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Comparison of statistical methods for finding 
network motifs

Abstract: There has been much recent interest in systems biology for investigating the structure of gene regu-
latory systems. Such networks are often formed of specific patterns, or network motifs, that are interesting 
from a biological point of view. Our aim in the present paper is to compare statistical methods specifically 
with regard to the question of how well they can detect such motifs. One popular approach is by network 
analysis with Gaussian graphical models (GGMs), which are statistical models associated with undirected 
graphs, where vertices of the graph represent genes and edges indicate regulatory interactions. Gene expres-
sion microarray data allow us to observe the amount of mRNA simultaneously for a large number of genes 
p under different experimental conditions n, where p is usually much larger than n prohibiting the use of 
standard methods. We therefore compare the performance of a number of procedures that have been specifi-
cally designed to address this large p-small n issue: G-Lasso estimation, Neighbourhood selection, Shrink-
age estimation using empirical Bayes for model selection, and PC-algorithm. We found that all approaches 
performed poorly on the benchmark E. coli network. Hence we systematically studied their ability to detect 
specific network motifs, pairs, hubs and cascades, in extensive simulations. We conclude that all methods 
have difficulty detecting hubs, but the PC-algorithm is most promising.
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1  Introduction
Recent progress in molecular biology has led to an unprecedented growth in molecular data which has 
prompted interest in Systems Biology for reconstructing the structure and dynamics of biological processes 
such as gene regulatory networks (GRNs). In this context, networks are formed by specific patterns, often 
called network motifs, that are interesting from a biological point of view. These can be interpreted as the 
functional units which combine to regulate the cellular behaviour as a whole of bacterias and higher organ-
ism (Milo et al., 2002; Alon, 2007). Our aim in the present paper is to compare statistical methods specifically 
with regard to the question of how well they can detect such network structures.

Gaussian Graphical models (GGMs) have become a common tool for structural learning of GRNs (Fried-
man, 2004), and methods have been developed to deal with the situation where the number of variables p 
(genes) is large compared to the number n of observations as is very common for these kinds of data. Here, 
we specifically consider the Neighbourhood selection (Meinshausen and Bühlmann, 2006), the G-Lasso algo-
rithm (Friedman et al., 2008), the Shrinkage estimator with empirical Bayes approach for model selection 
(Schäfer and Strimmer, 2005a,b), and the PC-algorithm (Kalisch and Bühlmann, 2007). We start by compar-
ing the methods on the Escherichia coli data for which the “true” transcriptional network is known (Gama-
Castro et al., 2008) and contains some typical motif, namely two “hubs,” i.e., single genes that are highly 
connected to many other genes. As we find that all approaches performed poorly on the E. coli network, we 
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then study systematically their ability to detect GRN structures by focusing on three types of motifs, hubs, 
pairwise structures and chains.

The paper is organised as follows. Section 2 gives a brief overview of the methods compared in our study. 
Section 3 describes the performance measures used to evaluate the procedures. We present the real and syn-
thetic data as well as the results of our comparative study in Section 4 and Section 5, respectively. Finally, 
conclusions and outlook are presented in Section 6.

2  Methods

2.1  Gaussian graphical models (GGMs)

Let ( , )V E=G  be an undirected graph with a finite set of vertices V = {1, …, p} and a set of edges E⊆V × V. Its 
adjacency matrix A = {aij} has aij = aji = 1 if i, j are neighbours, i.e., if {i, j}∈E, and zero otherwise. Let XV≡X, with 
V = {1, …, p}, be a continuous random vector with joint Normal Np(μ, ∑) distribution, mean vector μ = (μ1, …, 
μp)T and a positive definite covariance matrix ∑ = {σij}, 1  ≤  i, j  ≤  p. A Gaussian graphical model (GGM) with graph 
G  is the family of normal distributions for X that satisfy the undirected Markov property with respect to G  
(Lauritzen, 1996), which means that

\{ , }
 { , } | .i j V i ji j E X X X∉ ⇒ �

Here A⊥⊥ B|C means that A is conditionally independent of B given C (Dawid, 1979). Since X∼Np(μ, ∑), it holds 
that

\{ , } \{ , }
 | 0,i j V i j ijV i jX X X ρ ⋅⇔ =�

where ρij·V/{i, j} is the partial correlation coefficient, i.e., the correlation between Xi and Xj after removing the 
linear relations with all remaining variables XV\{i, j}. The partial correlation can be expressed in terms of the 
concentration matrix where ∑–1 = Ω = {ωij} as
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(see Lauritzen, 1996, p. 130).
Given a random sample of n observations of X, a standard procedure for learning a GGM is as follows. We 

estimate ∑ by the sample covariance matrix Σ=ˆ ,S  compute its inverse S–1 as an estimate of Ω̂,  and obtain the 
sample partial correlations using (1). The graph edges are determined by those partial correlations found to 
be “large enough.” The decision could for example be based on the p(p–1)/2 statistical tests for

0 \{ , } 1 \{ , }: 0 vs : 0.ijV i j ijV i jH Hρ ρ⋅ ⋅= ≠

Here, we use the test statistic given by

\{ , }
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which has a Student’s t distribution with n–p degrees of freedom under the null hypothesis that ρij·V \{i, j} = 0 
(Lauritzen, 1996, Section 5.3.3). Due to the large number of tests, a multiple testing adjustment will usually be 
applied; here we use the false discovery rate correction (FDR) (Benjamini and Hochberg, 1995).
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The above procedure cannot be used when n < p as S will not be invertible; this has lead to the develop-
ment of alternative methods as follows.

2.2  Lasso penalisation

A general approach to the large p – small n problem is to penalise model complexity. We consider two 
approaches inspired by the Lasso method for regressions (Tibshirani, 1996): Neighbourhood selection and 
the Graphical Lasso.

2.2.1  Neighbourhood selection

The approach of Meinshausen and Bühlmann (2006) does not aim to estimate Ω itself. Instead it reconstructs 
the network using the fact that in an undirected graphical model, each variable (node) is conditionally inde-
pendent of all other variables that are not its graph neighbours, given these neighbours. For a GGM this means 
that if we linearly regress a variable on all other variables, the only ones that have non-zero coefficients are 
its neighbours. When n < p, the Lasso approach uses an l1 penalisation on the regression coefficients. More 
formally, let Xa be the vector of observations on variable a, and let X-a be the matrix of observations on all 
other variables, then the Lasso estimate θ̂a  of the regression coefficients is given by

θ λ θ−
−− +X1 2

2 1arg min || || || || ,a an X

where λ is a tuning parameter. The larger λ the sparser the solution, i.e., more zero coefficients in θ̂ .a  
 Meinshausen and Bühlmann (2006) show that choosing λ based on prediction optimality (e.g., cross- 
validation) leads to an inconsistent estimation of the neighbourhoods, and recommend to choose it larger.

The network structure is determined by the zero pattern of the coefficients. In practice (for finite samples) 
it is possible that the regression coefficient for Xa on Xb is zero while for Xb on Xa it is non-zero. This can be 
resolved in two obvious ways; here we use the AND rule, i.e., add an {a, b}–edge only if both are non-zero. 
Under the assumptions stated by Meinshausen and Bühlmann (2006) there will be no difference between the 
two rules for large n, and for appropriate choices of λ the correct neighbourhoods will be selected.

2.2.2  G-Lasso

As proposed by Friedman et al. (2008), it is also possible to estimate the concentration matrix Ω = ∑–1 itself 
using an l1 penalisation on its entries. The approach simultaneously performs (sparse) parameter estimation 
and model selection as the entries estimated to be zero can immediately be translated into the absence of 
edges in the network.

As before, inference is based on imposing a penalty term λ and using the l1–norm to estimate Ω̂,  i.e., we 
maximize the penalised log-likelihood

Ω Ω λ Ω− − 1arg max log det tr( ) || || .S

To solve the optimisation problem the blockwise coordinate descent algorithm introduced by Banerjee et al. 
(2008) is used.

The authors do not make any suggestion for the selection of λ, but they make two important remarks. 
First, setting λ = 0 the algorithm computes the maximum likelihood estimator S–1 (if it exists) using a linear 
regression at each stage. Second, the penalty term can be either a scalar or a matrix, the latter allows us to 
penalize each inverse covariance element by a different amount.
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The G-Lasso appears to be better targeted at the problem than the above Neighbourhood selection. 
However, as explained in Meinshausen (2008), it is in fact not consistent for some graphs, regardless of the 
choice of λ. We therefore include both methods in our comparison. The size of λ across the two Lasso methods 
is not comparable as it penalises different types of quantities, regression parameters in the Neighbourhood 
selection case, and elements of the inverse covariance in the G-Lasso case.

