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Abstract. Latent variable techniques are helpful to reduce high-dimensional time
series to a few relevant variables that are easier to model and analyze. An inherent
problem is the identifiability of the model and the interpretation of the latent
variables. We apply graphical models to find the essential relations in the data and
to deduce suitable assumptions leading to meaningful latent variables.

1 Introduction

In high-dimensional time series we may find strong correlations among the
observed variables at several time lags. Statistical modelling should appropri-
ately reflect these dependencies. However, complex models involve numerous
parameters and require many observations to enable reliable inference. Thus,
suitable strategies for dimension reduction provide a useful preliminary step.

A standard approach is to select a subset of the variables and to ignore
the others. It is then important to know which and how much information we
neglect. Alternatively, techniques like factor and principal component analysis
(PCA) allow to extract latent variables describing the correlations among
the observed variables and capturing more of their variability than a simple
variable selection. However, the extracted variables are typically not easy to
interpret although it is often important that they are meaningful.

In order to overcome these difficulties we propose to use partial correla-
tion graphs to learn about the essential relations among the variables. These
relations are visualized by a graph, where the variables are represented as
vertices and the dependencies among them are shown as edges. Separations
in the graph provide information about direct and indirect relations. This
can be used to deduce suitable assumptions when applying factor analytic
methods.

In this paper, we compare dimension reduction by variable selection, by
straight-forward latent variable analysis and by latent variable analysis with
restrictions derived from partial correlation graphs. We illustrate these ap-
proaches by analyzing physiological time series describing the human hemo-
dynamic system and show that we can extract latent variables that explain
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more of the observed variability than a simple variable selection but are still
meaningful.

2 Partial correlation graphs and factor analysis

Graphical models visualize and clarify the dependencies among a set of vari-
ables (Whittaker (1990), Lauritzen (1996)). A graph G = (V, E) consists of
a finite set of vertices V and a set of edges E ⊆ V × V , that are ordered
pairs of vertices. It can be visualized by drawing a circle for each vertex and
connecting each pair a, b of vertices whenever (a, b) ∈ E or (b, a) ∈ E by
an edge. We restrict attention to undirected graphs where (a, b) ∈ E implies
(b, a) ∈ E shown as undirected edge (a simple line) between a and b.

A path is a finite sequence of vertices a0, . . . , an, such that there is an edge
connecting each pair of subsequent vertices. Subsets A, B ⊂ V are separated

by a subset S ⊂ V if every path from a vertex in a to a vertex in B necessarily
includes a vertex in S. A subset C ⊂ V is called complete if all possible edges
between pairs of variables in C exist.

Brillinger (1996) and Dahlhaus (2000) introduce partial correlation graphs
for multivariate time series. These models focus on the essential linear, pos-
sibly time-lagged relations between pairs of component series which persist
after eliminating all linear effects of the other variables. Here and in the
following we assume that YV = {YV (t), t ∈ Z}, V = {1, . . . , d}, is a vector-
valued weakly stationary time series with absolutely summable covariance
function

γab(h) = Cov(Ya(t + h), Yb(t)), h ∈ Z.

For A ⊂ V we denote the subprocess of all variables a ∈ A by YA, and for
a ∈ V we denote the corresponding component process by Ya.

The cross-spectrum between the time series Ya and Yb is the Fourier-
transform of their covariance function,

fab(λ) =
1

2π

∞
∑

h=−∞

γab(h) exp(−iλh), λ ∈ [−π, π] .

This defines a decomposition of γab into periodic functions of frequencies λ.
The variables Ya and Yb are uncorrelated at all time lags h iff fab(λ) equals
zero for all frequencies.

In order to distinguish between direct and induced linear relationships
between two series Ya and Yb, the linear effects of the remaining variables on
Ya and Yb have to be eliminated. The partial cross-spectrum between Ya and
Yb is defined as the cross-spectrum between the series εa and εb,

fab·V \{a,b}(λ) = fεaεb
(λ) ,

where εa(t) and εb(t) are the residual series obtained by subtracting all linear
influences of YV \{a,b} from Ya(t) and Yb(t) respectively (Brillinger (1981)).
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Similarly, the (partial) cross-spectrum between two vector time series can
be defined. The partial spectral coherency is a standardization of the partial
cross-spectrum

Rab·V \{a,b}(λ) =
fab·V \{a,b}(λ)

[

faa·V \{a,b}(λ)fbb·V \{a,b}(λ)
]1/2

. (1)

A partial correlation graph for a multivariate time series is an undirected
graph G = (V, E) with a vertex for each of the components a ∈ V of the
time series, where two vertices a and b are connected by an edge whenever
their partial spectral coherency Rab·V \{a,b}(λ) is not identical to zero for all
frequencies λ. A missing edge between a and b indicates that the linear re-
lation between these two variables given the remaining ones is zero, which is
denoted by a⊥b|V \ {a, b}. This is known as the pairwise Markov property.
Under the assumption that the spectral density matrix is regular for all fre-
quencies, Dahlhaus (2000) proves that the pairwise Markov property implies
the global Markov property, which is a stronger property in general. It states
that A ⊥ B|S for all subsets A, B, S ⊂ V such that S separates A and B in
G.

