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Statistical Causality 

Introduction
Statisticians have traditionally been very sceptical towards causality, but in 
the last decades there has been increased attention towards, and accept-
ance of, ‘causal’ methods in the statistical (and computer science) commu-
nity (Rubin, 1974, 1978; Holland, 1986; Robins, 1986, 1987; Spirtes et 
al., 1993; Pearl, 1995, 2000). In this paper I give a brief  overview over 
the particular challenges statisticians have to face when trying to infer 
causality and these recent developments.

Association versus causation
The main task when we want to carry out causal inference is to distin-
guish, conceptually and then based on data, between association and 
causation. 

Association is meant to describe 
situations where phenomena occur 
more often together (or not together) 
than would be expected under inde-
pendence. In a purely statistical sense 
these associations do not need to be 
in any way meaningful; that some 
seem ‘funny’ (Yule, 1926) is due to 
the expectation that they reflect a causal relation. Consider the following 
examples:

Figure 1: The number of newborns and the number of storks are associated.

1) The number of  storks per year nesting in small villages of  a given 
country and the number of  newborns in these villages are clearly associ-
ated – the more storks there are the more newborns per year (this example 
is attributed to Yule according to Neyman (1952); see also Höfer et al., 
2004). Obviously there is no causal relation, so where does the association 
come from? A closer look reveals that the number of  storks as well as the 
number of  newborns reflect the size of  a village: a larger village has more 
families producing more newborns and has more roofs allowing more 
storks to nest (cf. Figure 1).

2) Sober (1987) points out that the bread price in Britain and the sea 
level in Venice over the past two centuries are positively correlated. Most 
people would agree that neither is a cause of  the other, so where does the 
positive correlation come from? The explanation is that both quantities 
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have steadily increased over time due to their respective local conditions 
which are not further related to each other (cf. Figure 2). Hence it is two 
unrelated time trends that induce an association.

Figure 2: Bread price in Britain and water level in Venice both exhibit a time trend.

There is no single agreed on definition of  causality in the statistical and 
philosophical literature. In the statistical literature one can distinguish at 
least four broad approaches: (i) probabilistic causality, reducing the ques-
tion of  causality to probabilistic statements among suitably defined events; 
(ii) counterfactual causality, addressing the question of  “what if  something 
had been different in the past”; (iii) structural models, assuming that the 
system of  interest is driven by stable (stochastic) mechanisms this approach 
addresses under which condition these mechanisms can be uncovered; 
(iv) decision theory, addressing the question of  making optimal decisions 
under uncertainty. 

Maybe except for (i) all of  these approaches deal, more or less explicitly, 
with causation as the effect of  an intervention in one (or more) variable(s) 
on some response variable. Typically, scientists are interested in causal 
relations because they want to intervene in some sense, to prevent diseases or to 
make life easier etc. Some examples:

1) It is well known that the increase of  CFC use has been accompanied 
by ozone depletion, i.e. there is a clear association between the two. The 
underlying photochemical processes are by now studied and understood 
well enough to say that CFC is the cause of  the ozone depletion. Hence 
we would expect that reducing the level of  CFC (by some interven-
tion!) will slow down or even reverse the ozone depletion. The Montreal 
Protocol signed by 43 nations in 1987 could be regarded as such an inter-
vention to reduce and phase out the use of  CFC.

2) We can be pretty sure that manipulating the number of  storks in a 
village, e.g. setting it to zero by killing them, will not change the number 
of  newborns in that same village – this association is not causal.

We now turn to the question of  why associations can be observed 
without an underlying causal relation. A cause X and a response Y will 
be associated if  X is indeed causal for Y but not necessarily vice versa, 
as demonstrated with the above examples. The following are alternative 
explanations.

Common Cause – Confounding. If  X and Y have a common cause, 
as in the storks/newborns example, they can be associated without being 
causally related at all. The presence of  a common cause is often called 
confounding.