2.3  Shrinkage estimation and empirical Bayes approach

An alternative approach is to find an estimator of ∑ that can be inverted even when p > n. Schäfer and Strim-
mer (2005a,b) propose to shrink the empirical (unbiased) covariance estimator S towards an invertible (but 
possibly biased) estimator T. The weighted shrinkage estimator S* for the covariance matrix is given by

* (1 ) ,S T Sλ λ= + −

where the shrinkage parameter λ is obtained by minimizing a risk function, e.g., the MSE, and depends on 
the covariance target T (see Schäfer and Strimmer, 2005b, Table 2, for different choices of T and the relative 
values of λ).

The model selection procedure, i.e., the decision of which partial correlations ρij·V \{i, j} are “close” to zero, is 
based on an empirical Bayes approach. Their assumed distribution across edges which is taken as the mixture

ρ η ρ η ρ= + −0 0 0( ) ( ; ) (1 ) ( ),Af f k f

where ρ is a place-holder for the partial correlations. Here, f0 is the null distribution [see Hotelling (1953)], while 
~ ( 1,1)Af −U  is assumed to be the distribution of observed partial correlations, k is the degrees of freedom, 

and η0 is the (unknown) proportion of missing edges. Fitting this mixture distribution to the observed partial 
correlation coefficients allows us to infer the parameters η0ˆ  and ˆ.k  It is then straightforward to compute two-
sided p-values for all edges using the null distribution f0 with k̂  as plug-in estimate. In our comparison, we 
will use the shrinkage estimator with “diagonal-unequal variance” target matrix T, i.e., tij = sii if i = j, and tij = 0 if 
i≠j, and then we apply the above empirical Bayes approach to determine the graph.

For the tests involved in the shrinkage approach (as well as MLE where applicable), we use the false 
discovery rate correction (FDR) (Benjamini and Hochberg, 1995) at overall level α to correct for the multiple 
testing problem. When we present a single result we use FDR α = 0.05. The FDR decision rule requires also 
specification of the fraction of true non-edges η0. For the E. coli data, we set η0 equal to the number of non-
edges derived from the benchmark transcriptional network. For the simulated data, we set η0 equal to the true 
number of non-edges for each synthetic network. This provides a slight advantage as the true values would 
not be known in practice.

2.4  PC-algorithm

In contrast to the previous methods, the PC-algorithm aims to find a directed acyclic graph (DAGs) rather than 
an undirected graph (Spirtes and Glymour, 1991). The PC-algorithm starts with a complete undirected graph 
and successively deletes edges based on conditional independence decisions, resulting in an undirected 
graph (the skeleton) which can then be partially oriented and extended to an equivalence class of DAGs. 
Among others, this procedure assumes that the true distribution is “faithful” to some DAG, which means 
that all conditional independencies correspond to separations found in this DAG. Violations could occur if 
for instance positive and negative correlations via different paths cancel each other out which is generally 
regarded as unlikely in practice.

All statistical inference is carried out when the algorithm establishes the skeleton by testing marginal 
independencies, then conditional independencies given a set of size one, then the size of the conditioning 
sets is increased in each step. One can show that for the conditioning set it is sufficient to consider the set of 
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Table 1 (A) Table for classification of edges. (B) Performance measures for the evaluation of the methods.

 
 

True graph

Edges   Non-edges

Estimated edges   Tp   Fp
Estimated non-edges  Fn   Tn

  P = (Tp+Fn)   N = (Fp+Tn)

 (A) (B)

 

Precision rate   Prec = Tp/(Tp+Fp).
True Positive rate (recall)   Tpr = Tp/P.
Accuracy   Acc = (Tp+Tn)/(P+N).
Error rate   Err = (Fp+Fn)/(P+N).
False Positive rate   Fpr = Fp/N.
False Negative rate   Fnr = Fn/P.
True Negative rate   Tnr = Tn/N.

current adjacent nodes for any given node. The rationale of using the PC-algorithm when p > n is that if the 
true graph is sparse, then the separating sets between any two nodes are small so that the algorithm can stop 
early without considering conditioning sets of arbitrary size.

Due to the changing conditioning sets, it is useful that the partial correlations are recursively related as 
follows, where we assume that the partial correlations without variable h are already known,

ρ ρ ρ
ρ

ρ ρ

⋅ ⋅ ⋅
⋅

⋅ ⋅

−
=

− −
\ \ \

2 2
\ \

,
(1 )(1 )

ij h ih h jh h
ij

ih h jh h

k k k
k

k k

for some h∈k, with k⊆V\{i, j}. Kalisch and Bühlmann (2007) apply Fisher’s z-transform

ρ

ρ
⋅

⋅

 +
 ⋅ =  − 

ˆ11( ) log
ˆ2 1

ij

ij

Z ij k

k

k

to the estimated partial correlation coefficients obtaining a suitable test statistic. Using the nominal signifi-
cance level α, the null hypothesis H0(ij·k):ρij·k = 0 against the two-sided alternative H1(ij·k):ρij·k≠0 is rejected 
if Φ α−− − ⋅ −1| | 3 | ( ) |> (1 / 2).n Z ijk k  Due to the indirect way the PC-algorithm produces the final graph, it is 
difficult to adjust the nominal significance level α so as to obtain a given overall error probability.

In our comparative study, we consider three different undirected graphical structures (motifs), all of 
which are equivalent to some DAG. However, the estimated DAG may not be equivalent to an undirected 
graph, so that, to ensure a fair comparison, we moralise the estimated DAG by (i) adding an undirected edge 
between every pair of non-adjacent vertices that have a common child and (ii) turning all directed edges into 
undirected edges (Lauritzen, 1996, p. 7). In practice the true graph is unknown and the appropriate undi-
rected graph to be compared with the other methods is then the moralised output of the PC-algorithm. In 
general one does not know the true structure so that a DAG itself may or may not be more appropriate than 
an undirected graph.

3  Performance measures
In order to evaluate the above approaches, we classify the edges for each method as: True positive (Tp), True 
negative (Tn), False positive (Fp), and False negative (Fn) (Table 1A). Based on the resulting frequencies we 
calculate the quantities in Table 1B. For our simulation study we repeat this 2000 times for p = 20 and 100 
times for p = 100, 200. As we specifically want to investigate the ability of the methods to detect different 
motifs, we must take into account not so much whether the Fpr is low, but whether the false positive edges are 
systematically false as this can hide a motif. Therefore we focus here on adjacency plots and Precision-Recall 
(PR) curves as summaries of the above measures.

An adjacency matrix can easily be visualised with black points indicating edges; Figures 1 and 5 show 
these for the E. coli data and the true simulation settings, respectively. For the actual simulations, we use the 
gray intensity to represent the proportion of times a given method has found an edge over all the replications 
(black = 100%, white = 0%).
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For the interpretation of PR curves one can regard the recall as an estimate of the probability that a true 
edge is indeed detected by a given method, while its precision is the probability that an estimated edge is 
indeed true. The ideal PR curve has a precision of one for recall between zero and one and then drops steeply 
to the proportion of true edges P/(P+N) when recall tends towards one. To determine such curve for our 
methods we obtain different recall values by varying the tuning parameters, i.e., the levels α (for MLE, Shrink-
age, and PC-algorithm), and the penalty parameters λ (for Neighbourhood selection and G-Lasso). Further, 
for the Lasso methods and the PC-algorithm, similar recall values are grouped together and the average preci-
sion is plotted. This is necessary, because we need to re-estimate the concentration matrices (or the graph) 
for different values of the tuning parameters, whereas with MLE and Shrinkage estimation the threshold can 
be varied using a single estimate of this matrix. We use PR curves instead of the well-known ROC curves since 
the latter are based on the true positive rate (sensitivity/recall) and false positive rate (1-specificity). With 
sparse graphs it is not of much interest to consider settings where the false positive rate gets large because 
the denominator N is very large and it requires unreasonable values of the tuning parameters to make the 
numerator large (but see supplementary material, Appendices B and G).

The implementation of the methods we compare uses the following R packages: “ggm” for the MLE, 
“glasso” for Neighbourhood Selection and G-Lasso, “GeneNet” and “fdrtool” for Shrinkage estimation and 
FDR adjustment, and finally “pcalg” for the PC-algorithm. The synthetic data was created with “mvtnorm”. 
PR-curves were computed using the R package “ROCR” (Sing et al., 2005).

14

14 28 42 56 70 84

28

42

56

70

84

Figure 1 The benchmark adjacency matrix for E. coli data with 100 genes.

Table 2 Performance measures for E. coli data for selected values of tuning parameters.

