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A sequential Cox approach for estimating the
causal effect of treatment in the presence of
time-dependent confounding applied to data
from the Swiss HIV Cohort Study
JonMichael Gran,a∗† Kjetil Røysland,a Marcel Wolbers,b,c Vanessa Didelez,d
Jonathan A. C. Sterne,e Bruno Ledergerber,f Hansjakob Furrer,g
Viktor vonWylf and Odd O. Aalena

When estimating the effect of treatment on HIV using data from observational studies, standard methods may produce biased
estimates due to the presence of time-dependent confounders. Such confounding can be present when a covariate, affected by
past exposure, is both a predictor of the future exposure and the outcome. One example is the CD4 cell count, being a marker
for disease progression for HIV patients, but also a marker for treatment initiation and influenced by treatment. Fitting a
marginal structural model (MSM) using inverse probability weights is one way to give appropriate adjustment for this type of
confounding. In this paper we study a simple and intuitive approach to estimate similar treatment effects, using observational
data to mimic several randomized controlled trials. Each ‘trial’ is constructed based on individuals starting treatment in a
certain time interval. An overall effect estimate for all such trials is found using composite likelihood inference. The method
offers an alternative to the use of inverse probability of treatment weights, which is unstable in certain situations. The estimated
parameter is not identical to the one of an MSM, it is conditioned on covariate values at the start of each mimicked trial. This
allows the study of questions that are not that easily addressed fitting an MSM. The analysis can be performed as a stratified
weighted Cox analysis on the joint data set of all the constructed trials, where each trial is one stratum. The model is applied
to data from the Swiss HIV cohort study. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

When studying the effect of treatment on survival or time to AIDS diagnosis for patients with HIV infection, standard
Cox models with time-varying covariates may give biased estimates in the presence of time-dependent confounders [1].
Time-dependent confounding can be present when a covariate, affected by past exposure, is both a predictor of the future
exposure and the outcome.

An example of a time-dependent confounder when estimating treatment effects for HIV is the CD4 cell count, which,
as an indicator of immune status, is a predictor of both treatment and outcome (AIDS or death), while at the same time
influenced by treatment. To deal with this type of confounding, Robins et al. [2] introduced a new type of model, called
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the marginal structural model (MSM). When fitting an MSM, time-dependent confounding is typically adjusted for using
inverse probability of treatment (IPT) weighting. Each individual’s probability of being treated is calculated conditioned
on their observed covariates at each time point, which then are used to construct the IPT weights for that individual.
The time-dependent confounding variables are no longer predictors of the exposure in the weighted analysis. The rest
of the parameters in the MSM can therefore be estimated using a weighted time-dependent Cox analysis, adjusting only
for baseline covariates.

Even though IPT weighting is an elegant way to adjust for time-dependent confounding, it has properties that make
the weights unstable in certain situations. The main problem lies in the instability of the estimated weights at the time
where individuals go from being off treatment to on treatment. When the conditional probability of initiating treatment
is small, the denominator in the expression for the weight can be close to zero, making the estimated weights unstable.
In other words, individuals with unusual covariate histories when starting treatment can be given very large weights.
The fact that the individuals keep this weight constant for their remaining event history after initiating treatment adds
to the problem.

In this paper we consider an alternative approach to time-dependent confounding, than the IPT weights used to fit
an MSM. Our method seeks to estimate a similar treatment effect as the MSM, but now by looking at the causal or
counterfactual effect of treatment in many mimicked randomized controlled trials, each trial being distinguished by the
time of treatment start. This approach also allows us to investigate some questions that would not be that easy to answer
with an MSM; such as estimating separate treatment effects for individuals with different CD4 counts at treatment start.

Where in the MSM the time-dependent confounding is typically adjusted for using weighting, we consider a method
of many successive Cox analyses, comparing the event histories of individuals starting treatment and the ones not yet
on treatment in different time intervals separately. Individuals not on treatment by the start of the trial are artificially
censored at the time of later treatment start. The mode of analysis in this sequential Cox approach is related to the
one proposed by Hernan et al. in [3, 4], by Lu in [5], and by van Houwelingen in [6]. In [3] they compare treatment
regimes by artificially censoring individuals when they do not follow one of two defined regimes, whereas in [4] a
randomized controlled trial is mimicked from an observational cohort study by constructing eight ‘trials’, each over
a 2-year period, and then pooling all eight ‘trials’ into one single analysis. In [5] patients receiving treatment are
matched with patients with similar history but not on treatment by certain times. One main difference is that we not
only exclude individuals already on treatment in each ‘trial’, but also censor individuals at the time of later treatment
start. When properly weighted for any dependent censoring, this mimics a trial where a patient is either on treatment
or off treatment from the beginning and to the end. This means that, in every such trial, the treatment confounding is
not time-dependent. There are also similarities between our method and the landmark analysis in [6]. Individuals at risk
at some landmark point are analysed using only the information available at that moment, and multiple risk sets using
different landmarks are created and analysed using a pseudo likelihood. The main differences are that it does not try to
handle the same problem of time-dependent confounding, and that there are no artificial censoring performed to mimic
randomized controlled trials. There are also differences in how the trials and the landmark data sets are analysed and
combined.

