A. Introduction

Module 4:

Probabilistic expert systems

Module outline

- Information, uncertainty and probability
- Motivating examples
- Graphical models
- Probability propagation
- The HUGIN system

Motivating examples

- Simple applications of Bayes' theorem
- Markov chains and random walks
- Bayesian hierarchical models
- Forensic genetics
- Expert systems in medical and engineering diagnosis

The 'Asia' (chest-clinic) example

Visual representation of the Asia example - a graphical model
Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer, bronchitis, more than one of these diseases or none of them.

A recent visit to Asia increases the risk of tuberculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis.

The results of a single chest X-ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea.

The 'Asia' (chest-clinic) example
Now ... a patient presents with shortness-ofbreath (dyspnoea) How can the physician use available tests (X-ray) and enquiries about the patient's history (smoking, visits to Asia) to help to diagnose which, if any, of tuberculosis, lung cancer, or bronchitis is the patient probably suffering from?

An example from forensic genetics

DNA profiling based on STR's (single tandem repeats) are finding many uses in forensics, for identifying suspects, deciding paternity, etc. Can we use Mendelian genetics and Bayes' theorem to make probabilistic inference in such cases?

Surgical rankings

- 12 hospitals carry out different numbers of a certain type of operation:
$47,148,119,810,211,196,148,215,207$, 97, 256, 360 respectively.
- They are differently successful, and there are: $0,18,8,46,8,13,9,31,14,8,29,24$ fatalities, respectively.

Surgical rankings, continued

- What inference can we draw about the relative qualities of the hospitals based on these data?

B. Key ideas

- Does knowing the mortality at one hospital tell us anything at all about the other hospitals - that is, can we 'pool' information?

Key ideas in exact probability calculation in complex systems

- Graphical model (usually a directed acyclic graph)
- Conditional independence graph
- Decomposability
- Probability propagation: ‘messagepassing'

Let's motivate this with some simple examples....

Directed acyclic graph (DAG)

\ldots indicating that model is specified by $p(C)$, $p(B / C)$ and $p(A / B): p(A, B, C)=p(A / B) p(B / C) p(C)$

The corresponding Conditional independence graph (CIG) is

... encoding various conditional independence assumptions, e.g. $p(A, C \mid B)=p(A \mid B) p(C \mid B)$

DAG A B C	
CIG	
$p(A, B, C)=p(A, B) p(C \mid A, B)=p(A, B) p(C \mid B)$	
$=p(A, B) p(B, C)$	

CIG

$$
p(A, B, C, D, E)=\frac{p(A, B) p(B, C, D) p(C, D, E)}{p(B) p(C, D)}
$$

$$
\begin{aligned}
p(A, B, C, D, E) & =p(A, B) p(C, D \mid A, B) p(E \mid A, B, C, D) \\
& =p(A, B) p(C, D \mid B) p(E \mid C, D) \\
& =\frac{p(A, B) p(B, C, D) p(C, D, E)}{p(B) p(C, D)}
\end{aligned}
$$

CIG

Is decomposability a serious constraint?

$$
\sigma^{\text {out of }} \mathbf{2}^{\binom{n}{2}}
$$

- How many graphs are decomposable?

Number of vertices	Proportion of graphs that are decomposable
≤ 3	all
4	$61 / 64-$ all but:
6	$\sim 80 \%$
16	$\sim 45 \%$

- Models using decomposable graphs are 'dense'

Is decomposability any use?

- Maximum likelihood estimates can be computed exactly in decomposable models

$$
\stackrel{(1)-(3)}{(4)-(3)} \Longrightarrow \hat{E}\left(N_{i j k 1}\right)=\frac{n_{i j+1} n_{+j k l}}{n_{+j+1}}
$$

- Decomposability is a key to the 'message passing' algorithms for probabilistic expert systems (and peeling genetic pedigrees)

Cliques

A clique is a maximal complete subgraph: here the cliques are
$\{1,2\},\{2,6,7\},\{2,3,6\}$, and $\{3,4,5,6\}$

C. The works

Exact probability calculation in complex systems
0. Start with a directed acyclic graph

1. Find corresponding Conditional Independence Graph
2. Ensure decomposability
3. Probability propagation: 'messagepassing'
4. Finding the (undirected) conditional independence graph for a given DAG