λ Tpr Prec. Acc. Err. Fpr Fnr Tnr
5e-05 0.6953 0.0334 0.4719 0.5281 0.5340 0.3046 0.4659
0.005 0.1796 0.0594 0.9052 0.0947 0.0755 0.8203 0.9245

0.2 0.0234 0.1034 0.9695 0.0305 0.0054 0.9765 0.9946
0.4 0.0234 0.1667 0.9717 0.0283 0.0031 0.9766 0.9969
0.5 0.0078 0.0667 0.9715 0.0285 0.0029 0.9922 0.9971
0.8 0.0000 0.0000 0.9721 0.0279 0.0021 1.0000 0.9979

(A)  Neighbourhood selection

λ Tpr Prec. Acc. Err. Fpr Fnr Tnr
5e-05 0.8828 0.0319 0.3050 0.6949 0.7102 0.1171 0.2897
0.005 0.6406 0.0486 0.6667 0.3333 0.3326 0.3593 0.6673

0.2 0.1640 0.0245 0.8099 0.1901 0.1729 0.8359 0.8270
0.4 0.1250 0.0216 0.8309 0.1691 0.1504 0.8750 0.8497
0.5 0.1250 0.0234 0.8430 0.1569 0.1379 0.8750 0.8620
0.8 0.0468 0.0124 0.8789 0.1210 0.0989 0.9531 0.9010

 (B)  G–Lasso

α Tpr Prec. Acc. Err. Fpr Fnr Tnr
1e-08 0.0078 0.0322 0.9682 0.0317 0.0062 0.9921 0.9937
1e-05 0.0156 0.0465 0.9662 0.0337 0.0085 0.9843 0.9914
0.001 0.0312 0.0655 0.9634 0.0365 0.0118 0.9687 0.9881
0.05 0.0390 0.0454 0.9539 0.0460 0.0217 0.9609 0.9782
0.1 0.0468 0.0441 0.9490 0.0509 0.0269 0.9531 0.9730

(C)  PC–Algorithm

Tpr 0.0625
Precision 0.1142
Accuracy 0.9632

Error Rate 0.0367
Fpr 0.0128
Fnr 0.9375
Tnr 0.9871

(D)  Shrinkage

Brought to you by | University of Bristol
Authenticated

Download Date | 9/28/15 12:49 PM



V. Albieri and V. Didelez: Statistical methods for network motifs      409

Neighbourhood selection (λ=0.4)

14

14
A B

C D

28

28

42

42

56

56

70

70

84

14

28

42

56

70

84

14

28

42

56

70

84

14

28

42

56

70

84

84

14 28 42 56 70 84 14 28 42 56 70 84

14 28 42 56 70 84

G–Lasso (λ=0.005)

PC–Algorithm (α=0.001) Shrinkage (emp.Bayes)

Figure 2 Plot of adjacency matrices for E. coli data. Tuning parameters were chosen to maximise the precision of each method.
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Figure 3 Precision-Recall curves for E. coli data: dotted for G-Lasso, solid for Neighbourhood selection, and dotdash for Shrink-
age estimator. Note that no curve for the PC-algorithm is given as the range of its recall values is too small.
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4  Comparison using Escherichia coli data

4.1  Escherichia coli data

We consider the microarray data of Escherichia coli (E. coli) provided by the EcoliOxygen data file in the R 
package “qpgraph” (Castelo and Roverato, 2009). The data are from n = 43 experiments of various mutants 
under oxygen deprivation (Covert et  al., 2004) [downloaded from the Gene Expression Omnibus (Barrett 
et al., 2007) with accession GDS680]. The mutants were designed to monitor the response from E. coli during 
an oxygen shift in order to target the a priori most relevant part of the transcriptional network. In addition, 
the EcoliOxygen data file contains the E. coli transcriptional network from RegulonDB (Gama-Castro et al., 
2008). This is a database that collects the available experimental data on regulatory interactions between 
transcription factor (TF) and their target genes (TG) in E. coli.

We obtained our “gold-standard network” by following the instructions of Castelo and Roverato (2009): 
filter the expression profile data in EcoliOxygen retaining only those genes forming part of the RegulonDB 
regulatory modules of the five knocked-out transcription factors. This results in a reduction to p = 378 genes 
involved in only 681 interactions out of 71,253 interactions in the complete network. For simplicity, we further 
reduced the data set by retaining only those 100 genes with largest variability, in terms of expression profile, 
measured by the interquartile range. Hence, our final E. coli data set has p = 100 and n = 43, with 128 interac-
tions (edges) out of a possible 4950 interactions in the complete network, i.e., P/(P+N) = 2.6%. Figure 1 shows 
the resulting “gold-standard” adjacency matrix of the network.

4.2  Results of the analysis with E. coli data

From Table 2, Figures 2 and 3 it is clear that none of the methods recover interesting aspects of the benchmark 
network correctly (further plots are given in supplementary material, Appendix A). Based on the PR-curves 
one could say that the Shrinkage approach performs best, but it is not much better than random guessing.

The true network is mainly formed by two hub motifs, i.e., two genes that have a high number of interac-
tions with others genes. This particular structure could be an explanation for the poor performance of the 
four methods. Indeed, this structure violates the definition of sparseness used in almost all structural learn-
ing algorithms where every gene is expected to have only few interactions with others genes. However, one 
has to keep in mind as alternative explanations for the disappointing performances that what we use as the 
benchmark network may not in fact be the true network, or that the assumptions of a GGM are not suitable 
in this application.

Hub

A B C

Cascade Pairwise

Figure 4 Network motifs under study.
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5  Comparative study with synthetic data

5.1  Synthetic data

For the generation of the synthetic data, we take into consideration both the information on the network struc-
ture obtained previously from the E. coli data and other network motifs that have been found of interest (Milo 
et al., 2002; Alon, 2007). Hence, we generated synthetic data based on three types of motifs: hub structure, 
cascade structure, and pairwise structure (Figure 4). The hub (a) is a common type of network motif in a gene 
regulatory network, but it is also one of the most difficult structures to be discovered by structural learning 
algorithms. Indeed, an upper bound on the number of neighbours of any vertex is commonly assumed which 
excludes the presence of hubs from the network. The cascade (b) is represented by a sequence of interactions 
between genes, in which every gene has at least one and at most two connections. Finally, the pairwise struc-
ture (c) refers to the simple case where only pairs of genes are connected. For interpretation, it is important to 
underline a statistical particularity of this last structure: the marginal independencies coincide with the con-
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Figure 5 Plot of the true adjacency matrix for the synthetic data.

Brought to you by | University of Bristol
Authenticated

Download Date | 9/28/15 12:49 PM



412      V. Albieri and V. Didelez: Statistical methods for network motifs

Ta
bl

e 
3 

Si
m

ul
at

io
n 

re
su

lts
 fo

r N
ei

gh
bo

ur
ho

od
 s

el
ec

tio
n 

(n
 = 1

50
 th

ro
ug

ho
ut

).

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
1.

00
00

0.
05

32
0.

06
26

0.
93

74
0.

98
94

0.
00

00
0.

01
06

0.
00

5
1.

00
00

0.
05

84
0.

15
14

0.
84

86
0.

89
58

0.
00

00
0.

10
42

0.
05

1.
00

00
0.

17
18

0.
74

33
0.

25
67

0.
27

10
0.

00
00

0.
72

90
0.

1
1.

00
00

0.
48

29
0.

94
11

0.
05

89
0.

06
22

0.
00

00
0.

93
78

0.
2

1.
00

00
0.

97
86

0.
99

87
0.

00
13

0.
00

13
0.

00
00

0.
99

87
0.

3
0.

99
93

0.
99

98
1.

00
00

0.
00

00
0.

00
00

0.
00

07
1.

00
00

0.
4

0.
97

69
1.

00
00

0.
99

88
0.

00
12

0.
00

00
0.

02
31

1.
00

00
0.

5
0.

80
52

1.
00

00
0.

98
97

0.
01

03
0.

00
00

0.
19

48
1.

00
00

0.
6

0.
41

22
0.

99
45

0.
96

91
0.

03
09

0.
00

00
0.

58
78

1.
00

00
0.

7
0.

10
96

0.
68

60
0.

95
31

0.
04

69
0.

00
00

0.
89

04
1.

00
00

0.
8

0.
01

39
0.

12
90

0.
94

81
0.

05
19

0.
00

00
0.

98
62

1.
00

00
0.

9
0.

00
10

0.
01

05
0.

94
74

0.
05

26
0.

00
00

0.
99

90
1.

00
00

1
0.

00
01

0.
00

10
0.

94
74

0.
05

26
0.

00
00

0.
99

99
1.

00
00

1.
1

0.
00

00
N

aN
0.

94
74

0.
05

26
0.

00
00

1.
00

00
1.

00
00

(A
) 

 P
ai

rw
is

e 
(p

=
20

)
(B

) 
 H

ub
 (

p=
20

)
(C

) 
 C

as
ca

de
 (

p=
20

)

(D
) 

 P
ai

rw
is

e 
(p

=
10

0)
(E

) 
 H

ub
 (

p=
10

0)
(F

) 
 C

as
ca

de
 (

p=
10

0)

(G
) 

 P
ai

rw
is

e 
(p

=
20

0)
(H

) 
 H

ub
 (

p=
20

0)
(I

) 
 C

as
ca

de
 (

p=
20

0)

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
0.