In our analysis we construct a large number of mimicked randomized controlled trials, based on different time intervals
of possible treatment start, and then analyse them simultaneously using composite likelihood inference. The idea is
that the effect estimates in such a sequence of Cox analyses, performed on constructed subsets of the original data,
would give appropriate adjustment for time-dependent confounding. The overall effect estimate from the composite
likelihood analysis, aggregated over all possible intervals of treatment start, will serve as a causal effect of treatment,
given some assumptions. The estimated parameter would not be identical to the one of an MSM, as it is adjusted for
covariates values at the start of each mimicked trial. To make the effect estimates consistent, any selection bias due
to the artificial censoring done when creating the mimicked randomized controlled trials (together with other possible
dependent censoring) has to be accounted for. Such a bias could be accounted for using inverse probability of censoring
(IPC) weights, which are more stable than IPT weights.

The methodology in this field is a frequent topic of discussion [7, 8]. Generally, when it comes to addressing problems
of confounding, one can distinguish between the propensity score type of weighting methods and more regression-based
strategies [8, 9]. The method addressed in this paper is more of the latter type, whereas the MSM, with its IPT weights,
belongs to the first category. Owing to the differences in the parameters being estimated, the estimates from the two
methods are not directly comparable. But, even though the interpretation is not entirely analogous, the treatment effect
of interest is similar.

In Sections 2 and 3 we give a detailed description of the sequential Cox method, whereas we describe the Swiss HIV
cohort data in Section 4. In Section 5 we present our results using the sequential Cox method to estimate the effect
of treatment by highly active antiretroviral therapy (HAART) compared with no treatment on time to AIDS diagnosis
or death in the Swiss HIV Cohort Study [10]. The same data have previously been analysed with an MSM by Sterne
et al. [11]. A discussion follows in Section 6.
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2. A mimicked randomized controlled trial based on a specific starting interval

We now want to mimic a randomized controlled trial using individuals starting treatment in a certain time interval. We
will model the hazard in this randomized controlled trial using a Cox proportional hazard model, and later combine
models for all possible time intervals.

2.1. Notation and Cox model

Let us first consider individuals starting treatment in time interval k, which in our case would refer to a certain month
of observation since the inclusion in the study. Now, when interval k is our reference interval, and we are seeking an
unbiased estimate of the effect of treatment, we can consider the sub-population consisting of individuals that have not
received treatment before interval k. In this sub-population, the individuals who initiate treatment in interval k form the
treatment group, and the remaining individuals the control group. In order to get an unbiased estimate of the treatment
effect, we censor individuals from the control group when they start treatment at a later time (see illustration in Figure 1).
We adjust for covariate values at baseline (covariate values at interval 1), and for covariate values at interval k, but
not for later covariate values as these would be affected by treatment. The two groups can now be compared using a
standard Cox model.

More formally, let T A
i be the initiation time of treatment for individual i , let Ti be the time of an event (AIDS or

death) for individual i , let Ni (t)= I (t�Ti ), and let Yi (t) be the at-risk indicator for individual i at time t . Yi (t) takes
the value 1 if individual i has not had an event or has been censored strictly before t , and 0 otherwise. Let Ai (t) be
the treatment indicator function for individual i at time t . Ai (t) takes the value 0 when individual i is not on treatment,
and 1 when on treatment. Let � and � be the regression coefficients corresponding to treatment and other covariates,
respectively. Let s0, . . . ,sn be a partition of the interval [0,�), where � is the time of the end of follow up. Moreover, let
(sk−1,sk] be the kth reference interval. The individuals included in the treatment group in the kth trial are those who
initiate treatment in this time interval, i.e. sk−1<T A

i � sk . The controls at time t�sk are those who have not started
treatment at that time, i.e. T A

i >t .
Now, let Xi (sk ) be the vector of covariate values for individual i at time sk . Cox regression on the resulting data after

time sk would now give an estimate of the effect of initiating treatment in the kth interval, where the intensity at time t
for individual i , observed until m, is modelled by

