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Advanced Statistical Topics 2001-02

Module 4:

Probabilistic expert systems

A. Introduction

Module outline

• Information, uncertainty and probability
• Motivating examples
• Graphical models
• Probability propagation
• The HUGIN system 7 6 5

2 3 41

Motivating examples

• Simple applications of Bayes’ theorem
• Markov chains and random walks
• Bayesian hierarchical models
• Forensic genetics
• Expert systems in medical and 

engineering diagnosis

The ‘Asia’ (chest-clinic) example

The results of a single chest X-ray do not 
discriminate between lung cancer and 
tuberculosis, as neither does the presence or 
absence of dyspnoea. 

A recent visit to Asia increases the risk of 
tuberculosis, while smoking is known to be a risk 
factor for both lung cancer and bronchitis.

Shortness-of-breath (dyspnoea) may be due 
to tuberculosis, lung cancer, bronchitis, more 
than one of these diseases or none of them. 

+2

Visual representation of the Asia 
example - a graphical model
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The ‘Asia’ (chest-clinic) example

Now … a patient presents with shortness-of-
breath (dyspnoea) …. How can the physician 
use available tests (X-ray) and enquiries 
about the patient’s history (smoking, visits to 
Asia) to help to diagnose which, if any, of  
tuberculosis, lung cancer, or bronchitis is the 
patient probably suffering from?

An example from forensic 
genetics
DNA profiling based on STR’s (single tandem 

repeats) are finding many uses in forensics, 
for identifying suspects, deciding paternity, 
etc. Can we use Mendelian genetics and 
Bayes’ theorem to make probabilistic 
inference in such cases?

Graphical model for a paternity 
enquiry - allowing mutation

Having observed the genotype 
of the child, mother and 
putative father, is the putative 
father the true father?

Surgical rankings

• 12 hospitals carry out different numbers of a 
certain type of operation:
47, 148, 119, 810, 211, 196, 148, 215, 207, 
97, 256, 360 respectively. 

• They are differently successful, and there are:
0, 18, 8, 46, 8, 13, 9, 31, 14, 8, 29, 24
fatalities, respectively.

Surgical rankings, continued

• What inference can we draw about the 
relative qualities of the hospitals based on 
these data?

• Does knowing the mortality at one hospital 
tell us anything at all about the other hospitals 
- that is, can we ‘pool’ information?

B. Key ideas
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Key ideas in exact probability 
calculation in complex systems
• Graphical model (usually a directed 

acyclic graph)
• Conditional independence graph
• Decomposability
• Probability propagation: ‘message-

passing’

Let’s motivate this with some simple 
examples….

+1

A B C

A B C

Directed acyclic graph (DAG)

… indicating that model is specified by p(C), 
p(B|C) and p(A|B): p(A,B,C) = p(A|B)p(B|C)p(C)

The corresponding Conditional independence 
graph (CIG) is

… encoding various conditional independence 
assumptions, e.g. p(A,C|B) = p(A|B)p(C|B)

since               
definition of p(C|B)true for any A, B, C

A B C

A B C

DAG

CIG
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An important concept in processing 
information through undirected graphs 
is  decomposability
(= graph triangulated
= no chordless

-cycles)

Decomposability

7 6 5

2 3 41

4≥

• How many graphs are decomposable?

• Models using decomposable graphs are 
‘dense’

Number of
vertices

Proportion of graphs
that are
decomposable

3≤ all
   4 61/64 – all but:
   6 ~80%
 16 ~45%

Is decomposability a serious constraint?
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Is decomposability any use?