99
96

0.
06

64
0.

25
91

0.
74

09
0.

78
20

0.
00

04
0.

21
80

0.
00

5
0.

99
96

0.
12

57
0.

63
27

0.
36

73
0.

38
77

0.
00

04
0.

61
23

0.
05

0.
84

17
0.

21
95

0.
83

14
0.

16
86

0.
16

92
0.

15
83

0.
83

08
0.

1
0.

58
79

0.
28

29
0.

89
51

0.
10

49
0.

08
79

0.
41

21
0.

91
21

0.
2

0.
26

24
0.

31
40

0.
92

73
0.

07
27

0.
03

58
0.

73
77

0.
96

42
0.

3
0.

12
22

0.
24

23
0.

93
18

0.
06

82
0.

02
32

0.
87

78
0.

97
68

0.
4

0.
06

58
0.

18
30

0.
93

48
0.

06
52

0.
01

70
0.

93
42

0.
98

30
0.

5
0.

03
90

0.
13

99
0.

93
70

0.
06

30
0.

01
31

0.
96

10
0.

98
69

0.
6

0.
02

43
0.

11
06

0.
93

86
0.

06
14

0.
01

06
0.

97
57

0.
98

94
0.

7
0.

01
63

0.
08

98
0.

94
00

0.
06

00
0.

00
86

0.
98

37
0.

99
14

0.
8

0.
01

18
0.

07
53

0.
94

12
0.

05
88

0.
00

72
0.

98
82

0.
99

28
0.

9
0.

00
79

0.
05

92
0.

94
28

0.
05

72
0.

00
52

0.
99

21
0.

99
48

1
0.

00
40

0.
03

49
0.

94
47

0.
05

53
0.

00
30

0.
99

60
0.

99
70

1.
1

0.
00

17
0.

01
41

0.
94

63
0.

05
37

0.
00

12
0.

99
84

0.
99

88

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
1.

00
00

0.
07

61
0.

35
99

0.
64

01
0.

67
57

0.
00

00
0.

32
43

0.
00

5
1.

00
00

0.
18

01
0.

75
93

0.
24

07
0.

25
40

0.
00

00
0.

74
60

0.
05

1.
00

00
0.

33
21

0.
89

23
0.

10
77

0.
11

36
0.

00
00

0.
88

64
0.

1
0.

97
81

0.
53

59
0.

95
24

0.
04

76
0.

04
90

0.
02

19
0.

95
10

0.
2

0.
76

91
0.

84
61

0.
97

99
0.

02
01

0.
00

84
0.

23
09

0.
99

16
0.

3
0.

55
76

0.
89

28
0.

97
27

0.
02

73
0.

00
43

0.
44

24
0.

99
57

0.
4

0.
41

63
0.

89
92

0.
96

63
0.

03
37

0.
00

32
0.

58
37

0.
99

68
0.

5
0.

31
73

0.
90

32
0.

96
18

0.
03

82
0.

00
24

0.
68

26
0.

99
76

0.
6

0.
25

11
0.

90
24

0.
95

87
0.

04
13

0.
00

20
0.

74
88

0.
99

80
0.

7
0.

20
17

0.
89

79
0.

95
65

0.
04

35
0.

00
16

0.
79

83
0.

99
84

0.
8

0.
16

39
0.

86
87

0.
95

48
0.

04
52

0.
00

12
0.

83
61

0.
99

88
0.

9
0.

11
82

0.
73

77
0.

95
28

0.
04

72
0.

00
09

0.
88

18
0.

99
91

1
0.

06
56

0.
44

30
0.

95
03

0.
04

97
0.

00
05

0.
93

44
0.

99
95

1.
1

0.
02

50
0.

18
53

0.
94

85
0.

05
15

0.
00

02
0.

97
51

0.
99

98

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
1.

00
00

0.
01

03
0.

02
89

0.
97

11
0.

98
11

0.
00

00
0.

01
89

0.
00

5
1.

00
00

0.
01

22
0.

18
26

0.
81

74
0.

82
58

0.
00

00
0.

17
42

0.
05

1.
00

00
0.

04
67

0.
79

36
0.

20
64

0.
20

85
0.

00
00

0.
79

15
0.

1
1.

00
00

0.
16

40
0.

94
83

0.
05

17
0.

05
22

0.
00

00
0.

94
78

0.
2

1.
00

00
0.

89
14

0.
99

87
0.

00
13

0.
00

13
0.

00
00

0.
99

87
0.

3
0.

99
98

0.
99

90
1.

00
00

0.
00

00
0.

00
00

0.
00

02
1.

00
00

0.
4

0.
98

04
1.

00
00

0.
99

98
0.

00
02

0.
00

00
0.

01
96

1.
00

00
0.

5
0.

79
76

1.
00

00
0.

99
80

0.
00

20
0.

00
00

0.
20

24
1.

00
00

0.
6

0.
40

72
1.

00
00

0.
99

40
0.

00
60

0.
00

00
0.

59
28

1.
00

00
0.

7
0.

10
92

1.
00

00
0.

99
10

0.
00

90
0.

00
00

0.
89

08
1.

00
00

0.
8

0.
01

38
0.

45
00

0.
99

00
0.

01
00

0.
00

00
0.

98
62

1.
00

00
0.

9
0.

00
16

0.
08

00
0.

98
99

0.
01

01
0.

00
00

0.
99

84
1.

00
00

1
0.

00
02

0.
01

00
0.

98
99

0.
01

01
0.

00
00

0.
99

98
1.

00
00

1.
1

0.
00

00
N

aN
0.

98
99

0.
01

01
0.

00
00

1.
00

00
1.

00
00

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
1.

00
00

0.
22

70
0.

93
73

0.
06

27
0.

06
39

0.
00

00
0.

93
61

0.
00

5
0.

99
97

0.
31

33
0.

95
97

0.
04

03
0.

04
11

0.
00

03
0.

95
89

0.
05

0.
83

77
0.

42
12

0.
97

57
0.

02
43

0.
02

17
0.

16
23

0.
97

83
0.

1
0.

59
10

0.
41

90
0.

97
72

0.
02

28
0.

01
56

0.
40

90
0.

98
44

0.
2

0.
26

64
0.

31
32

0.
97

56
0.

02
44

0.
01

11
0.

73
36

0.
98

89
0.

3
0.

12
34

0.
22

41
0.

97
59

0.
02

41
0.

00
81

0.
87

66
0.

99
19

0.
4

0.
06

26
0.

16
28

0.
97

69
0.

02
31

0.
00

60
0.

93
74

0.
99

40
0.

5
0.

03
52

0.
12

43
0.

97
77

0.
02

23
0.

00
46

0.
96

48
0.

99
54

0.
6

0.
02

26
0.

10
14

0.
97

84
0.

02
16

0.
00

37
0.

97
74

0.
99

63
0.

7
0.

01
45

0.
08

22
0.

97
89

0.
02

11
0.

00
30

0.
98

55
0.

99
70

0.
8

0.
00

90
0.

06
48

0.
97

94
0.

02
06

0.
00

24
0.

99
10

0.
99

76
0.

9
0.

00
64

0.
06

40
0.

98
00

0.
02

00
0.

00
18

0.
99

36
0.

99
82

1
0.

00
30

0.
04

94
0.

98
07

0.
01

93
0.

00
10

0.
99

70
0.

99
90

1.
1

0.
00

08
0.

02
39

0.
98

13
0.

01
87

0.
00

04
0.

99
92

0.
99

96

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
1.

00
00

0.
41

40
0.

97
39

0.
02

61
0.

02
66

0.
00

00
0.

97
34

0.
00

5
1.

00
00

0.
65

17
0.

99
01

0.
00

99
0.

01
01

0.
00

00
0.

98
99

0.
05

0.
99

99
0.

84
00

0.
99

65
0.

00
35

0.
00

36
0.

00
01

0.
99

64
0.

1
0.

97
66

0.
88

21
0.

99
72

0.
00

28
0.

00
25

0.
02

34
0.

99
75

0.
2

0.
76

52
0.

88
54

0.
99

38
0.

00
62

0.
00

19
0.

23
48

0.
99

81
0.

3
0.

56
25

0.
87

89
0.

99
05

0.
00

95
0.

00
15

0.
43

75
0.

99
85

0.
4

0.
42

08
0.

87
85

0.
98

83
0.

01
17

0.
00

11
0.

57
92

0.
99

89
0.

5
0.

32
46

0.
88

26
0.

98
68

0.
01

32
0.

00
08

0.
67

54
0.

99
92

0.
6

0.
25

65
0.

88
20

0.
98

57
0.

01
43

0.
00

07
0.

74
35

0.
99

93
0.

7
0.

20
46

0.
87

89
0.

98
49

0.
01

51
0.

00
05

0.
79

54
0.

