
Grappa: R functions for probability propagation

Peter J. Green∗

University of Bristol, UK.

November 20, 2005

1 Introduction

Grappa is a suite of functions in R for calculating marginal and conditional probability distribu-
tions on collections of variables with finite state spaces, typically satisfying parsimonious conditional
independence assumptions. Typical applications are to expert systems and forensic genetics. It
does part of the job to the familiar Hugin system – for a summary of some relative advantages and
disadvantages, see Section 4. This document describes use of Grappa; familiarity with using R is
assumed.

Here is a familiar motivating example: the fictitious ‘Asia’ expert system from Lauritzen and
Spiegelhalter (1988), in Grappa:

query(’asia’,c(0.01,0.99))
query(’smoke’)
tab(c(’tb’,’asia’),,c(.05,.95,.01,.99),c(’yes’,’no’))
tab(c(’cancer’,’smoke’),,c(.1,.9,.01,.99),c(’yes’,’no’))
tab(c(’bronc’,’smoke’),,c(.6,.4,.3,.7),c(’yes’,’no’))
or(’tbcanc’,’tb’,’cancer’)
tab(c(’xray’,’tbcanc’),,c(.98,.02,.05,.95),c(’yes’,’no’))
tab(c(’dysp’,’tbcanc’,’bronc’),,c(.9,.1,.8,.2,.7,.3,.1,.9),c(’yes’,’no’))

pnmarg(’cancer’)

prop.evid(’asia’,’yes’)
prop.evid(’dysp’,’yes’)
prop.evid(’xray’,’no’)
pnmarg(’cancer’)

The code above is divided into 3 parts: in the first, conditional probability tables are defined,
implicitly linking all 8 variables into a DAG. The two values for each variable are named as yes
and no (tacitly for ‘asia’, ‘smoke’ and ’tbcanc’). In the second, the (prior) distribution of cancer
is output: the request to do so has automatically forced compilation and initialisation of the so-
called potential representation of the model. In the third part, evidence that three variables take
the indicated values: asia=yes, dysp=yes and xray=no is inserted; this evidence is propagated
through the graph, and the new (posterior) marginal distribution of cancer is output.

The following section of this guide describes how to perform each of these phases of the calcu-
lation on a general problem.

∗Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK.
Email: P.J.Green@bristol.ac.uk.

1

2 Using Grappa

2.1 Starting up Grappa

Grappa is supplied as an R source file, Grappa.R. Put this in your current working directory for
R, start up R, and type: source(’Grappa.R’).

2.2 Setting up conditional probability tables

Before starting to define a new model, you should delete any existing tables by running rmtables()
or clean().

The primitive function for setting up a conditional probability table (CPT) is tab. The speci-
fication for this is:

tab(vars,levels=dim(probs),probs,values,putsw=T)

The variables (vars) are typically specified as a character vector, for example, c(’cancer’,’smoke’),
although numerical ‘names’ are also permitted. The probability values, the conditional distribution
of the first-named variable given each possible setting of the others, are specified in the argument
probs, as a vector, or a matrix or array of dimensions appropriate to the number of variables. The
variables correspond to dimensions in the same order, and a vector of probabilities is used in the
usual R fashion, that is, ‘first subscript varies fastest’. If a matrix or array is given, levels can
be omitted and is then set to dim(probs). Otherwise, levels must be given explicitly, subject to
a default setting of c(2,2,...), that is 2 × 2 × · · ·, a table with all binary variables.

tab() returns the table as value, and if putsw is TRUE (the default) also assigns it to the table
database (see Subsection 3.9).

The set of values for a variable can be specified using the argument values; the default is
(1, 2, . . .). These values are used primarily in the annotation of tables that are output, but the
default integer indexing remains available.

The function query is a useful shorthand for setting up binary variables with no parents:
query(var,probs,values) is equivalent to tab(var,2,probs,values) with the default for probs
being (0.5, 0.5) and for values being c(’yes’,’no’).