• Maximum likelihood estimates can be 
computed exactly in decomposable 
models

• Decomposability is a key to the 
‘message passing’ algorithms for 
probabilistic expert systems (and 
peeling genetic pedigrees)
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Cliques

A clique is a maximal complete subgraph: 
here the cliques are                   
{1,2},{2,6,7}, {2,3,6}, and {3,4,5,6}

7 6 5

2 3 41
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7 6 5

2 3 41

12

267 236 345626 36

2

a clique
another clique
a separator

A graph is decomposable
if and only if it can be 
represented by a
junction tree (which is
not unique) 

The running intersection property:
For any 2 cliques C and D, C∩D 
is a subset of every node between 
them in the junction tree

Non-uniqueness
of junction tree

7 6 5

2 3 41

12

267 236 345626 36

2

7 6 5

2 3 41

12

267 236 345626 36

2

12

2

Non-uniqueness
of junction tree

C. The works

Exact probability calculation in 
complex systems
0. Start with a directed acyclic graph
1. Find corresponding Conditional 

Independence Graph
2. Ensure decomposability
3. Probability propagation: ‘message-

passing’

1. Finding the (undirected) conditional 
independence graph for a given DAG

• Step 1: moralise (parents must marry)

D E

CA B

F

D E

CA B

F
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1. Finding the (undirected) conditional 
independence graph for a given DAG

• Step 2: drop directions

D E

CA B

F

D E

CA B

F

D E

CA

B

F

2. Ensuring decomposability

5 6 7

10 11

16

2

5 6 7

10 11

16

2

2. Ensuring decomposability
…. triangulate

5 6 7

10 11

16

2

5 6 7

10 11

16

2

5 6 7

10 11

16

2

3. Probability propagation

5 6 7

10 11

16

2

2 5 6 7

5 6 7 11

5 6 10 11

10 11 16

5 6 7

5 6 11

10 11form 
junction 
tree
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If the distribution p(X) has a decomposable 
CIG, then it can be written in the following 
potential representation form:

the individual terms are called potentials; 
the representation is not unique
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The potential representation

can easily be initialised by 
• assigning each DAG factor                             
to (one of) the clique(s) containing 
v & pa(v)
• setting all separator terms to 1

)|( )(vpav XXp
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We can then manipulate the individual 
potentials, maintaining the identity

• first until the potentials give the clique 
and separator marginals,
• and subsequently so they give the 
marginals, conditional on given data.
• The manipulations are done by 
‘message-passing’ along the branches of 
the junction tree

A B CDAG

2/31/3C=1
4/73/7C=0

B=1B=0

1/32/3B=1

1/43/4B=0

A=1A=0

.3C=1

.7C=0B|CA|B

p(A,B,C) = p(A|B)p(B|C)p(C)

Problem setup

Wish to find p(B|A=0) , p(C|A=0)

AB BCB

A B C

A B C

DAG

CIG

JT

Transformation of graph

.2.4B=1

.1.3B=0

C=1C=0

1/32/3B=1

1/43/4B=0

A=1A=0

AB BCB

A B C

2/31/3C=1
4/73/7C=0

B=1B=0

1/32/3B=1

1/43/4B=0

A=1A=0

.3C=1

.7C=0B|CA|B

Initialisation of potential representation

1B=1

1B=0
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We now have a valid potential representation

)(
),(),(),,(

B
CBBACBAp

ψ
ψψ=

but individual potentials are not yet 
marginal distributions

.2.4B=1

.1.3B=0

C=1C=0

1/32/3B=1

1/43/4B=0

A=1A=0

AB BCB

A B C

Passing message from BC to AB (1)

1B=1

1B=0

.6B=1

.4B=0

1/3 ×.6/12/3 ×.6/1B=1
1/4 ×.4/13/4×.4/1B=0

A=1A=0

marginalisemultiply



8

.2.4B=1

.1.3B=0

C=1C=0

.2.4B=1

.1.3B=0

A=1A=0

AB BCB

A B C

Passing message from BC to AB (2)

.6B=1

.4B=0

.6B=1

.4B=0

1/3 ×.6/12/3 ×.6/1B=1
1/4 ×.4/13/4×.4/1B=0

A=1A=0

assign

AB BCB

.2.4B=1

.1.3B=0

C=1C=0

.2.4B=1

.1.3B=0

A=1A=0

.6B=1

.4B=0

A B C

After equilibration - marginal tables
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We now have a valid potential representation 
where individual potentials are marginals:

)(
),(),(),,(

Bp
CBpBApCBAp =

AB BCB

.2.4B=1

.1.3B=0

C=1C=0

0.4B=1

0.3B=0

A=1A=0

.6B=1

.4B=0

A B C

.4B=1

.3B=0

.2 ×.4/.6.4 ×.4/.6B=1

.1 ×.3/.4.3×.3/.4B=0

C=1C=0

Propagating evidence (1)

Propagating evidence (2)

AB BCB

.133.267B=1

.075.225B=0

C=1C=0

0.4B=1

0.3B=0

A=1A=0

.4B=1

.3B=0

A B C

.4B=1

.3B=0

.2 ×.4/.6.4 ×.4/.6B=1

.1 ×.3/.4.3×.3/.4B=0

C=1C=0
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We now have a valid potential representation
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B
CBBACBAp

ψ
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})0{()( =∩= AXpX EEψ
where

for any clique or separator E
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AB BCB

.133.267B=1

.075.225B=0

C=1C=0

0.4B=1

0.3B=0

A=1A=0

.4B=1

.3B=0

A B C

.298.702
.7.208.492

totalC=1C=0

.571.429
.7.4.3

totalB=1B=0

Propagating evidence (3)

Scheduling messages

There are many valid schedules for 
passing messages, to ensure 
convergence to stability in a prescribed 
finite number of moves.

The easiest to describe uses an arbitrary 
root-clique, and first collects information 
from peripheral branches towards the root, 
and then distributes messages out again 
to the periphery

Scheduling messages

rootroot

Scheduling messages

rootroot

Scheduling messages

When ‘evidence’ is introduced - the value 
set for a particular node, all that is needed 
to propagate this information through the 
graph is to pass messages out from that 
node.

D. Applications
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An example from forensic 
genetics
DNA profiling based on STR’s (single tandem 

repeats) are finding many uses in forensics, 
for identifying suspects, deciding paternity, 
etc. Can we use Mendelian genetics and 
Bayes’ theorem to make probabilistic 
inference in such cases?

Graphical model for a paternity 
enquiry - neglecting mutation

Having observed the genotype 
of the child, mother and 
putative father, is the putative 
father the true father?

Graphical model for a paternity 
enquiry - neglecting mutation
Having observed the genotype of the child, mother 
and putative father, is the putative father the true 
father?

Suppose we are looking at 
a gene with only 3 alleles -
10, 12 and ‘x’, with 
population frequencies 
28.4%, 25.9%, 45.6% -
the child is 10-12, the 
mother 10-10, the putative 
father 12-12

Graphical model for a paternity 
enquiry - neglecting mutation

⇒ we’re 79.4% sure the putative father is the true father

Graphical model for a paternity 
enquiry - allowing mutation

Having observed the genotype 
of the child, mother and 
putative father, is the putative 
father the true father?

DNA forensics example
(thanks to Julia Mortera)

• A blood stain is found at a crime scene
• A body is found somewhere else!
• There is a suspect
• DNA profiles on all three - crime scene 

sample is a ‘mixed trace’: is it a mix of 
the victim and the suspect?
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DNA forensics in Hugin

• Disaggregate problem in terms of 
paternal and maternal genes of both 
victim and suspect.

• Assume Hardy-Weinberg equilibrium
• We have profiles on 8 STR markers -

treated as independent (linkage 
equilibrium)

DNA forensics

The data:

2 of 8 markers show more than 2 alleles at 
crime scene ⇒mixture of 2 or more people

Marker Victim Suspect Crime scene
D3S1358 18  18 16  16 16  18
VWA 17  17 17  18 17  18
TH01 6  7 6  7 6  7
TPOX 8  8 8  11 8  11
D5S818 12  13 12  12 12  13
D13S317 8  8 8  11 8 11
FGA 22  26 24  25 22  24  25  26
D7S820 8  10 8  11 8  10  11

