further examples of the 
EM algorithm reducing to IRLS, namely with censored or grouped data from Normal/independent 
distributions; Professor Brillinger describes work with random effects and latent variables models, 
Mr Stirling's paper includes examples with censored data, and negative-binomial and beta-binomial 
distributions, and Dr Tunniciffe-Wilson describes experience with asymmetric error distributions 
in linear regression. 

Dr Wilson and Dr Ross are in disagreement over the interpretation of IRLS failing to fit a 
model. I tend to side with Dr Wilson in asking of what use is an optimal fit of a model that is 
inappropriate. On the other hand, quite complicated and numerically ill-conditioned models are 
sometimes appropriate, and we may give up too early. Surely the optimum should still be sought, 
but the optimization not consigned to a black-box prohibiting visual monitoring of the iteration? 

Finally, I am pleased to see that Professor Jennrich shows that any initial formulation is 
insufficiently general, thus widening even further the range of estimation problems where 
iteratively reweighted least squares can profitably be applied. 
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