�(k)i (t |Ai , xi,k, . . . , xi,m)=Y (k)
i (t)�(k)0 (t)exp(�Ai (t)+�′xi,k),

for all k=1,2, . . . ,K , where t�sk , and K is the reference interval including the last observations [12].
Let

xi,k := Xi (sk),

Y (k)
i (u) :=

{
0, T A

i <sk or sk+1�T A
i <u

Yi (u) else
,

Event (Aids or death)

Censored

Event (Aids or death)

Censored

Censored due to treatment start

}

}
On treatment
(starting in interval k) 

Controls

Figure 1. Illustration showing an example of the five types of individuals left in the constructed data set for a single sub-analysis
used in the sequential Cox approach. The treatment group includes the individuals starting treatment in interval k, while the
individuals not on treatment by interval k are the controls. Individuals can then experience an event, or be censored due to dropout

or later treatment start. Notice the distinction between the two types of censoring in the control group.
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S(0,k)cox (u,�,�) :=
n∑

i=1
Y (k)
i (u)exp(�Ai (u−)+�′xi,k),

S(1,k)cox (u,�,�) :=
n∑

i=1

[
A j (u−)

xi,k

]
Y (k)
i (u)exp(�Ai (u−)+�′xi,k),

and note that S(1,k)cox (u,�,�) is the gradient of S(0,k)cox (u,�,�).
For the analysis starting in interval k, the partial score function becomes

U (k)
cox(�,�,�)=

n∑
i=1

∫ �

sk

([
Ai (u−)

xi,k

]
− S(1,k)cox (u,�,�)

S(0,k)cox (u,�,�)

)
Y (k)
i (u)dNi (u),

where
[
Ai (u−)
xi,k

]
is a column vector with Ai (u−) as the first component and the remaining components being the vector

xi,k . Ties can be handled using the Breslow approach [13].

2.2. IPC weights

Note that by using the partial score function of Section 2.1, that is, individuals are artificially censored when they start
treatment at a later time, dependent censoring could be introduced into the analysis. Such a dependence could also be
present in the observed data, and is likely to cause bias in an estimate of the treatment effect. One way to compensate
for such a dependent censoring, and to adjust for this bias, is to apply stabilized IPC weights to the data, assuming
no unmeasured confounders are present. The intention is to produce a weighted data set that will reflect most of the
mechanisms in the original data set, but where the censoring now can be considered to be independent. Robins et al. [2]
suggested a general method for doing this. We will follow his strategy, but rather than using pooled logistic regression
as [1, 2, 11], we will estimate these weights using Aalen’s additive regression model [12], as in [14--16]. The additive
regression model is a flexible model where the parameter functions can vary freely with time. It also gives us simple
expressions for the weights, making it a natural choice.

To derive our weights, let first T (k),C
i denote the time of what is first to occur, either the observed or the artificial

censoring for the i th individual, and C (k)
i (t) := I (T (k),C

i �t) be the indicator for whether individual i is censored by time
t . In other words, we model the mixed process of two types of censoring, which should be fine as a tool for the main
analysis. An alternative would be to estimate separate censor weights for the two types of censoring, and then using the
product of these two as the overall censor weight.

In order to use the additive model, we assume that there exists a vector function B(1,k) such that the process

C (k)
i (t)−

∫ t

0
Y (k)
i (s)

[
Ai (s−)

Xi (s−)

]′
dB(1,k)(s)

does not carry any information of the history of all the possible observations for person i before time max(t,sk). B(1,k)

is here the cumulative regression coefficients. Following [12, 4.2.1], we can provide an estimate B̂(1,k)
i of the process

B(1,k)
i .
The equation

�̂
(1,k)
i (t) :=

∫ t

0
Y (k)
i (s)

[
Ai (s−)

Xi (s−)

]′
dB̂(1,k)(s)

now gives a reasonable prediction of the cumulative hazard for individual i at time t , based on the baseline and
time-dependent covariate history in the artificial ‘at risk’ period before t where Y (k)

i �=0.

The same can obviously be without time-dependent covariates, hence, let �̂
(0,k)
i denote the predicted cumulative

hazard for censoring individual i within the kth trial with respect to baseline covariates only.
The stabilized censor weight for individual i at time t is then

w
(k)
i (t)=exp(�̂

(1,k)
i (t)−�̂

(0,k)
i (t)).