- Step 1: moralise (parents must marry)

1. Finding the (undirected) conditional independence graph for a given DAG

- Step 2: drop directions

2. Ensuring decomposability triangulate

If the distribution $p(X)$ has a decomposable CIG, then it can be written in the following potential representation form:

$$
p(X)=\frac{\prod_{\text {olquess }} \psi\left(X_{c}\right)}{\prod_{\text {separatorss }} \psi\left(X_{s}\right)}
$$

the individual terms are called potentials; the representation is not unique

2. Ensuring decomposability

The potential representation

$$
p(X)=\frac{\prod_{\text {cliquesc }} \psi\left(X_{c}\right)}{\prod_{\text {separataross }} \psi\left(X_{S}\right)}
$$

can easily be initialised by

- assigning each DAG factor $p\left(X_{v} \mid X_{p a(v)}\right)$
to (one of) the clique(s) containing
$v \& p a(v)$
- setting all separator terms to 1

We can then manipulate the individual potentials, maintaining the identity

$$
p(X)=\frac{\prod_{\text {cliquesc }} \psi\left(X_{C}\right)}{\prod_{\text {separatorss }} \psi\left(X_{s}\right)}
$$

- first until the potentials give the clique and separator marginals,
- and subsequently so they give the marginals, conditional on given data.
- The manipulations are done by 'message-passing' along the branches of the junction tree

DAG

$\mathrm{A} \mid \mathrm{B}$	$\mathrm{A}=0$	$\mathrm{~A}=1$
$\mathrm{~B}=0$	$3 / 4$	$1 / 4$
$\mathrm{~B}=1$	$2 / 3$	$1 / 3$
$\mathrm{~B} \mid \mathrm{C}$	$\mathrm{B}=0$	$\mathrm{~B}=1$
$\mathrm{C}=0$	$3 / 7$	$4 / 7$
$\mathrm{C}=1$	$1 / 3$	$2 / 3$
$\mathrm{C}=0$.7	
$\mathrm{C}=1$.3	

$p(A, B, C)=p(A \mid B) p(B \mid C) p(C)$
Wish to find $p(B \mid A=0), p(C \mid A=0)$

Problem setup

We now have a valid potential representation

$$
\begin{gathered}
p(X)=\frac{\prod_{\text {cliquesc }} \psi\left(X_{C}\right)}{\prod_{\text {separatorors }} \psi\left(X_{s}\right)} \\
p(A, B, C)=\frac{\psi(A, B) \psi(B, C)}{\psi(B)}
\end{gathered}
$$

but individual potentials are not yet marginal distributions

We now have a valid potential representation where individual potentials are marginals:

$$
\begin{array}{r}
p(X)=\frac{\prod_{\text {cliquesc }} p\left(X_{C}\right)}{\prod_{\text {separatorss }} p\left(X_{s}\right)} \\
p(A, B, C)=\frac{p(A, B) p(B, C)}{p(B)}
\end{array}
$$

We now have a valid potential representation

$$
\begin{aligned}
p(X) & =\frac{\prod_{\text {cliquesc }} \psi\left(X_{C}\right)}{\prod_{\text {separatorss }} \psi\left(X_{s}\right)} \\
p(A, B, C) & =\frac{\psi(A, B) \psi(B, C)}{\psi(B)}
\end{aligned}
$$

where

$$
\psi\left(X_{E}\right)=p\left(X_{E} \cap\{A=0\}\right)
$$

for any clique or separator E
Propagating evidence (2)

Scheduling messages

There are many valid schedules for passing messages, to ensure convergence to stability in a prescribed finite number of moves.

The easiest to describe uses an arbitrary root-clique, and first collects information from peripheral branches towards the root, and then distributes messages out again to the periphery

Scheduling messages

Scheduling messages

Scheduling messages

When 'evidence' is introduced - the value set for a particular node, all that is needed to propagate this information through the D. Applications graph is to pass messages out from that node

An example from forensic genetics

DNA profiling based on STR's (single tandem repeats) are finding many uses in forensics, for identifying suspects, deciding paternity, etc. Can we use Mendelian genetics and Bayes' theorem to make probabilistic inference in such cases?