99
95

0.
8

0.
16

42
0.

87
61

0.
98

42
0.

01
58

0.
00

04
0.

83
58

0.
99

96
0.

9
0.

12
13

0.
86

79
0.

98
35

0.
01

65
0.

00
03

0.
87

87
0.

99
97

1
0.

07
05

0.
88

88
0.

98
27

0.
01

73
0.

00
02

0.
92

95
0.

99
98

1.
1

0.
02

57
0.

84
80

0.
98

20
0.

01
80

0.
00

01
0.

97
43

0.
99

99

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
0.

99
95

0.
00

82
0.

39
02

0.
60

98
0.

61
29

0.
00

05
0.

38
71

0.
00

5
1.

00
00

0.
00

97
0.

48
81

0.
51

19
0.

51
45

0.
00

00
0.

48
55

0.
05

1.
00

00
0.

03
23

0.
84

96
0.

15
04

0.
15

12
0.

00
00

0.
84

88
0.

1
1.

00
00

0.
10

45
0.

95
69

0.
04

31
0.

04
33

0.
00

00
0.

95
67

0.
2

1.
00

00
0.

80
02

0.
99

87
0.

00
13

0.
00

13
0.

00
00

0.
99

87
0.

3
0.

99
95

0.
99

75
1.

00
00

0.
00

00
0.

00
00

0.
00

05
1.

00
00

0.
4

0.
97

61
0.

99
99

0.
99

99
0.

00
01

0.
00

00
0.

02
39

1.
00

00
0.

5
0.

79
69

1.
00

00
0.

99
90

0.
00

10
0.

00
00

0.
20

31
1.

00
00

0.
6

0.
40

52
1.

00
00

0.
99

70
0.

00
30

0.
00

00
0.

59
48

1.
00

00
0.

7
0.

10
47

1.
00

00
0.

99
55

0.
00

45
0.

00
00

0.
89

53
1.

00
00

0.
8

0.
01

25
0.

73
00

0.
99

50
0.

00
50

0.
00

00
0.

98
75

1.
00

00
0.

9
0.

00
10

0.
10

00
0.

99
50

0.
00

50
0.

00
00

0.
99

90
1.

00
00

1
0.

00
00

N
aN

0.
99

50
0.

00
50

0.
00

00
1.

00
00

1.
00

00
1.

1
0.

00
00

N
aN

0.
99

50
0.

00
50

0.
00

00
1.

00
00

1.
00

00

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
0.

99
96

0.
17

75
0.

95
76

0.
04

24
0.

04
28

0.
00

04
0.

95
72

0.
00

5
0.

99
97

0.
30

64
0.

97
93

0.
02

07
0.

02
09

0.
00

03
0.

97
91

0.
05

0.
83

67
0.

41
84

0.
98

78
0.

01
22

0.
01

08
0.

16
33

0.
98

92
0.

1
0.

57
96

0.
40

79
0.

98
84

0.
01

16
0.

00
78

0.
42

04
0.

99
22

0.
2

0.
25

91
0.

30
85

0.
98

79
0.

01
21

0.
00

54
0.

74
09

0.
99

46
0.

3
0.

12
61

0.
23

16
0.

98
82

0.
01

18
0.

00
39

0.
87

39
0.

99
61

0.
4

0.
06

75
0.

17
80

0.
98

86
0.

01
14

0.
00

29
0.

93
25

0.
99

71
0.

5
0.

04
09

0.
14

55
0.

98
91

0.
01

09
0.

00
22

0.
95

91
0.

99
78

0.
6

0.
02

62
0.

12
04

0.
98

94
0.

01
06

0.
00

17
0.

97
38

0.
99

83
0.

7
0.

01
85

0.
10

59
0.

98
96

0.
01

04
0.

00
14

0.
98

15
0.

99
86

0.
8

0.
01

28
0.

09
11

0.
98

98
0.

01
02

0.
00

12
0.

98
72

0.
99

88
0.

9
0.

00
78

0.
07

47
0.

99
01

0.
00

99
0.

00
09

0.
99

22
0.

99
91

1
0.

00
42

0.
07

17
0.

99
04

0.
00

96
0.

00
05

0.
99

58
0.

99
95

1.
1

0.
00

15
0.

08
53

0.
99

07
0.

00
93

0.
00

02
0.

99
85

0.
99

98

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

5e
-0

4
1.

00
00

0.
30

71
0.

97
93

0.
02

07
0.

02
08

0.
00

00
0.

97
92

0.
00

5
1.

00
00

0.
64

04
0.

99
48

0.
00

52
0.

00
52

0.
00

00
0.

99
48

0.
05

0.
99

97
0.

83
64

0.
99

82
0.

00
18

0.
00

18
0.

00
03

0.
99

82
0.

1
0.

97
58

0.
88

21
0.

99
86

0.
00

14
0.

00
12

0.
02

42
0.

99
88

0.
2

0.
76

96
0.

88
74

0.
99

70
0.

00
30

0.
00

09
0.

23
04

0.
99

91
0.

3
0.

55
89

0.
88

55
0.

99
53

0.
00

47
0.

00
07

0.
44

11
0.

99
93

0.
4

0.
41

32
0.

88
32

0.
99

41
0.

00
59

0.
00

05
0.

58
68

0.
99

95
0.

5
0.

31
82

0.
88

18
0.

99
34

0.
00

66
0.

00
04

0.
68

18
0.

99
96

0.
6

0.
24

99
0.

87
86

0.
99

28
0.

00
72

0.
00

03
0.

75
01

0.
99

97
0.

7
0.

19
98

0.
87

71
0.

99
24

0.
00

76
0.

00
03

0.
80

02
0.

99
97

0.
8

0.
15

92
0.

87
33

0.
99

21
0.

00
79

0.
00

02
0.

84
08

0.
99

98
0.

9
0.

11
42

0.
86

57
0.

99
17

0.
00

83
0.

00
02

0.
88

58
0.

99
98

1
0.

06
50

0.
87

05
0.

99
14

0.
00

86
0.

00
01

0.
93

50
0.

99
99

1.
1

0.
02

43
0.

86
94

0.
99

10
0.

00
90

0.
00

00
0.

97
57

1.
00

00

Brought to you by | University of Bristol
Authenticated

Download Date | 9/28/15 12:49 PM



V. Albieri and V. Didelez: Statistical methods for network motifs      413

Ta
bl

e 
4 

Si
m

ul
at

io
n 

re
su

lts
 fo

r G
-L

as
so

 a
lg

or
ith

m
 (n

 = 1
50

 th
ro

ug
ho

ut
).

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

11
46

0.
59

10
0.

40
90

0.
43

17
0.

00
00

0.
56

83
0.

1
1.

00
00

0.
24

11
0.

83
07

0.
16

93
0.

17
87

0.
00

00
0.

82
13

0.
2

1.
00

00
0.

81
46

0.
98

68
0.

01
32

0.
01

39
0.

00
00

0.
98

61
0.

3
0.

99
93

0.
99

51
0.

99
97

0.
00

03
0.

00
03

0.
00

07
0.

99
97

0.
4

0.
97

69
1.

00
00

0.
99

88
0.

00
12

0.
00

00
0.

02
31

1.
00

00
0.

5
0.

80
52

1.
00

00
0.

98
97

0.
01

03
0.

00
00

0.
19

48
1.

00
00

0.
6

0.
41

22
0.

99
45

0.
96

91
0.

03
09

0.
00

00
0.

58
78

1.
00

00
0.

7
0.

10
96

0.
68

60
0.

95
31

0.
04

69
0.

00
00

0.
89

04
1.

00
00

0.
8

0.
01

39
0.

12
90

0.
94

81
0.

05
19

0.
00

00
0.

98
62

1.
00

00
0.

9
0.

00
10

0.
01

05
0.

94
74

0.
05

26
0.

00
00

0.
99

90
1.

00
00

1
0.

00
01

0.
00

10
0.

94
74

0.
05

26
0.

00
00

0.
99

99
1.

00
00

1.
1

0.
00

00
N

aN
0.

94
74

0.
05

26
0.

00
00

1.
00

00
1.

00
00

1.
2

0.
00

00
N

aN
0.

94
74

0.
05

26
0.

00
00

1.
00

00
1.

00
00

1.
3

0.
00

00
N

aN
0.

94
74

0.
05

26
0.

00
00

1.
00

00
1.

00
00

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

11
30

0.
58

44
0.

41
56

0.
43

87
0.

00
00

0.
56

13
0.

1
1.

00
00

0.
14

22
0.

67
97

0.
32

03
0.

33
81

0.
00

00
0.

66
19

0.
2

1.
00

00
0.

17
81

0.
75

68
0.

24
32

0.
25

67
0.

00
00

0.
74

33
0.

3
1.

00
00

0.
18

17
0.

76
30

0.
23

70
0.

25
02

0.
00

00
0.