Example. Assuming that the variable smoke has values already set to c(’yes’,’no’), the code

tab(c(’cancer’,’smoke’),,c(.1,.9,.01,.99),c(’yes’,’no’))

sets up a 2 × 2 table for cancer given smoke, with the conditional probabilities p(cancer =
yes|smoke = yes) = 0.1, p(cancer = no|smoke = yes) = 0.9, p(cancer = yes|smoke = no) = 0.01
and p(cancer = no|smoke = no) = 0.99.

This example could have been written
tab(c(’cancer’,’smoke’),,matrix(c(0.1,0.9,0.01,0.99),2,2),c(’yes’,’no’)) with equal
effect.

The table set up by these commands has the form

> t.cancer.smoke
smoke=yes smoke=no

cancer=yes 0.1 0.01
cancer=no 0.9 0.99

2

2.3 Reading off marginal distributions

To print the (normalised) marginal distribution of a variable at any stage, just type pnmarg(var);
for example, pnmarg(’cancer’).

Marginals for all variables simultaneously can be obtained using the function fq(), or for a
specified set of variables by, e.g. fq(c(’var1’,’var2’,var3’)). This prints out a compact table
of probabilities, and also returns the table invisibly as a numerical matrix, one column for each
variable. It takes options overriding its default behaviour: print=F suppresses printing, trans=T
transposes the table, and values=T annotates the output with the assigned value sets for each
variable (only when trans=T). The probabilities are rounded to digits digits, default 5.

Joint marginals for 2 or more variables in the same clique are also easily obtained, by calling for
example joint(c(’var1’,’var2’,var3’)). Joint distributions for variables in different cliques
cannot be obtained directly.

2.4 Inserting evidence and propagating its effect

If data (or ‘evidence’) is introduced, we want to recompute all probabilities conditional on this (and
conditional on all evidence already introduced). This is done with the prop.evid function:

prop.evid(var,value,usevs=F,quiet=!getOption(’verbose’))

For example, prop.evid(’asia’,’yes’). The value of the observed variable may be given either
as an integer index, or as the corresponding element of the value set for that variable, vs.var. If
there is ambiguity, that is, if the elements of the value set are numerical, then the given value is
treated as an index, unless the argument usevs is set to TRUE to force use of the value set.

Entries of the table for one of the cliques containing var are updated to reflect the evidence,
and this is then propagated through the junction tree, permanently modifying the potential repre-
sentation (see the next section for more about these technical terms). This is done silently if quiet
is TRUE.

3 Some more technical details

3.1 Compiling

To compile your graph, simply type

compile()

By default, this is done automatically when it is needed, under most circumstances: see Section
3.3.

This computation has two steps, which can be executed separately if desired:

makeadj() – the tables database is scanned, the variables in the model are listed in var.names,
and the adjacency matrix of the moral graph created in j.adj.

mcwh() – the adjacency graph is csanned, eliminating vertices one-by-one using the minimum clique
weight heuristic (Kjaerulff, 1990); cliques and separators are identified, and indexed in j.cq
and j.sp. If the graph is not decomposable, this will be discovered, and edges added to the
graph to make it decomposable if necessary. Cliques and separators are processed, forming
a junction tree in j.tree. This function also checks that the graph is connected, and exits
with an error message if not.

Optionally, the call to mcwh() is replaced by calls to:

3

mcs() – maximum cardinality search is performed using the data in this matrix: cliques and
separators are identified, and indexed in j.cq and j.sp. If the graph is not decomposable,
this will be discovered, and edges added to the graph to make it decomposable if necessary:
these are listed in j.joined, and

makejt() – the cliques and separators are processed, forming a junction tree in j.tree. This
function also checks that the graph is connected, and exits with an error message if not.

To force use of mcs() and makejt(), set options(usemcs=TRUE).
All these steps create and use global variables, overwriting any previous contents: j.adj, j.cq,

j.sp, j.tree, var.names, and var.nvals. The original probability tables are not altered by these
calculations.

Further, if the probabilities in the CPTs (or even the number of values of variables, or the names
of those values) are changed subsequently, but the topology of the graph left unaltered, there is no
need to repeat the compile() call. This is useful in applications where the tables are repeatedly
changed within a loop.