Graphical model for a paternity enquiry - neglecting mutation
Having observed the genotype of the child, mother and putative father, is the putative father the true father?
Suppose we are looking at a gene with only 3 alleles 10,12 and ' x ', with population frequencies 28.4\%, 25.9\%, 45.6\% the child is $10-12$, the mother 10-10, the putative father 12-12

Graphical model for a paternity enquiry - neglecting mutation

\Rightarrow we're 79.4% sure the putative father is the true father

Graphical model for a paternity enquiry - allowing mutation

DNA forensics example
 (thanks to Julia Mortera)

- A blood stain is found at a crime scene
- A body is found somewhere else!
- There is a suspect
- DNA profiles on all three - crime scene sample is a 'mixed trace': is it a mix of the victim and the suspect?

DNA forensics in Hugin

- Disaggregate problem in terms of paternal and maternal genes of both victim and suspect.
- Assume Hardy-Weinberg equilibrium
- We have profiles on 8 STR markers treated as independent (linkage equilibrium)

DNA forensics

The data:

Marker	Victim	Suspect	Crime scene
D3S1358	1818	1616	1618
VWA	1717	1718	1718
TH01	67	67	67
TPOX	88	811	811
D5S818	1213	1212	1213
D13S317	88	811	811
FGA	2226	2425	22242526
D7S820	810	811	81011

2 of 8 markers show more than 2 alleles at crime scene \Rightarrow mixture of 2 or more people

DNA forensics

Population gene frequencies for D7S820 (used as 'prior' on 'founder' nodes):

Allele	probability
8	.185
10	.135
11	.234
x	.233
y	.214

DNA forensics

Results (suspect+victim vs. unknown+victim):

Marker	Victim	Suspect	Crime scene	Likelihood ratio (sv/uv)	
D3S1358	1818	1616	1618	11.35	
VWA	1717	1718	1718	15.43	
TH01	67	67	67	5.48	
TPOX	88	811	811	3.00	
D5S818	1213	1212	1213	14.79	
D13S317	88	811	811	24.45	
FGA	2226	2425	22242526	76.92	
D7S820	810	811	81011	4.90	
Overall					

Surgical rankings

- 12 hospitals carry out different numbers of a certain type of operation:
47, 148, 119, 810, 211, 196, 148, 215, 207,
$97,256,360$ respectively.
- They are differently successful, and there are: $0,18,8,46,8,13,9,31,14,8,29,24$
fatalities, respectively.

Surgical rankings, continued

- What inference can we draw about the relative qualities of the hospitals based on these data?
- A natural model is to say the number of deaths y_{i} in hospital i has a Binomial distribution $y_{i} \sim \operatorname{Bin}\left(n_{i} p_{i}\right)$ where the n_{i} are the numbers of operations, and it is the p_{i} that we want to make inference about.

Surgical rankings, continued

- How to model the p_{i} ?
- We do not want to assume they are all the same.
- But they are not necessarily `completely different'.
- In a Bayesian approach, we can say that the p_{i} are random variables, drawn from a common distribution.

Surgical rankings, continued

- Specifically, we could take

$$
\log \frac{p_{i}}{1-p_{i}} \sim N\left(\theta, \sigma^{2}\right)
$$

- If θ and σ^{2} are fixed numbers, then inference about p_{i} only depends on y_{i} (and n_{i}, θ and σ^{2}).

Graph for surgical rankings

Surgical rankings, continued

- But don't you think that knowing that $p_{1}=0.08$, say, would tell you something about p_{2} ?
- Putting prior distributions on θ and σ^{2} allows `borrowing strength' between data from different hospitals

Surgical rankings - simplified
3 hospitals, p discrete, only one hyperparameter

Surgical rankings

The 'Asia' (chest-clinic) example
Shortness-of-breath (dyspnoea) may be due to tuberculosis, lung cancer, bronchitis, more than one of these diseases or none of them. A recent visit to Asia increases the risk of tuberculosis, while smoking is known to be a risk factor for both lung cancer and bronchitis. The results of a single chest X-ray do not discriminate between lung cancer and tuberculosis, as neither does the presence or absence of dyspnoea.

Visual representation of the Asia example - a graphical model

The 'Asia' (chest-clinic) example

Now ... a patient presents with shortness-ofbreath (dyspnoea) How can the physician use available tests (X-ray) and enquiries about the patient's history (smoking, visits to Asia) to help to diagnose which, if any, of tuberculosis, lung cancer, or bronchitis is the patient probably suffering from?