74
98

0.
4

1.
00

00
0.

18
18

0.
76

32
0.

23
68

0.
25

00
0.

00
00

0.
75

00
0.

5
1.

00
00

0.
18

18
0.

76
32

0.
23

68
0.

25
00

0.
00

00
0.

75
00

0.
6

1.
00

00
0.

18
18

0.
76

32
0.

23
68

0.
25

00
0.

00
00

0.
75

00
0.

7
0.

99
95

0.
18

17
0.

76
33

0.
23

67
0.

24
99

0.
00

05
0.

75
01

0.
8

0.
96

50
0.

17
65

0.
76

99
0.

23
01

0.
24

10
0.

03
49

0.
75

90
0.

9
0.

78
87

0.
14

78
0.

80
32

0.
19

69
0.

19
60

0.
21

14
0.

80
40

1
0.

47
34

0.
09

09
0.

86
11

0.
13

89
0.

11
74

0.
52

66
0.

88
26

1.
1

0.
18

08
0.

03
73

0.
91

48
0.

08
52

0.
04

44
0.

81
92

0.
95

56
1.

2
0.

05
30

0.
01

13
0.

93
79

0.
06

21
0.

01
29

0.
94

70
0.

98
71

1.
3

0.
00

94
0.

00
20

0.
94

57
0.

05
43

0.
00

23
0.

99
05

0.
99

77

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

11
34

0.
58

64
0.

41
36

0.
43

66
0.

00
00

0.
56

34
0.

1
1.

00
00

0.
14

29
0.

68
20

0.
31

80
0.

33
56

0.
00

00
0.

66
44

0.
2

1.
00

00
0.

17
82

0.
75

70
0.

24
30

0.
25

65
0.

00
00

0.
74

35
0.

3
1.

00
00

0.
18

17
0.

76
30

0.
23

70
0.

25
02

0.
00

00
0.

74
98

0.
4

1.
00

00
0.

18
18

0.
76

32
0.

23
68

0.
25

00
0.

00
00

0.
75

00
0.

5
1.

00
00

0.
18

18
0.

76
32

0.
23

68
0.

25
00

0.
00

00
0.

75
00

0.
6

0.
99

94
0.

18
20

0.
76

33
0.

23
67

0.
24

98
0.

00
06

0.
75

02
0.

7
0.

99
72

0.
18

18
0.

76
39

0.
23

61
0.

24
91

0.
00

28
0.

75
09

0.
8

0.
95

82
0.

17
97

0.
77

17
0.

22
83

0.
23

87
0.

04
18

0.
76

13
0.

9
0.

79
65

0.
16

60
0.

80
33

0.
19

67
0.

19
64

0.
20

36
0.

80
36

1
0.

46
75

0.
10

72
0.

86
46

0.
13

54
0.

11
34

0.
53

25
0.

88
66

1.
1

0.
18

15
0.

05
35

0.
91

65
0.

08
35

0.
04

27
0.

81
84

0.
95

73
1.

2
0.

05
12

0.
01

72
0.

93
86

0.
06

14
0.

01
21

0.
94

88
0.

98
79

1.
3

0.
00

92
0.

00
36

0.
94

58
0.

05
43

0.
00

22
0.

99
08

0.
99

78

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

02
46

0.
59

94
0.

40
06

0.
40

47
0.

00
00

0.
59

53
0.

1
1.

00
00

0.
05

62
0.

83
03

0.
16

97
0.

17
15

0.
00

00
0.

82
85

0.
2

1.
00

00
0.

42
60

0.
98

62
0.

01
38

0.
01

39
0.

00
00

0.
98

61
0.

3
0.

99
98

0.
97

42
0.

99
97

0.
00

03
0.

00
03

0.
00

02
0.

99
97

0.
4

0.
98

04
0.

99
96

0.
99

98
0.

00
02

0.
00

00
0.

01
96

1.
00

00
0.

5
0.

79
76

1.
00

00
0.

99
80

0.
00

20
0.

00
00

0.
20

24
1.

00
00

0.
6

0.
40

72
1.

00
00

0.
99

40
0.

00
60

0.
00

00
0.

59
28

1.
00

00
0.

7
0.

10
92

1.
00

00
0.

99
10

0.
00

90
0.

00
00

0.
89

08
1.

00
00

0.
8

0.
01

38
0.

45
00

0.
99

00
0.

01
00

0.
00

00
0.

98
62

1.
00

00
0.

9
0.

00
16

0.
08

00
0.

98
99

0.
01

01
0.

00
00

0.
99

84
1.

00
00

1
0.

00
02

0.
01

00
0.

98
99

0.
01

01
0.

00
00

0.
99

98
1.

00
00

1.
1

0.
00

00
N

aN
0.

98
99

0.
01

01
0.

00
00

1.
00

00
1.

00
00

1.
2

0.
00

00
N

aN
0.

98
99

0.
01

01
0.

00
00

1.
00

00
1.

00
00

1.
3

0.
00

00
N

aN
0.

98
99

0.
01

01
0.

00
00

1.
00

00
1.

00
00

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

14
39

0.
89

04
0.

10
96

0.
11

16
0.

00
00

0.
88

84
0.

1
1.

00
00

0.
15

27
0.

89
75

0.
10

25
0.

10
44

0.
00

00
0.

89
56

0.
2

1.
00

00
0.

17
70

0.
91

44
0.

08
56

0.
08

72
0.

00
00

0.
91

28
0.

3
1.

00
00

0.
17

98
0.

91
62

0.
08

38
0.

08
54

0.
00

00
0.

91
46

0.
4

1.
00

00
0.

17
98

0.
91

62
0.

08
38

0.
08

54
0.

00
00

0.
91

46
0.

5
1.

00
00

0.
17

98
0.

91
62

0.
08

38
0.

08
54

0.
00

00
0.

91
46

0.
6

1.
00

00
0.

17
98

0.
91

62
0.

08
38

0.
08

54
0.

00
00

0.
91

46
0.

7
1.

00
00

0.
17

99
0.

91
62

0.
08

38
0.

08
54

0.
00

00
0.

91
46

0.
8

0.
96

05
0.

18
00

0.
91

88
0.

08
12

0.
08

20
0.

03
95

0.
91

80
0.

9
0.

78
19

0.
18

05
0.

93
07

0.
06

93
0.

06
65

0.
21

81
0.

93
35

1
0.

46
88

0.
18

01
0.

95
15

0.
04

85
0.

03
95

0.
53

12
0.

96
05

1.
1

0.
16

66
0.

14
26

0.
97

11
0.

02
89

0.
01

38
0.

83
34

0.
98

62
1.

2
0.

04
12

0.
05

83
0.

97
89

0.
02

11
0.

00
36

0.
95

88
0.

99
64

1.
3

0.
00

80
0.

01
15

0.
98

11
0.

01
89

0.
00

07
0.

99
20

0.
99

93

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

14
26

0.
88

93
0.

11
07

0.
11

27
0.

00
00

0.
88

73
0.

1
1.

00
00

0.
15

25
0.

89
75

0.
10

25
0.

10
44

0.
00

00
0.

89
56

0.
2

1.
00

00
0.

17
65

0.
91

41
0.

08
59

0.
08

75
0.

00
00

0.
91

25
0.

3
1.

00
00

0.
17

98
0.

91
62

0.
08

38
0.

08
54

0.
00

00
0.

91
46

0.
4

1.
00

00
0.

17
98

0.
91

62
0.

08
38

0.
08

54
0.

00
00

0.
91

46
0.

5
1.

00
00

0.
17

98
0.

91
62

0.
08

38
0.

08
54

0.
00

00
0.

91
46

0.
6

1.
00

00
0.

17
98

0.
91

62
0.

08
38

0.
08

54
0.

00
00

0.
91

46
0.

7
0.

99
67

0.
17

99
0.

91
64

0.
08

36
0.

08
51

0.
00

33
0.

91
49

0.
8

0.
97

24
0.

18
02

0.
91

81
0.

08
19

0.
08

29
0.

02
76

0.
91

71
0.

9
0.

82
68

0.
18

22
0.

92
85

0.
07

15
0.

06
95

0.
17

32
0.

93
05

1
0.

48
82

0.
18

75
0.

95
13

0.
04

87
0.

04
00

0.
51

18
0.

96
00

1.
1

0.
18

27
0.

20
16

0.
97

04
0.

02
96

0.
01

48
0.

81
73

0.
98

52
1.

2
0.

03
84

0.
11

02
0.

97
94

0.
02

06
0.

00
29

0.
96

16
0.

99
71

1.
3

0.
00

47
0.

03
91

0.
98

14
0.

01
86

0.
00

03
0.

99
53

0.
99

97

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

01
33

0.
62

76
0.

37
24

0.
37

43
0.

00
00

0.
62

57
0.

1
1.

00
00

0.
02

99
0.

83
69

0.
16

31
0.