The corresponding partial score function based on the weighted data is now

Ũ (k)
cox(�,�,�)=

n∑
i=1

∫ �

sk

([
Ai (u−)

xi,k

]
− S̃(1,k)cox (u,�,�)

S̃(0,k)cox (u,�,�)

)
w

(k)
i (u−)Y (k)

i (u)dNi (u),
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X1
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D
A1 C  

X1

(b)

Figure 2. (a) A causal DAG representing the observational study in the simplified situation of only 2 months of follow up,
assuming no unmeasured confounders. Ak is the treatment indicator in interval k, Xk is the vector of observed covariates at
interval k, and D is the event AIDS or death and (b) A causal DAG representing one mimicked randomized controlled trial
(the first one), based on the simplified system in (a), assuming no unmeasured confounders. C is now the artificial censoring of

individuals starting treatment at a later time point.

where

S̃(0,k)cox (u,�,�)=
n∑

i=1
w

(k)
i (u−)Y (k)

i (u)exp(�Ai (u−)+�′xi,k),

S̃(1,k)cox (u,�,�)=
n∑

i=1

[
Ai (u−)

xi,k

]
w

(k)
i (u−)Y (k)

i (u)exp(�Ai (u−)+�′xi,k).

2.3. Causal interpretation of the effect estimate

The estimate of � from the partial score function in Section 2.2 is an estimate of the effect of treatment for individuals
starting treatment in time interval k, or in other words, in our kth mimicked randomized controlled trial. This treatment
effect � could be interpreted as a causal effect of treatment given three main assumptions;

(i) there are no unmeasured confounders,
(ii) the model for estimating the hazard rate is correct, and
(iii) the model for estimating the censoring weights is correct.

We can illustrate our system with a directed acyclic graph (DAG). Assuming no unmeasured confounders, the diagram
in Figure 2(a) is a causal DAG representing the observational study in the simplified situation of only 2 months of follow
up, similar to the graph drawn in Figure 1 in [2]. Ak is the treatment indicator at interval k, Xk is the vector of observed
covariates in interval k, and D is the event AIDS or death.

The diagram in Figure 2 (b), still assuming no unmeasured confounders, is a causal DAG representing the situation
in one of our mimicked trials (the first one), based on the simplified system with only 2 months of follow up. The
assumption of no unmeasured confounders is crucial, where an unmeasured confounder on treatment in the observational
study now would be a predictor of the artificial censoring C , and then a source of selection bias. From the causal DAG
in (b) we see that all back-doors paths from the only treatment variable A1 to D are blocked by X1, meaning that the
chosen covariates are sufficient to adjust for confounding. The artificial censoring done when creating these mimicked
randomized controlled trials corresponds to conditioning on not starting treatment in interval 2. This means blocking
the node corresponding to treatment A2, now denoted C . This is what is done when going from panel (a) to panel (b)
in Figure 2. In panel (b) the situation is one of time-dependent censoring, but with no time-dependent confounding on
treatment. Hence, our mimicked randomized controlled trials can be analysed with inverse probability weighting for
censoring only.

3. Combining the partial score functions to make an overall effect estimate

Mimicked randomized controlled trials as the one in Section 2 can be constructed for all starting intervals k, and we
now combine the partial score functions for all such trials (see Figure 3 for illustration) to estimate an overall effect
of treatment using composite likelihood (sometimes referred to as pseudo likelihood) techniques [17--19]. This overall
estimate of the treatment effect will still have a causal interpretation, assuming

(iv) that the effect of treatment is the same in every trial, and
(v) that the effect of treatment is the same for all covariate histories before the reference interval k given covariates at k.

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010
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Removed

Controls
(not on treatment)

Controls
(not on treatment)

Treatment
(start at k)

Treatment
(start at k+1)

Interval k Interval k+1 . . .. . .

Figure 3. Illustration showing the movement between groups for individuals going from one sub-analysis (in interval k) to another
(in interval k+1). For each interval individuals already on treatment are removed, together with individuals being censored, dying
or developing AIDS without ever starting treatment, while the individuals still not on treatment are compared with the individuals

starting treatment in that interval.