E. Proofs

Decomposability

The following are equivalent

- G is decomposable
- G is triangulated (or chordal)
- The cliques of G may be 'perfectly numbered' to satisfy the running intersection property

$$
C_{i} \cap \bigcup_{j<i} C_{j} \subseteq C_{i} \forall i=2,3, \ldots, k
$$

where $i^{*} \in\{1,2, \ldots, i-1\}$
Factorisation of joint distribution, forming potential representation, when graph is decomposable

$$
\text { where } i^{*} \in\{1,2, \ldots, i-1\}
$$

Decomposability

G is decomposable means that either

- G is complete, or
- G admits a proper decomposition (A, B, C), that is:
- B separates A and C
- B is complete, A and C are non-empty
- the subgraphs $G_{A \cup B}$ and $G_{B \cup C}$ are decomposable

Decomposability

G is triangulated or chordal means that

- G has no loops of 4 or more vertices without a chord

The junction tree

For $i=2,3, \ldots, k$, join C_{i} to $C_{i^{*}}$, labelling the edge by S_{i}

A decomposable graph and (one of) its junction tree(s)

267
236 $34-346$ 12

Decomposability

In

$$
C_{i} \cap \bigcup_{j<i} C_{j} \subseteq C_{i} \forall i=2,3, \ldots, k
$$

let

$$
S_{i}=C_{i} \cap \cup_{j<i} C_{j}
$$

$$
R_{i}=C_{i} \backslash S_{i}^{i<i}
$$

$$
H_{i-1}=\bigcup \bigcup_{j<i} C_{j}
$$

then
$S_{i}=C_{i} \cap H_{i-1} \subseteq C_{i} \forall i=2,3, \ldots, k$

Decomposability

Factorisation of joint distribution

Recall $H_{i-1}=\bigcup \bigcup_{j<i} C_{j}$, then
$p(V)=p\left(H_{1}\right) p\left(C_{2} \backslash H_{1} \mid H_{1}\right) \times$

$$
p\left(C_{3} \backslash H_{2} \mid H_{2}\right) \ldots p\left(C_{k} \backslash H_{k-1} \mid H_{k-1}\right)
$$

but the typical factor is
$p\left(C_{i} \backslash H_{i-1} \mid H_{i-1}\right)=p\left(R_{i} \mid H_{i-1}\right)$
$=p\left(R_{i} \mid S_{i}\right)=\frac{p\left(R_{i}, S_{i}\right)}{p\left(S_{i}\right)}=\frac{p\left(C_{i}\right)}{p\left(S_{i}\right)}$

Factorisation of joint distribution
So

$$
p(V)=\frac{\prod_{i=1}^{k} p\left(C_{i}\right)}{\prod_{i=2}^{k} p\left(S_{i}\right)}
$$

as required

Scheduling messages

There are many valid schedules for passing messages, to ensure convergence to stability in a prescribed finite number of moves.

The easiest to describe uses an arbitrary root-clique, and first collects information from peripheral branches towards the root, and then distributes messages out again to the periphery

Scheduling messages

Scheduling messages

Consider a single edge of the junction tree

IJ

(I, J and K may be vectors)

- Edge is in equilibrium if J table is equal to J marginal in both IJ and JK tables
- Tree is in equilibrium if every edge is

Consider a single edge of the junction tree

Messages are [1] passed into IJ, then [2] from IJ to JK, then [3] from JK to root and back to JK, then [4] from JK to IJ, then [5] from IJ to 'leaves' of tree.

Messages passed from JK to root and back to JK

As a result, JK table gets multiplied by a term indexed by (j,k) - but not i

Messages passed from IJ back to leaves

IJ, J and JK tables are not changed again

Final tables

- satisfy equilibrium conditions

Software

- The HUGIN system: freeware version (Hugin Lite 5.7):
http://www.stats.bris.ac.uk/~peter/Hugin57.zip
- Grappa (suite of R functions) http://www.stats.bris.ac.uk/~peter/Grappa

Module outline

- Information, uncertainty and probability
- Motivating examples
- Graphical models
- Probability propagation
- The HUGIN system