Reverse Causation. In reality, Y might be the cause of  X and not, as 
we think, vice versa. For example if  X is the homocysteine level and Y is 
coronary heart disease then it could be that existing atherosclerosis leads 
to increased levels of  homocysteine and not vice versa.
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Time Trends. X and Y may only be associated because they are the 
results of  two processes with time trends without these time trends being 
related to each other, as for example the bread price and water level in 
Venice.

Feedback. X and Y may be associated because they instigate each 
other. As an example consider alcohol abuse and social problems: does a 
person drink due to social problems, like problems in his job, or are such 
problems the consequence of  alcohol abuse or both?

Of  course one should never forget that observed associations may 
just be due to coincidence. Also, it would be presumptuous to claim that 
the above list is complete; there may be other reasons that scientists and 
philosophers have not thought of  yet.

Methods to assert causation
If  we want to investigate what happens when we manipulate a vari-
able, then an obvious method is to actually carry out such manipulations 
and observe the result. This is what is done in experimental studies. For 
instance in a clinical trial, patients are randomly allocated either to the 
treatment group or to the non-treatment (control) group. This random 
allocation ensures that X is not associated (except by coincidence) with 
anything that is not a consequence of  X rendering most of  the above 
explanations for association without causation very unlikely. In addition, 
clinical studies are often ‘double blind’ meaning that neither the patients 
nor the doctors or nurses know who is in which group. This is secured 
by formulating the investigational drug and the control (either a placebo 
or an established drug) to have identical appearance. Hence it is ensured 
that the psychological effect is the same in both groups. In other areas it is 
more difficult to design good experiments, but researchers are inventive, 
for instance sociologists when investigating discrimination by faking the 
names on CVs (Bertrand and Mullainathan, 2003).

In many subjects, in particular in epidemiology, it is impossible to carry 
out experiments. For instance if  the ‘cause’ is smoking behaviour, alcohol 
consumption or education, we cannot randomly allocate subjects to 
different groups. Instead we have to make do with data on the behaviour 
as it is, but this will typically mean having to deal with confounding as, for 
example, smokers are likely to exhibit a life style that is different also in 
other respects from that of  non-smokers (cf. Figure 3).

So how do we infer causation from non-experimental data? In some 
circumstances when a thorough knowledge of  the subject matter is avail-
able one can identify the confounders and measure them in addition to 
the X and Y variable of  interest. The causal effect can then be assessed 
within every level of  the confounders, i.e. based on stratification. This 
yields valid causal inference if  a sufficient set of  confounders is used. 
There are many problems with this approach: one can never be sure 
about what the relevant confounders are and even then, there may be 
many different ways of  measuring them; in addition, typical confounders 
are prone to errors, e.g. self-reported alcohol consumption is known to 
be unreliable. Hence, unlike experimental studies, causal inference from 
epidemiological data rests on a certain prior knowledge of  the system 
under investigation. Graphical representations of  background knowledge 
have been suggested to facilitate this task (Pearl 1995, 2000). Such graphs 
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represent the conditional independencies (i.e. purely probabilistic rela-
tions) but can, under certain assumptions, be informative about causal 
relations.

Figure 3: The problem of confounding in Epidemiology.

The role of time
Recall that confounding is only one of  the reasons why we may observe 
associations without the desired causation. Reverse causation, time trends 
and feedback all involve time but it is even more difficult to ‘adjust for 
time’ than the above ‘adjustment for confounding’. 

First of  all we obviously need to have data over time – usually from 
so-called longitudinal studies. Secondly, we must be careful not to adjust for 
so-called mediating (or intermediate) variables. To explain this, consider the 
simple example in Figure 4.

Figure 4: Example for an intermediate variable.