More specifically, we consider a pseudo-partial score function that is the sum of the partial score functions for each
mimicked trial,

Ũ (�,�,�)=∑
k
Ũ (k)
cox (�,�,�)

=∑
k

n∑
i=1

∫ �

sk

([
Ai (u−)

xi,k

]
− S̃(1,k)cox (u,�,�)

S̃(0,k)cox (u,�,�)

)
R(k)
i (u−)Y (k)

i (u)dNi (u)

=
n∑

i=1

∫ �

sk

∑
k

([
Ai (u−)

xi,k

]
− S̃(1,k)cox (u,�,�)

S̃(0,k)cox (u,�,�)

)
R(k)
i (u−)Y (k)

i (u)dNi (u), (1)

where again, assuming no unmeasured confounders, � represent the causal effect of treatment, over all k time intervals.
The assumption that the treatment effect is the same in all trials could be relaxed, leaving the estimated effect to

be interpreted as the aggregated causal effect of treatment over all possible times of treatment start (by the composite
likelihood, which resembles a weighted average).

In order to fit our model with respect to � and �, we compute the roots of (1). The estimates of � and � will be
our composite likelihood estimates. Consistency of composite likelihood estimators have been proven for special cases
[17, 18]. We can carry out our analysis using standard statistical methods and software.

One way to perform this analysis would be to construct an extended version of the data set, a pseudo data set, which
can be analysed using a standard stratified Cox model, stratifying on the reference interval k. This constructed pseudo
data set consists of the sub-populations defined earlier for all values of k, where in each sub-population, all observations
after time interval k, where the individuals have started treatment at a later time, are censored, and all time-dependent
covariates are fixed at interval k. In other words, we create a large pseudo data set consisting of mimicked randomized
controlled trials based on every reference interval k. In this pseudo data set, individuals would be present repeatedly as
controls through different sub-populations.

The censor weights are calculated for each mimicked randomized controlled trial separately. Convergence problems
will then typically be a problem when estimating regression coefficients used to calculate the censor weights for the
smallest subsets (the ones with the latest reference intervals) due to the necessarily limited amount of data. This problem
is avoided by introducing a ridge parameter in the model [12, p. 316].

When the pseudo data set is constructed from the original data and the censor weights are calculated, the analysis can
be performed in any standard software which handles stratified weighted time-dependent Cox regression, such as R [20].
Note that, different from a usual stratified analysis, individuals will often be repeatedly used as controls in many strata.
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Since we can change the order of summation over sub-analyses and integration in (1), one should, for the unweighted
case, be able to follow the proof for the asymptotic theory of ordinary Cox proportional hazard models.

A composite likelihood estimator will typically be less efficient than the estimator based on the true likelihood function
[17]. The advantage in our setting is that the composite likelihood coincides with the likelihood from a particular stratified
Cox analysis.

When analysing such a pseudo data set, the estimated standard error for the parameters, and then the p-values
and confidence intervals, based on a standard stratified Cox model, would not be correct. It might be possible to
estimate correct standard errors using sandwich procedures in the lines of van Houwelingen [6], but this would not
be straightforward. We therefore estimate the standard error using the jackknife method [21], where each of the total
n individuals in the data set are left out one at the time, constructing n jackknife samples. The standard error is then
calculated based on the effect estimates from all these jackknife samples. Using this standard error we derive normal-
based confidence intervals. Jackknife is used instead of standard bootstrapping because the bootstrap method leads to
convergence problems due to the large number of covariates used in the analysis.

Using the jackknife, leaving out only one individual at a time, we are less likely to encounter such problems. Generally
the jackknife can be viewed as an approximation to the bootstrap [21]; in our case when both were calculated, they gave
similar estimates of the standard error.

4. The Swiss HIV cohort study

The Swiss HIV Cohort Study is an ongoing multi-center research project following up HIV-infected adults aged 16
or older [10]. Studying the effect of treatment by HAART, the data of interest are available from January 1996, when
HAART became available in Switzerland. Thus, the baseline is the time of the first follow up visit after January 1996. Note
that there is no strong clinical rationale for this choice of baseline, except that 1996 was when HAART was introduced.
The arguably most relevant baseline, the time of HIV infection, is unknown for a huge proportion of individuals and
therefore unavailable. However, with detailed clinical information available to use as covariates our chosen baseline
should be reasonable. The same baseline was used in Sterne et al. [11]. Patients who died or refused further participation
before 1996, who were on HAART or in clinical stage C at baseline, or whose treatment history before joining the
cohort was uncertain were excluded. The data are organized in monthly intervals, with measures of CD4 count, HIV-1
RNA and haemoglobin levels in that month. In addition, indicator variables describe whether the individual was treated
with HAART, or experienced a CDC stage B event (a disease associated with HIV but less severe than an AIDS defining
disease) during that month. Once treatment is first initiated it is assumed that the individual remains on treatment from
then on, as in [1, 11]. Time between visits varies (scheduled clinical follow-up is 6-monthly with additional laboratory
measures taken every 3 months), and the last observation is carried forward for months without visits.