DNA forensics in Hugin

Allele probability
8 .185
10 .135
11 .234
x .233
y .214

hugin

DNA forensics

Population gene frequencies for D7S820 (used 
as ‘prior’ on ‘founder’ nodes):

DNA forensics

Results (suspect+victim vs. unknown+victim):

Marker Victim Suspect Crime scene Likelihood
ratio (sv/uv)

D3S1358 18  18 16  16 16  18 11.35
VWA 17  17 17  18 17  18 15.43
TH01 6  7 6  7 6  7 5.48
TPOX 8  8 8  11 8  11 3.00
D5S818 12  13 12  12 12  13 14.79
D13S317 8  8 8  11 8 11 24.45
FGA 22  26 24  25 22  24  25  26 76.92
D7S820 8  10 8  11 8  10  11 4.90
overall 3.93×108
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Surgical rankings

• 12 hospitals carry out different numbers of a 
certain type of operation:
47, 148, 119, 810, 211, 196, 148, 215, 207, 
97, 256, 360 respectively. 

• They are differently successful, and there are:
0, 18, 8, 46, 8, 13, 9, 31, 14, 8, 29, 24
fatalities, respectively.

Surgical rankings, continued

• What inference can we draw about the 
relative qualities of the hospitals based on 
these data?

• A natural model is to say the number of 
deaths yi in hospital i has a Binomial 
distribution yi ~ Bin(ni,pi) where the ni are the 
numbers of operations, and it is the pi that we 
want to make inference about.

Surgical rankings, continued

• How to model the pi?
• We do not want to assume they are all the 

same.
• But they are not necessarily `completely 

different'.
• In a Bayesian approach, we can say that the 

pi are random variables, drawn from a 
common distribution.

Surgical rankings, continued

• Specifically, we could take

• If θ and σ2 are fixed numbers, then inference 
about pi only depends on yi (and ni, θ and σ2).

),(~
1

log 2σθN
p

p
i

i

−

Graph for surgical rankings

iy

in ip

θ σ

Surgical rankings, continued

• But don't you think that knowing that p1=0.08,
say, would tell you something about p2?

• Putting prior distributions on θ and σ2 allows 
`borrowing strength' between data from 
different hospitals
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Surgical rankings - simplified
3 hospitals, p discrete, only one hyperparameter

Surgical rankings - simplified

prior for θ prior for pi given θ

Surgical 
rankings

Surgical 
rankings

The ‘Asia’ (chest-clinic) example

Shortness-of-breath (dyspnoea) may be due to 
tuberculosis, lung cancer, bronchitis, more 
than one of these diseases or none of them. 
A recent visit to Asia increases the risk of 
tuberculosis, while smoking is known to be a 
risk factor for both lung cancer and bronchitis. 
The results of a single chest X-ray do not 
discriminate between lung cancer and 
tuberculosis, as neither does the presence or 
absence of dyspnoea. 

Visual representation of the Asia 
example - a graphical model
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The ‘Asia’ (chest-clinic) example

Now … a patient presents with shortness-of-
breath (dyspnoea) …. How can the physician 
use available tests (X-ray) and enquiries 
about the patient’s history (smoking, visits to 
Asia) to help to diagnose which, if any, of  
tuberculosis, lung cancer, or bronchitis is the 
patient probably suffering from?

E. Proofs

E. Proofs 

Factorisation of joint distribution, 
forming potential representation,  
when graph is decomposable

Decomposability

The following are equivalent
• G is decomposable
• G is triangulated (or chordal)
• The cliques of G may be ‘perfectly numbered’ 

to satisfy the running intersection property

kiCCC ij
ij

i ,...,3,2* =∀⊆∩
<
U

where }1,...,2,1{* −∈ ii

Decomposability

G is decomposable means that either
• G is complete, or
• G admits a proper decomposition 