The effect of  smoking on developing lung cancer can plausibly be 
assumed to be mediated by the ensuing amount of  tar deposit in the 
lungs – note that passive smoking may also result in tar in the lungs. 
The above graph even suggests that once the amount of  tar is known, 
cancer risk and smoking are independent. If  we mistakenly think of  ‘tar 
deposit’ as a confounder and adjust for it, we may therefore wrongly find 
that there is no effect of  smoking on lung cancer. This is because within 
every given level of  ‘tar deposit’, whether the person is smoking or passive 
smoking makes no difference anymore to her probability of  developing 
lung cancer. It is well known among epidemiologists that adjusting for 
mediating variables can ‘hide’ the causal effect in which we are interested 
(Weinberg, 1993).

Thirdly, we must further be aware that in longitudinal settings certain 
variables can be confounders for some treatments and intermediates for 
others. For example, consider a study where patients with operable breast 
cancer receive repeated cycles of  chemotherapy, the number of  which 
depends on the development of  the size of  the tumour as monitored by 
palpation and imaging methods, and the outcome is whether or not there 
are any malignant cells remaining at surgery (cf. Minckwitz et al., 2005). 
Obviously the tumour size is a good predictor of  the outcome. The aim of  
this study is to identify the number of  tumour cycles required to destroy 

      Risk factor Disease
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all cancer cells. The problem is that the tumour size is a mediating vari-
able of  earlier chemotherapy. Hopefully, once the first chemotherapy cycle 
has been given, the tumour should start to decrease. However, tumour 
size is also a confounder, because if  the tumour is still large, more chemo-
therapy cycles might be given, or in bad cases the therapy is interrupted 
and surgery takes place immediately (cf. Figure 5, where only two stages 
are represented). 

Figure 5: ‘Size of tumour’ is a mediating variable for first chemotherapy and a confounder for 

second chemotherapy.

The solution to this problem goes back to the groundbreaking work 
of  Robins (1986, 1987) who showed that the key principle is to adjust at 
any point in time only for past observations and then ‘piece together’ the 
results for the individual time points to obtain the overall causal effect (cf. 
also Dawid and Didelez, 2005). This method is very plausible but still not 
widely understood. Also, it still has to cope with several other problems 
such as being computationally very involved, especially when measure-
ments are taken continuously over time. 

Conclusions
Statisticians can contribute to discovering causal relations in a variety 
of  fields. In fact many old and recent advances in areas like technology 
and medicine are due to thorough experimentation, data collection and 
analysis. However, it seems that such advances are more pronounced 
in subjects where experiments can easily be carried out than in other 
subjects, e.g. in psychology, nutrition science or politics. These problems 
are clearly reflected in the challenges that statisticians face, as I have 
outlined in this article. It is much more difficult to infer causation from 
non-experimental data and it always requires prior background knowl-
edge, e.g. on what could be potential confounders, and it often needs 
careful and patient observations over time. 

References
Bertrand, M., Mullainathan, S.: “Are Emily and Greg more employable than Lakisha and 

Jamal? A field experiment on labor market discrimination”. NBER working paper series no. 
9873. Cambridge: National Bureau of  Economic Research, 2003.

Dawid, A.P., and Didelez, V. “Identifying the consequences of  dynamic treatment strate-
gies”. Research Report No. 262, Department of  Statistical Science, University College 
London, 2000.

Höfer, T., Przyrembel, H., Verleger, S. “New evidence for the theory of  the stork”. Paediatric 
and Perinatal Epidemiology 18, 2004, pp. 88–92.

Holland, P.W. “Statistics and causal inference”. Journal of  the American Statistical Association 81, 
1986, pp. 945–60.

Minckwitz, G., Raab, G., Caputo, A., Schütte, M., Hilfrich, J., Blohmer, J.U., Gerber, 
B., Costa, S.D., Merkle, E., Eidtmann, H., Lampe, D., Jackisch, C., du Bois, A., and 

119

represent the conditional independencies (i.e. purely probabilistic rela-
tions) but can, under certain assumptions, be informative about causal 
relations.

Figure 3: The problem of confounding in Epidemiology.