In total, 2161 individuals contributed to the data used in our analysis. The total observation time for one individual
varied from 1 to 92 months. Two hundred and two of these individuals progressed to AIDS or death, and 717 were
treated with HAART. The data set was also used in Sterne et al. [11]. See this paper for further details.

For the pseudo data set we construct in order to do our analysis on standard software, we now have 92 subsets of the
original data set, one for each observation month, where each subset is exposed to some additional artificial censoring
due to starting treatment. The full pseudo data set would correspond to 1 201 315 person-months of observation, a fairly
large data set. Since the covariates for a single individual are not updated every month, and the last observation is carried
forward, we can shorten the data to include only one row for each range of months where the covariate values are the
same, adding the time intervals when these covariate values are valid. The data set is then reduced to 274 366 rows, and
is used in the following analysis.

5. Results

For the Swiss HIV cohort data, the estimated hazard ratio considering time to AIDS or death for patients receiving
HAART treatment versus receiving no antiretroviral treatment was 0.165, with a 95 per cent standard confidence interval
of (0.079–0.343).

The analysis was carried out using a weighted stratified time-dependent Cox analysis on the constructed pseudo data
set, stratifying on the reference month, and weighting for censoring. The included covariates were HAART, sex, risk
group, and the following covariates included at baseline, at the reference month, and lagged at the reference month: CD4
group (grouped into 0–49, 50–99, 100–199, 200–349, 350–499, 500–749, �750 cells per �L), RNA group (grouped
into <400, 400–1000, 1001–10 000, 10 001–100 000,>100000 copies per mL), haemoglobin group (grouped into fifths),
CDC B event, and previously experienced CDC B event. Ninety-five per cent standard confidence intervals were found

Copyright © 2010 John Wiley & Sons, Ltd. Statist. Med. 2010
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Figure 4. Histograms for estimated IPC weights in four chosen subsets (k=1, 50, 70 and 80).

using jackknife estimated standard errors. The HAART covariate is a indicator of treatment, saying whether an individual
receives treatment at a certain time. The lagged values are the values 3 months before the current value, corresponding
to the scheduled time between study visits [11]. All programming was performed in the statistical package R, version
2.10.1 [20].

The bias due to censoring (both normal and artificial) was not substantial, as an unweighted model gave an estimated
hazard ratio of 0.176 (95 per cent CI: 0.105–0.296). Histograms for estimated censor weights in four chosen subset
(k=1, 50, 70, and 80) are given in Figure 4. We see that the stabilized weights for the chosen subsets are around 1, and
that most weights are in the region above 0 and below 2. The maximum value for the weights in the different subsets
decreases with higher k, being namely 11.37, 5.26, 3.05, and 2.96 for the chosen subsets, respectively.

Table I lists the estimated hazard ratios for HAART versus no treatment, overall (IPC weighted and unweighted
estimates), and for the subgroups of injecting drug users (IDU), non-IDU, baseline CD4 �200 and baseline CD4 <00.
The results show a greater effect of treatment in the non-IDU group compared with the IDU group, with hazard ratios
of HAART versus no treatment of 0.142 (95 per cent CI: 0.054–0.375) and 0.220 (95 per cent CI: 0.087–0.560),
respectively. For the subgroups of individuals with baseline CD4 count greater and less than 200, the treatment effect
was a lot better for the patients in the low CD4 group, with hazard ratios of 0.328 (95 per cent CI: 0.193–0.559) and
0.039 (95 per cent CI: 0.007–0.213), respectively.

Our estimated hazard ratio of 0.165 (0.079-0.343), when looking at the overall effect of HAART, is close to the results
of Sterne et al. [11], where the hazard ratio for HAART versus no treatment was estimated to be 0.14 (0.07–0.29). When
fitting an MSM close to the one used by Sterne et al., leaving out the IPC weights and using only the IPT weights, we
estimate the hazard ratio of HAART versus no treatment as 0.16 (95 per cent CI: 0.08–0.34), which again is close to
our effect estimate without IPC weights, 0.176 (95 per cent CI: 0.105–0.296).

The sequential Cox method also allows us to estimate the treatment effect while grouping individuals by different
levels of CD4 count at treatment start. Table II lists hazard ratios of four such analyses. The results show that there is
a greater effect on individuals with low CD4 level at treatment start, for any of the chosen cut-off values between high
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Table I. Estimated hazard ratios for HAART versus no treatment, overall and for subgroups. IPC
weights were included in all analyses unless otherwise stated. Analyses for subgroups were performed
including interaction terms for grouping indicator variables and HAART. Confidence intervals are found
using jackknife estimates.