Dynamic factor analysis allows to model a multivariate time series using
a lower dimensional process of latent, i.e. unobserved variables called factors.
A general dynamic factor model for an observed multivariate time series YV

is given by a dynamic regression of YV

YV (t) =
∑

u∈Z

Λ(u)X(t − u) + e(t) (2)

on an unobserved lower dimensional factor process X with an error process
e. Here, Λ(u) are matrices of unknown parameters called loadings. In this
very general form the model is not identifiable, but we nevertheless use it
as a starting point, in order to understand the assumptions that can be de-
duced from partial correlation graphs obtained from empirical data analysis.
Brillinger’s (1981) dynamic PCA in the frequency domain can be used for
fitting model (2) with uncorrelated factors (Forni et al. (2000)). However, the
factors extracted in this way are mixtures of all variables because all loadings
are distinct from zero. Automatic rotations for improving interpretation, as
in the non-dynamic case, are difficult to apply since we need to perform the
rotation at each frequency individually. Problems inherent to dynamic PCA
are discussed in more detail by Lanius and Gather (2003).

Under the assumption that the spectral density matrix of YV is regular at
all frequencies, an algorithm has been derived by Fried and Didelez (2003b)
to construct the partial correlation graph of YV given model (2) with YV

and e both following a vector autoregressive model (Reinsel (1997)). In case
of uncorrelated factors and uncorrelated error processes a pair of observed
variables is connected by an edge if and only if both variables have nonzero
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loadings for one of the factors. Thus, the resulting graph provides an assis-
tance in identifying the number and types of factors. A complete subset in
a partial correlation graph of YV can be regarded as generated by a latent
factor. However, the identification of such common factors can be obscured
by dependencies within the error process or the factors as such dependen-
cies may cause additional edges in the partial correlation graph. Therefore,
it seems reasonable to attribute only strong relationships to the factors while
the weaker ones are ascribed to errors.

3 Analysis of physiological time series

In the following we analyze multivariate time series from 25 consecutive criti-
cally ill patients (9 female, 16 male, mean age 66 years) with extended hemo-
dynamic monitoring requiring pulmonary artery catheterization, acquired on
the surgical intensive care unit of the Klinikum Dortmund, a tertiary refer-
ral center. The hemodynamic variables heart rate HR, pulse PULS, arterial
systolic pressure APS, arterial mean pressure APM, arterial diastolic pres-
sure APD, pulmonary artery systolic pressure PAPS, pulmonary artery mean
pressure PAPM, pulmonary artery diastolic pressure PAPD, central venous
pressure CVP and blood temperature Temp were stored for each patient in
one minute intervals with a standard clinical information system. Hence, 25
ten-variate time series with an average length of about 5200 time points were
available for the following analysis.

When using methods for dimension reduction we want to explain as much
of the clinically relevant variability in the data as possible, by a reduced set of
variables, but not irrelevant artifacts and short-term fluctuations. Therefore
we removed outliers for each variable individually using a robust filtering
procedure based on the repeated median, which allows to preserve trends as
well as systematic shifts in the data (Davies et al. (2003), Fried (2003)).

In order to get a general impression about the relationships between the
physiological variables we constructed a partial correlation graph for each
patient. We used the program ”Spectrum” (Dahlhaus and Eichler (2000))
which estimates the cross-spectra by a nonparametric kernel estimator and
allows simultaneous testing of all partial spectral coherencies being zero or
not by constructing a sample-size dependent confidence bound. For improving
the results we applied a stepwise search strategy based on graph separations
described by Fried and Didelez (2003a). This strategy allows to overcome
masking of weaker relations by stronger associations, which may occur when
estimating all partial linear relations jointly.

We found the essential linear relations revealed by the final partial cor-
relation graphs to match the physiological relations expected by physicians.
A typical example of such a graph is shown in Figure 1. Different edge types
are used to indicate different strengths of relations as measured by the area
below the partial spectral coherencies. For all patients we identified strong
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Fig. 1. Typical partial correlation graph for the hemodynamic variables of a patient.

partial correlations among the arterial pressures (APS, APM, APD), among
the pulmonary artery pressures (PAPS, PAPM, PAPD) and between heart
rate and pulse. The strength of the relation between the systolic and the
diastolic pressure was always smaller than between each of these and the cor-
responding mean pressure. CVP was most strongly related to the pulmonary
artery pressures, while the temperature did not show strong relations to any
of the other variables. Hence, we can identify the following groups of strongly
related variables from the partial correlation graphs: (APS, APM, APD),
(PAPS, PAPM, PAPD,CVP), (HR, Puls).

The partitioning of the variables into strongly related subgroups is now
used for variable selection. Due to the global Markov property the absence
of edges between two groups of variables means that the variables in one
of these groups do not contain information on the variables in the other
group given the measurements of the separating variables. A variable can
be regarded as very informative if it has strong relations to several other
variables. Selecting e.g. APM from the strongly related subgroup of arterial
pressures and neglecting APD and APSYS for clinical monitoring is therefore
meaningful from both, a clinical and a statistical point of view. Applying these
principles leads us to select PAPM, APM, HR and Temp.