(A,B,C), that is:
– B separates A and C
– B is complete, A and C are non-empty
– the subgraphs          and            are 

decomposable
BAG ∪ CBG ∪

A decomposable 
graph

7 6 5

2 3 41

A B C
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Decomposability

G is triangulated or chordal means that 
• G has no loops of 4 or more vertices 

without a chord

7 6 5

2 3 41

Decomposability

The running intersection property

is what allows the construction of the 
junction tree and the possibility of 
probability propagation

kiCCC ij
ij

i ,...,3,2* =∀⊆∩
<
U

}1,...,2,1{* −∈ ii

The junction tree

For i=2,3,…,k, join         to        , labelling 
the edge by iS

iC *iC
A decomposable 
graph and (one of) 
its junction tree(s)

7 6 5

2 3 41

12

267 236 345626 36

2

Decomposability

In

let

then 

kiCCC ij
ij

i ,...,3,2* =∀⊆∩
<
U

j
ij

i CH
<

− = U1

iii SCR \=
j

ij
ii CCS

<
∩= U

kiCHCS iiii ,...,3,2*1 =∀⊆∩= −

Decomposability

j
ij

i CH
<

− = U1

iC

iii SCR \=

j
ij

ii CCS
<

∩= U

iS iR 1−iHseparates &
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Factorisation of joint distribution

j
ij

i CH
<

− = U1

×= )|\()()( 1121 HHCpHpVp

)|\()...|\( 11223 −− kkk HHCpHHCp

Recall                        , then

)|()|\( 111 −−− = iiiii HRpHHCp

)(
)(

)(
),()|(

i

i

i

ii
ii Sp

Cp
Sp

SRpSRp ===

but the typical factor is

Factorisation of joint distribution

∏

∏

=

== k

i
i

k

i
i

Sp

Cp
Vp

2

1

)(

)(
)(

So

as required

E. Proofs 

The collect/distribute schedule 
ensures equilibrium in message-
passing

Scheduling messages

There are many valid schedules for 
passing messages, to ensure 
convergence to stability in a prescribed 
finite number of moves.

The easiest to describe uses an arbitrary 
root-clique, and first collects information 
from peripheral branches towards the root, 
and then distributes messages out again 
to the periphery

Scheduling messages

rootroot

Scheduling messages

rootroot
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IJ JKJ

Consider a single edge of the junction tree

(I, J and K may be vectors)

• Edge is in equilibrium if J table is equal to J 
marginal in both IJ and JK tables

• Tree is in equilibrium if every edge is

IJ JKJ

Consider a single edge of the junction tree

Messages are [1] passed into IJ, then [2] 
from IJ to JK, then [3] from JK to root and 
back to JK, then [4] from JK to IJ, then [5] 
from IJ to ‘leaves’ of tree.

ija jb jkc

ija ∑
i

ija
j

i
ijjk

b

ac ∑

IJ JKJ

State before 
message passed 

from IJ to JK

State after 
message passed 

from IJ to JK

IJ JKJ

Messages passed from JK to root and back to JK

As a result, JK table gets multiplied by a term 
indexed by (j,k) - but not i

ija ∑
i

ija
jk

j

i
ijjk

d
b

ac
×

∑

( )
j

i
ijjkjk

b

adc 






∑
j

i
ijjk

k
jk

b

adc 














 ∑∑( )
j

ijjk
k

jk

b

adc 






∑

IJ JKJ

IJ JKJ

Messages passed from IJ back to leaves

IJ, J and JK tables are not changed again
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( )
j

i
ijjkjk

b

adc 






∑
j

i
ijjk

k
jk

b

adc 














 ∑∑( )
j

ijjk
k

jk

b

adc 






∑

IJ JKJ

Final tables

- satisfy equilibrium conditions

Software

• The HUGIN system: freeware version 
(Hugin Lite 5.7):
http://www.stats.bris.ac.uk/~peter/Hugin57.zip

• Grappa (suite of R functions)
http://www.stats.bris.ac.uk/~peter/Grappa

7 6 5

2 3 41

Module outline

• Information, uncertainty and probability
• Motivating examples
• Graphical models
• Probability propagation
• The HUGIN system 7 6 5

2 3 41