Hazard ratio 95 per cent CI

Overall effect (without IPC weights) 0.176 0.105–0.296
Overall effect 0.165 0.079–0.343
Non-IDU 0.142 0.054–0.375
IDU 0.220 0.087–0.560
Baseline CD4 �200 0.328 0.193–0.559
Baseline CD4 <200 0.039 0.007–0.213

Table II. Estimated hazard ratios for HAART versus no treatment for different groupings of CD4
count at treatment start. Analyses were performed including interaction terms for grouping indicator
variables and HAART. Confidence intervals are found using jackknife estimates.

CD4 count at treatment start Hazard ratio 95 per cent CI

CD4 �200 0.402 0.241–0.684
CD4 <200 0.066 0.019–0.229
CD4 �350 0.445 0.239–0.870
CD4 <350 0.080 0.057–0.325
CD4 �500 0.530 0.323–2.183
CD4 <500 0.122 0.076–0.374
CD4 �750 0.695 0.095–7.435
CD4 <750 0.155 0.078–0.363

and low CD4 count at treatment start, with similar trends as for the analysis for high and low CD4 at baseline. We see
a greater effect when we lower the cut-off between the CD4 groups, and that the 95 per cent confidence intervals do
not overlap for the effect estimates in the �200 and the <200 groups.

Using the sequential Cox approach one could also analyse selected mimicked randomized controlled trials separately.
One example would be to divide into early and late treatment start, in terms of reference intervals. This was performed
choosing a cut-off between early and late treatment start at 12 months since inclusion in the study. An additional CD4
decline covariate was investigated but had no impact. The results from this analysis show that the treatment effect is
highest for the individuals with early treatment start (at observation time � 12 months), compared with individuals with
late treatment start (at observation time >12 months), with hazard ratios for HAART versus no treatment of 0.101 (95
per cent CI: 0.038–0.265) and 0.294 (95 per cent CI: 0.131–0.656).

6. Discussion

Looking at the overall effect of HAART, our results using a sequential Cox model are close to the results using an
MSM, as was done in Sterne et al. Effect estimates in sub groups, such as non-IDU, IDU, and individuals with baseline
CD4 �200 and <200, were also similar. We see that the difference between the estimated hazard ratios in models
with and without IPC weights is similar using both methods, indicating that our extra artificial censoring due to later
treatment start does not create much extra bias. Using both methods the estimated hazard ratio for HAART versus no
treatment is lower when including censoring weights, but the vast majority of the correction in both analyses is due to
time-dependent confounding.

One of the motivations behind the sequential Cox approach was to look at alternatives to IPT weighting. In the
sequential Cox method the IPT weights are avoided, partly by using artificial censoring to censor individuals (not in
treatment at the start of the mimicked trial) at later treatment start. It is to be expected that individuals with certain
covariate histories are more likely to get artificially censored due to later treatment start than others, which would make
the artificial censoring dependent on disease history. In addition, ordinary censoring could also be dependent. To adjust
for this bias, both types of dependent censoring are accounted for using IPC weighting. Note that IPC weights are more
stable than IPT weights. The problem of unstable IPT weights is based on the fact that the weights for individuals
on treatment are calculated using the inverse of the probability of starting treatment. That way, an estimated small
probability of starting treatment will give a large weight. IPC weights are only calculated using the probability of not
being censored, hence, there are usually no situations which would involve dividing by a number close to zero. Thus,
the same problem of unstable weights is not present.
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In summary, we made five main assumptions for our estimate of the treatment effect to be a causal estimate; these
are mentioned in Sections 2 and 3: (i) the chosen covariates are sufficient to adjust for confounding, (ii) the model for
estimating the hazard rate is correct, (iii) the model estimating the weights used to adjust for any dependent censoring
is correct, (iv) the effect of treatment is the same in all mimicked trials, and (v) the effect is the same for all covariate
histories before the start of the mimicked trials given covariates at the starting time. Assumptions (i)–(iii) are closely
related to the assumption of no unmeasured confounders, which generally is not testable. Assumption (iv) can be checked
or relaxed. A way to check it is to estimating separate treatment effects for individuals with different times of treatment
start. For instance, instead of assuming a constant hazard over all mimicked randomized controlled trials, we could
group individuals starting treatment early or late, as we did with a cut-off at 12 months in Section 5. The results showed
a greater effect for the individuals starting treatment early, but the estimates had wide confidence intervals. We chose
to only divide into two time intervals, one early and one late treatment group, principally to have a reasonable number
of observations in both; but one could choose different groupings or resolutions. Alternatively, assumption (iv) can be
relaxed, and the overall estimate interpreted as an aggregated effect over all the mimicked trials. By aggregated, we
mean as a kind of weighted average based on the composite likelihood.