The role of time
Recall that confounding is only one of  the reasons why we may observe 
associations without the desired causation. Reverse causation, time trends 
and feedback all involve time but it is even more difficult to ‘adjust for 
time’ than the above ‘adjustment for confounding’. 

First of  all we obviously need to have data over time – usually from 
so-called longitudinal studies. Secondly, we must be careful not to adjust for 
so-called mediating (or intermediate) variables. To explain this, consider the 
simple example in Figure 4.

Figure 4: Example for an intermediate variable.

The effect of  smoking on developing lung cancer can plausibly be 
assumed to be mediated by the ensuing amount of  tar deposit in the 
lungs – note that passive smoking may also result in tar in the lungs. 
The above graph even suggests that once the amount of  tar is known, 
cancer risk and smoking are independent. If  we mistakenly think of  ‘tar 
deposit’ as a confounder and adjust for it, we may therefore wrongly find 
that there is no effect of  smoking on lung cancer. This is because within 
every given level of  ‘tar deposit’, whether the person is smoking or passive 
smoking makes no difference anymore to her probability of  developing 
lung cancer. It is well known among epidemiologists that adjusting for 
mediating variables can ‘hide’ the causal effect in which we are interested 
(Weinberg, 1993).

Thirdly, we must further be aware that in longitudinal settings certain 
variables can be confounders for some treatments and intermediates for 
others. For example, consider a study where patients with operable breast 
cancer receive repeated cycles of  chemotherapy, the number of  which 
depends on the development of  the size of  the tumour as monitored by 
palpation and imaging methods, and the outcome is whether or not there 
are any malignant cells remaining at surgery (cf. Minckwitz et al., 2005). 
Obviously the tumour size is a good predictor of  the outcome. The aim of  
this study is to identify the number of  tumour cycles required to destroy 

      Risk factor Disease



120

Statistical Causality

Kaufman, M.: “Doxorubicin with cylophosphamide followed by docetaxel every 21 days 
compared with doxorubicin and docetaxel every 14 days as preoperative  treatment in 
operable breast cancer”. Journal of  Clinical Oncology 23, 2005, pp. 2676–85.

Neyman, J.: Lectures and Conferences on Mathematical Statistics and Probability, second edition, 
Graduate School U.S. Department of  Agriculture, Washington, 1952.

Pearl, J.; “Causal diagrams for empirical research”. Biometrika 82, 1995, pp. 669–710.
Pearl, J.: Causality. Cambridge University Press, 2000.
Robins, J.M.: “A new approach to causal inference in mortality studies with sustained expo-

sure periods – application to control of  the healthy worker survivor effect”. Mathematical 
Modelling 7, 1986, pp. 1393–1512.

Robins, J.M.: Addendum to “A new approach to causal inference in mortality studies with 
sustained exposure periods – application to control of  the healthy worker survivor 
effect”. Computers and Mathematics, with Applications 14, 1987, pp. 923–45.

Rubin, D.B.: “Estimating causal effects of  treatments on randomized and non-randomized 
studies”. Journal of  Educational Psychology 66, 1974, pp. 688–701.

Rubin, D.B.: “Bayesian inference for causal effects: the role of  randomization”. Annals of  
Statistics 6, 1978, pp. 34–58.

Sober, E.: “The principle of  the common cause”. In J. Fetzer (ed.), Probability and Causation: 
Essays in Honor of  Wesley Salmon. Dordrecht, Reidel, 1987, pp. 211–29.

Sprites, P., Glymour, C. and Scheines, R.: Causation, Prediction and Search. New York, Springer-
Verlag, 1993. 2nd edition published in 2000.

Weinberg, C.: “Towards a clearer definition of  confounding”. American Journal of  Epidemiology 
137, 1993, pp. 1–8.

Yule, G.U.: “Why do we sometimes get nonsensical relations between time series? A study of  
sampling and the nature of  time series”. Journal of  the Royal Statistical Society 89, 1926, pp. 
1–64. 

120