16
39

0.
00

00
0.

83
61

0.
2

1.
00

00
0.

26
82

0.
98

62
0.

01
38

0.
01

38
0.

00
00

0.
98

62
0.

3
0.

99
95

0.
94

27
0.

99
97

0.
00

03
0.

00
03

0.
00

05
0.

99
97

0.
4

0.
97

61
0.

99
97

0.
99

99
0.

00
01

0.
00

00
0.

02
39

1.
00

00
0.

5
0.

79
69

1.
00

00
0.

99
90

0.
00

10
0.

00
00

0.
20

31
1.

00
00

0.
6

0.
40

52
1.

00
00

0.
99

70
0.

00
30

0.
00

00
0.

59
48

1.
00

00
0.

7
0.

10
47

1.
00

00
0.

99
55

0.
00

45
0.

00
00

0.
89

53
1.

00
00

0.
8

0.
01

25
0.

73
00

0.
99

50
0.

00
50

0.
00

00
0.

98
75

1.
00

00
0.

9
0.

00
10

0.
10

00
0.

99
50

0.
00

50
0.

00
00

0.
99

90
1.

00
00

1
0.

00
00

N
aN

0.
99

50
0.

00
50

0.
00

00
1.

00
00

1.
00

00
1.

1
0.

00
00

N
aN

0.
99

50
0.

00
50

0.
00

00
1.

00
00

1.
00

00
1.

2
0.

00
00

N
aN

0.
99

50
0.

00
50

0.
00

00
1.

00
00

1.
00

00
1.

3
0.

00
00

N
aN

0.
99

50
0.

00
50

0.
00

00
1.

00
00

1.
00

00

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

11
58

0.
93

00
0.

07
00

0.
07

06
0.

00
00

0.
92

94
0.

1
1.

00
00

0.
12

67
0.

93
67

0.
06

33
0.

06
39

0.
00

00
0.

93
61

0.
2

1.
00

00
0.

17
22

0.
95

60
0.

04
40

0.
04

44
0.

00
00

0.
95

56
0.

3
1.

00
00

0.
17

98
0.

95
83

0.
04

17
0.

04
21

0.
00

00
0.

95
79

0.
4

1.
00

00
0.

17
98

0.
95

83
0.

04
17

0.
04

21
0.

00
00

0.
95

79
0.

5
1.

00
00

0.
17

98
0.

95
83

0.
04

17
0.

04
21

0.
00

00
0.

95
79

0.
6

1.
00

00
0.

17
98

0.
95

83
0.

04
17

0.
04

21
0.

00
00

0.
95

79
0.

7
0.

99
84

0.
17

98
0.

95
83

0.
04

17
0.

04
20

0.
00

16
0.

95
80

0.
8

0.
97

35
0.

18
00

0.
95

92
0.

04
08

0.
04

09
0.

02
65

0.
95

91
0.

9
0.

80
77

0.
18

08
0.

96
48

0.
03

52
0.

03
38

0.
19

23
0.

96
62

1
0.

49
10

0.
18

11
0.

97
50

0.
02

50
0.

02
05

0.
50

90
0.

97
95

1.
1

0.
18

05
0.

18
16

0.
98

51
0.

01
49

0.
00

75
0.

81
95

0.
99

25
1.

2
0.

04
27

0.
11

73
0.

98
95

0.
01

05
0.

00
18

0.
95

73
0.

99
82

1.
3

0.
00

73
0.

02
41

0.
99

06
0.

00
94

0.
00

03
0.

99
27

0.
99

97

λ
T

pr
Pr

ec
.

A
cc

.
E

rr
.

Fp
r

Fn
r

T
nr

0.
05

1.
00

00
0.

11
57

0.
93

00
0.

07
00

0.
07

06
0.

00
00

0.
92

94
0.

1
1.

00
00

0.
13

02
0.

93
87

0.
06

13
0.

06
18

0.
00

00
0.

93
82

0.
2

1.
00

00
0.

17
23

0.
95

60
0.

04
40

0.
04

44
0.

00
00

0.
95

56
0.

3
1.

00
00

0.
17

96
0.

95
82

0.
04

18
0.

04
22

0.
00

00
0.

95
78

0.
4

1.
00

00
0.

17
98

0.
95

83
0.

04
17

0.
04

21
0.

00
00

0.
95

79
0.

5
1.

00
00

0.
17

98
0.

95
83

0.
04

17
0.

04
21

0.
00

00
0.

95
79

0.
6

1.
00

00
0.

17
98

0.
95

83
0.

04
17

0.
04

21
0.

00
00

0.
95

79
0.

7
0.

99
76

0.
17

99
0.

95
84

0.
04

16
0.

04
20

0.
00

24
0.

95
80

0.
8

0.
96

66
0.

18
03

0.
95

95
0.

04
05

0.
04

06
0.

03
34

0.
95

94
0.

9
0.

80
00

0.
18

22
0.

96
53

0.
03

47
0.

03
32

0.
20

00
0.

96
68

1
0.

47
88

0.
18

57
0.

97
60

0.
02

40
0.

01
94

0.
52

12
0.

98
06

1.
1

0.
17

85
0.

21
05

0.
98

55
0.

01
45

0.
00

71
0.

82
15

0.
99

29
1.

2
0.

04
41

0.
15

97
0.

98
96

0.
01

04
0.

00
17

0.
95

59
0.

99
83

1.
3

0.
00

40
0.

01
71

0.
99

07
0.

00
93

0.
00

02
0.

99
60

0.
99

98

(A
) 

 P
ai

rw
is

e 
(p

=
20

)
(B

) 
 H

ub
 (

p=
20

)
(C

) 
 C

as
ca

de
 (

p=
20

)

(D
) 

 P
ai

rw
is

e 
(p

=
10

0)
(E

) 
 H

ub
 (

p=
10

0)
(F

) 
 C

as
ca

de
 (

p=
10

0)

(G
) 

 P
ai

rw
is

e 
(p

=
20

0)
(H

) 
 H

ub
 (

p=
20

0)
(I

) 
 C

as
ca

de
 (

p=
20

0)

Brought to you by | University of Bristol
Authenticated

Download Date | 9/28/15 12:49 PM
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ditional independencies, i.e., zeros in ∑ and Ω are the same, hence we expect that model selection methods 
should rarely get “confused” by indirect associations. Also, the pairwise structure is sparse in two ways: con-
nectivity is very low and each node has only a single neighbour which should make it easy to learn.

For each motif, we construct three networks with an increasing number of genes (variables/vertices) 
p = {20, 100, 200}. The true adjacency matrices are shown in Figure 5.

A Gaussian sample of size n = 150, with mean zero and covariance matrix according to the given network 
is then simulated several times (i.e., replications). More details on the simulation design are given in the sup-
plementary material (Appendix C).

5.2  Results of the analysis with synthetic data

5.2.1  Neighbourhood selection and G-Lasso

Tables 3 and 4 as well as Figures 6 and 7 give the results for Neighbourhood selection and G-Lasso. Note that 
the λ values shown were chosen with knowledge of the true structure. The complete set of adjacency matrix 
plots is given in supplementary material (Appendix D and E).

Pairwise (p=20, λ=0.3) Hub (p=20, λ=0.2) Cascade (p=20, λ=0.2)

Pairwise (p=100, λ=0.3) Hub (p=100, λ=0.05) Cascade (p=100, λ=0.1)

Pairwise (p=200, λ=0.3) Hub (p=200, λ=0.05) Cascade (p=200, λ=0.1)
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Figure 6 Plots of the averaged estimated adjacent matrices with Neighbourhood selection.
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In summary we find that Neighbourhood selection performs generally well for the pairwise motif struc-
ture, and still acceptable for the cascades where either the Tpr or the precision are rather low. It does not 
perform well for the hub structure. In some cases it finds a counter-cluster among those variables that should 
be mutually independent. In others there is a systematic pattern of false positives: it finds a clique among 
those variables that are attached to the hub and cannot distinguish the direct from the indirect associations.

G-Lasso performs similarly well for the pairwise structure as Neigbourhood selection, and just as badly 
for the hub structure (but with worse precision). For the cascade structure G-Lasso exhibits a clear systematic 
pattern of false positives.

5.2.2  Shrinkage estimator

For the Shrinkage estimator we find that, surprisingly, the t-test approach almost always selects only very few 
if any edges (Table 5B,D). A plausible explanation could be that the false discovery rate imposes too low a 
significance level compared to the estimated p-values.

Pairwise (p=100, λ=0.3) Hub (p=100, λ=0.7) Cascade (p=100, λ=0.7)

Pairwise (p=200, λ=0.3) Hub (p=200, λ=0.7) Cascade (p=200, λ=0.7)
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Figure 7 Plots of the averaged estimated adjacent matrices with G-Lasso.
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Table 5 Simulation results for Shrinkage estimator (n = 150 throughout).