Avoiding some of the problems associated with estimating the IPT weights could potentially lead to lesser variance
in the effect estimates. Quantifying this decrease of variance would be computationally difficult, with regards to both
fitting an MSM using IPT weights and a sequential Cox model, as weights would need to be re-estimated for each new
bootstrap sample.

Assessing sensitivity for these methods is clearly also of importance. Even though the parameter being estimated
using the sequential Cox approach is not identical to the one in an MSM, they should not intuitively be very different.
We therefore think that the general agreement between the results of our approach and those found by the MSM method
[11] strengthens the general validity of both analyses. A second important aspect concerns the issue of whether there are
unmeasured confounders. One possibility is to assume the existence of unmeasured confounders with a given amount
correlation with both treatment and outcome. The effect of this could be analysed by simulating several data sets with
such confounders and re-doing the analysis.

Using our sequential Cox approach one could end up creating a pseudo data set of considerable size. We found the
pseudo data set constructed from the Swiss HIV Cohort data to be of appropriate size after performing a minor change
in the representation of the data. Namely using only one row of data to represent successive months without covariate
change, and then marking these rows with interval start and stop times. In an unweighted analysis this would lead to
exactly the same results, but in a weighted analysis it would mean that the IPC weights for an individual are updated
less frequently. For our data, the impact of this was minimal. In general, the sequential Cox method can be applied to
constructed pseudo data sets with different resolution with regards to both data representation and interval length.

When comparing results from the sequential Cox approach and the MSM, even though the results are similar, one
should be aware that there might be certain differences in the interpretation of the effect measure being estimated.
With the sequential Cox method, we estimate the effect on the hazard (after the starting time of interval k) on starting
treatment in interval k, given the covariate history up to interval k and given that treatment has not started before.
Assuming that this effect is the same for all reference intervals we use the composite likelihood to get an estimated
causal effect from the overall effect estimate. Alternatively, we relax this assumption and interpret the overall effect
estimate as an aggregated, or weighted average, effect over all observed times of treatment start. This would not be
exactly the same as for the MSM, which estimates the marginal effect on the hazard at time t , of having started
treatment some time before t . A noticeable difference between the two methods is therefore that in the sequential
Cox method we adjust for covariates both at baseline and at the starting time of the particular constructed trial,
whereas in the MSM it is adjusted only for values at baseline. However, the opportunity to analyse how treatment
effects depend on covariates values (such as CD4 or HIV-1 RNA) at the time treatment starts could be seen as an
advantage. Analyses such as those presented in Table II, where treatment effects were estimated for different levels of
CD4 at treatment start, cannot be easily done with a MSM. Estimates of such treatment effects are very interesting
from a strategic standpoint. In two recent papers [22, 23] the issue of when to start treatment was also discussed
from a different point of view, not directly comparable to our analysis. The current discussion is whether treatment
should be started with CD4 counts above 350 or above 500, and randomized controlled trials are planned on this
subject [22].

As in most models constructed for estimating the causal effects of treatment using data from observational studies,
such as the sequential Cox method and the MSM, or other approaches such as G-estimation for Structural Nested
Models [24, 25], one can say that the underlying idea is to mimic randomized controlled trials: to simulate experiments
where there is no confounding related to treatment. The effect estimates based on such simulated experiments could be
interpreted as causal, counterfactual, effects, given some model assumptions, such as the assumption of no unmeasured
confounders. Note that the mimicked randomized controlled trials could be different, as is the case in the MSM and
the sequential Cox approach. The MSM mimics a trial where the time of treatment start is random and independent
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of any covariate history, whereas the sequential Cox model mimics a sequence of trials comparing individuals starting
treatment at a certain time with those who do not, conditioning on the covariates at that time.

Using the sequential Cox approach the construction of the mimicked randomized controlled trials is done directly and
in an intuitive way, manipulating and creating subsets of the observed data set. Sets of valid treatment and control groups
are constructed based on individuals starting treatment and individuals not on treatment in certain reference intervals.
When such sets are constructed for all observed time intervals as reference, these sets can be analysed together, resulting
in an overall effect measure. Once all the subsets of the original data are constructed, the sequential Cox method is easy
to implement in standard software, using a stratified weighted Cox analysis.
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