An alternative approach for dimension reduction is to extract latent vari-
ables from the observed time series capturing as much of the total variability
as possible. We scale the time series to unit variance and perform a dynamic
PCA based on correlations as described by Brillinger (1981). We use four
components, which is the minimal number of latent variables suggested by
the partial correlation graphs.

For obtaining meaningful latent variables we can extract one component
from each group of closely related variables applying dynamic PCA separately
to each group. This corresponds to extracting factors as in model (2) with the
Λ(u) being restricted to be block-matrices. For heart rate and pulse, instead
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Fig. 2. Boxplots of the total explained variance (in percent): Dynamic PCA (left),
variable selection (middle), grouped factor analysis (right).

of extracting a latent variable, we select the heart rate as its measurement is
more reliable.

In the following we compare the percentage of variability explained by
variable selection, dynamic PCA and grouped factor analysis. This is done
via dynamic regression (Brillinger (1981)) of the observed variables on the
selected variables and on the extracted components, respectively. Then we in-
vestigate the total residual variance as well as the individual residual variance
for each variable.

Figure 2 shows that choosing the variables PAPM, APM, HR and Temp
indeed explains a large part of the total variability, but less than a dynamic
PCA with the same number of components, of course. Performing a grouped
factor analysis allows to regain some of this loss while still providing mean-
ingful latent variables. The variable selection explains more than 89% of the
total variability for half of the patients whereas the extracted factors do so
for about 75% of the patients.

Table 1 shows 5-point summaries of the explained variability for each
variable. The factors derived from the groups describe the variables included
in the selection very well. The explained variability increases substantially for
the variables not captured well by the variable selection, see CVP and APS.
When performing a standard dynamic PCA, the percentage of explained
variability is at least 87% for 75% of the patients and each of the variables,
which is rather high. However, these components are not meaningful to the
physician. Thus, extracting latent variables from groups of closely related
variables means a compromise between variable selection and factor analysis
as we capture more of the total variability and of the variables neglected in
the selection still working with interpretable variables.



Partial Correlation Graphs and Dynamic Latent Variables 7

Min 25% 50% 75% Max Min 25% 50% 75% Max

PAPS PAPM
PCA 78.3 88.9 92.4 93.8 96.8 92.7 96.3 97.5 98.0 98.5
VS 57.7 72.2 83.1 88.8 94.7 100.0 100.0 100.0 100.0 100.0

GFA 61.5 75.5 84.1 87.8 93.4 85.9 93.9 95.4 96.6 97.9

PAPD CVP
PCA 86.4 92.0 93.7 95.4 98.3 66.0 87.2 89.5 92.8 97.2
VS 70.5 79.5 84.8 89.7 95.2 15.3 46.9 68.0 76.4 92.5

GFA 75.6 83.3 87.5 90.7 96.4 23.6 62.1 80.4 85.2 95.4

HR PULS
PCA 88.8 94.6 95.3 97.1 98.7 88.2 95.1 96.6 97.7 98.8
VS 100.0 100.0 100.0 100.0 100.0 67.3 94.5 97.3 98.7 99.8

GFA 100.0 100.0 100.0 100.0 100.0 68.7 94.4 97.3 98.7 99.8

APS APM
PCA 77.9 89.4 92.7 94.8 96.8 91.6 96.3 97.3 97.7 99.2
VS 55.8 72.8 82.2 86.3 94.6 100.0 100.0 100.0 100.0 100.0

GFA 69.6 78.1 86.4 90.6 95.7 85.1 96.4 97.2 98.1 99.1

APD Temp
PCA 74.1 90.8 93.8 94.7 96.7 38.9 88.4 92.3 95.8 98.6
VS 69.2 84.7 85.9 89.6 94.3 100.0 100.0 100.0 100.0 100.0

GFA 74.7 85.8 89.7 92.8 96.0 100.0 100.0 100.0 100.0 100.0

Table 1. Percentage of variability explained by PCA, by a variable selection (VS)
and by a grouped factor analysis (GFA) for each variable.

4 Conclusion

Methods for dimension reduction aim at condensing the information provided
by a high-dimensional time series into a few essential variables. Partial cor-
relation graphs are a suitable tool to explore the relations among the observ-
able variables. This information allows an advanced application of dimension
reduction techniques. One possibility is to select suitable subsets of impor-
tant variables from the graphs. Alternatively, we can enhance latent variable
techniques. Deducing restrictions on the loading matrices from a graphical
model combines variable selection and PCA as the percentage of explained
variability is substantially higher than for a variable selection and we obtain
meaningful latent variables. In our study the groups of closely related vari-
ables obtained from the data analysis agree with the groups anticipated from
medical expertise. Therefore, we expect to gain reliable insights also in the
relations among other variables, for which we have less background knowl-
edge.
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