PAIRWISE HUB CASCADE
Tpr 0.9909 0.0467 0.4345

Precision 0.9873 0.0136 0.6593
Accuracy 0.9991 0.9264 0.9556

Error Rate 0.0009 0.0736 0.0444
Fpr 0.0005 0.0248 0.0154
Fnr 0.0091 0.9533 0.5655
Tnr 0.9995 0.9752 0.9846

PAIRWISE HUB CASCADE
Tpr 0.9822 0.0000 0.0000

Precision 1.0000 0.0000 0.0000
Accuracy 0.9991 0.9473 0.9474

Error Rate 0.0009 0.0527 0.0526
Fpr 0.0000 0.0000 0.0000
Fnr 0.0179 1.0000 1.0000
Tnr 1.0000 0.9999 0.9999

(A)  Empirical bayes approach (p=20)

(C)  Empirical bayes approach (p=100)

(E)  Empirical bayes approach (p=200)

(B)  t-test approach (p=20)

(D)  t-test approach (p=100)

PAIRWISE HUB CASCADE
Tpr 0.9998 1.0000 1.0000

Precision 0.9994 0.1798 0.1962
Accuracy 0.9999 0.9162 0.9240

Error Rate 0.0000 0.0838 0.0759
Fpr 0.0000 0.0854 0.0774
Fnr 0.0002 0.0000 0.0000
Tnr 0.9999 0.9146 0.9226

PAIRWISE HUB CASCADE
Tpr 0.0000 0.0000 0.0000

Precision NaN NaN NaN
Accuracy 0.9899 0.9816 0.9816

Error Rate 0.0101 0.0184 0.0184
Fpr 0.0000 0.0000 0.0000
Fnr 1.0000 1.0000 1.0000
Tnr 1.0000 1.0000 1.0000

PAIRWISE HUB CASCADE
Tpr 0.9996 1.0000 1.0000

Precision 0.9997 0.1795 0.1795
Accuracy 0.9999 0.9582 0.9582

Error Rate 0.0000 0.0418 0.0418
Fpr 0.0000 0.0422 0.0422
Fnr 0.0004 0.0000 0.0000
Tnr 0.9999 0.9578 0.9578

From Table 5 (A,C,E) and Figure 8 we see that, using empirical Bayes, the results for the pairwise struc-
ture are again almost ideal. For the cascade structure we find that the precision is low, and when p = 100, 200, 
false positives appear more likely to be found for nodes that are “close” together on the cascade, but too many 
are found where there is only indirect association. For the hub structure there is still low precision and the 
same systematic pattern of false positives as for Neighbourhood selection and G-Lasso.

5.2.3  Maximum likelihood estimator

As can be seen from Table 6, both the empirical Bayes approach and the t-test approach yield almost identical 
results; we only present the adjacency matrices for the former in Figure 9. The results are almost perfect with 
difficulties only occurring when the sample size is small compared to the number of nodes, and with low Tpr 
for the hub structure. However, it is noticeable that the MLE approach does not have a systematic pattern of 
false positives like the previous methods.

5.2.4  PC-algorithm

Table 7 shows the performance measures for the PC-algorithm with nominal significance levels below 10%. 
Figure 10 shows the adjacency plots for selected α values (further plots see supplementary material, Appen-
dix F). For all the structures, the algorithm seems to do quite well learning the true edges, but there is not a 
generally best choice of α. For the hub structure, as with the other methods, but to a lesser extent, there are 
systematic false positives, namely edges connecting the nodes that should only connect to the hub.

Brought to you by | University of Bristol
Authenticated

Download Date | 9/28/15 12:49 PM



V. Albieri and V. Didelez: Statistical methods for network motifs      417

Pairwise (p=20)
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Figure 8 Plots of the averaged estimated adjacent matrices with Shrinkage and empirical Bayes approach.

Table 6 Simulation results for Maximum Likelihood (n = 150 throughout).

PAIRWISE HUB CASCADE
Tpr 0.9818 0.5039 0.9553

Precision 0.9859 0.9654 0.9882
Accuracy 0.9985 0.9734 0.9972

Error Rate 0.0015 0.0266 0.0028
Fpr 0.0006 0.0006 0.0005
Fnr 0.0183 0.4961 0.0447
Tnr 0.9994 0.9994 0.9995

(A) Empirical bayes approach (p=20)

(C) Empirical bayes approach (p=100)

PAIRWISE HUB CASCADE
Tpr 0.9999 0.5277 0.9965

Precision 0.9957 0.9917 0.9959
Accuracy 0.9997 0.9749 0.9996

Error Rate 0.0003 0.0251 0.0004
Fpr 0.0003 0.0002 0.0002
Fnr 0.0001 0.4722 0.0035
Tnr 0.9997 0.9998 0.9997

PAIRWISE HUB CASCADE
Tpr 0.5850 0.0133 0.3876

Precision 0.9990 0.5862 1.0000
Accuracy 0.9958 0.9819 0.9887

Error Rate 0.0042 0.0181 0.0113
Fpr 0.0000 0.0000 0.0000
Fnr 0.4150 0.9867 0.6124
Tnr 0.9999 0.9999 1.0000

PAIRWISE HUB CASCADE
Tpr 0.5844 0.0119 0.3859

Precision 0.9986 0.6500 0.9987
Accuracy 0.9958 0.9818 0.9887

Error Rate 0.0042 0.0182 0.0113
Fpr 0.0000 0.0000 0.0000
Fnr 0.4156 0.9881 0.6141
Tnr 0.9999 0.9999 0.9999

(D) t-test approach (p=100)

(B) t-test approach (p=20)
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418      V. Albieri and V. Didelez: Statistical methods for network motifs

5.2.5  PR curves

It turns out that we can plot only partial PR curves for the PC-algorithm, and only for the hub motif, as this 
method does not yield a sufficiently wide range of recall values otherwise. Further, remember that the MLE 
cannot be used in the p = 200 case. All PR-curves are shown in Figure 11.

Not surprisingly, the results for all methods are near perfect in case of the pairwise structure. For the hub 
structure, the MLE only struggles with the larger node set. Neighbourhood Selection, G-Lasso and Shrinkage 
exhibit qualitatively similar behaviour; the precision remains below 40% most of the time, in fact G-Lasso 
has a precision of 18% almost throughout, which is exactly the proportion of false positives in the corre-
sponding networks that have additional edges between all nodes involved in the same hub. The PC-algorithm 
appears to outperform all other methods for the hub.

A clear ranking of the methods seems possible for the cascade structure: MLE (when possible) is best, 
then Neighbourhood selection, then Shrinkage, while G-Lasso is the weakest. The difference between Neigh-
bourhood Selection and G-Lasso, two methods that are superficially quite similar, is especially striking.

6  Conclusion and discussion
We have compared a number of popular methods for learning genetic regulatory networks. In summary, 
the results suggest that the PC-algorithm seems to be the most promising approach if one desires to detect 
specific network motifs when n < p, but the choice of α deserves further investigation. In addition, if one con-
siders the result before moralisation, one may even obtain different information about the network structure 
from the directions of the edges. Under certain assumptions, a (partially) directed network can inform about 
causal structures, see recent work of Maathuis et al. (2009) and Colombo et al. (2012).

Neighbourhood selection also appears to be an acceptable method, only somewhat disappointing with 
the hub structure. Meinshausen and Bühlmann (2006) give some advice on how to choose λ so as to limit 
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Figure 9 Plots of the averaged estimated adjacent matrices with MLE and empirical Bayes approach.
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the probability of falsely connecting two unconnected components of the graph. In a more recent paper 
 Meinshausen and Bühlmann (2010) propose a different approach to this question based on the stability of 
selected edges over ranges of λ values.

Neither the Shrinkage nor the G-Lasso approach outperform the other methods and they exhibit system-
atic false positives in particular cases. For the latter, one could additionally consider using a set of penalty 
parameters, instead of a single one, to improve performance. For instance, if there is prior knowledge that 
certain nodes might be hubs then a smaller penalty could be chosen for the corresponding entries in the 
concentration matrix. The R package “SIMoNe” implements Neighbourhood selection, G-Lasso as well as 
further methods that allow for time-course data as well as for latent clustering, see Chiquet (2009) and ref-
erences therein. Longitudinal data can also be analysed using a functional data approach implemented in 
“GeneNet”, see Opgen-Rhein and Strimmer (2006).

None of the methods designed for the n < p case are of course as good as a MLE approach when n > p. Uhler 
(2012) has results on the existence of the MLE for n < p which may be useful in model search but we are not 
aware of any concrete proposals so far.
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Figure 10 Plots of the averaged estimated adjacent matrices with the PC-algorithm.
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We have not considered any Bayesian approach to structure learning as it would go beyond the scope of 
this paper. It may be interesting to consider whether prior information can be formulated that encourages 
hubs so as to further improve on the above methods.
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