These functions produce output reporting their activity, under the control of the logical ar-
gument quiet, whose default is !getOption(’verbose’); quiet is the first argument to each of
compile, makeadj, mcs and makejt. So with the usual default setting of R option verbose to FALSE,
compile() completes the whole process silently, while following the call options(verbose=TRUE),
full details will be reported.

Following compilation, a compact representation of the junction tree, including the membership
of all cliques and separators, can be obtained by typing jt().

3.2 Initialising the potential representation

The system is ‘equilibrated’ by initialising the tables for the clique/separator potential representa-
tion of the joint distribution, and passing messages around the junction tree until the clique and
separator tables hold the respective marginals. These two steps are accomplished by typing

equil()

By default, this is done automatically when it is needed, under most circumstances: see Section
3.3.

This computation has two steps, which can be executed separately if desired:

initcliqs() – sets up var.nvals, then the clique and separator tables in the global lists tcq and
tsep respectively, overwriting any previous contents. Subsequent propagation commands
manipulate these tables.

trav() – uses the ‘collect/distribute’ propagation strategy of Jensen, Olesen and Andersen(1990),
centred on an arbitrary root-clique, to equilibrate the potential representation.

All of equil, initcliqs and trav also take the quiet argument, as in Subsection 3.1 above.

3.3 Automatic compilation and equilibration

Under most circumstances, the compilation and equilibration phases of the computation are initi-
ated automatically. Automatic initiation is suppressed if the option auto is set to FALSE by typing
options(auto=FALSE).

Every time a CPT is inserted into the table database, a logical variable needequil is set to
TRUE; unless it replaces a previous table involving the same variables, it also sets needcomp to TRUE.

Functions such as joint, nm, pnmarg, prop.evid and simulate which require the potential
representation to be complete and equilibrated, initiate compilation and equilibration as required.

4

3.4 Using compiled low-level code

Except in small models, the computation involved to create the cliques, and to (re-)equilibrate
the potential representation can be time-consuming in R. Fortran code for these operations is also
provided, and if an appropriately-named dynamically linked library found in the current working
directory, this is loaded and used. If it is not found, then the R version of the code is used instead.
The results are identical with either version, but the Fortran version provides a considerable speed-
up on large graphs.

The library is called Grappa.dll in Windows, Grappa.so in Linux, and in general will be
Grappa with the extension .Platform$dynlib.ext.

The functions compile(), equil(), mcs() and trav() have an argument uselib: if TRUE, the
library versions of these two functions are used. If uselib is missing, the default value is that set
by options(uselib=...), and if that is not set, TRUE is assumed. These defaults also apply to
compillation and equilibration automatically invoked.

There is (currently) no R version of mcwh(), so lack of access to the compiled code forces use
of mcs() and makejt() instead.

See the R documentation for instructions on how to compile the library.

Under Windows, the command is
Rcmd SHLIB *.f -o Grappa.dll

Under Cygwin in Windows, do the same, having created a file Makevars.win with the line
PKG_LIBS = -mno-cygwin
in the same directory.

Under Linux, type
R SHLIB *.f -o Grappa.so

3.5 Retracting evidence

There is no direct way to retract evidence, unlike in some other programs for probability propagation
– it is necessary either

to re-initialise (as in Subsection 3.2), and re-enter any evidence that is not retracted, or

to use the stack manipulation functions in the following section, which allow the current state of the
clique and separator tables to be saved and returned to later, so that the effect of alternative
evidence values can be investigated.

3.6 Saving and restoring values of global variables

One disadvantage of the reliance of Grappa on global variables with pre-fixed names is that it
can be awkward to explore several models together, or investigate various parameter settings or
alternative evidence values.

A simple device for saving current values of selected global variables on a stack, and recovering
these values later, is provided to help to circumvent this.

Variables are ‘pushed’ (inserted) onto the stack (which is a global variable, a list called stack)
using the function push(var1,var2,. . .). The default is push(tcq,tsep), thus saving the current
clique and separator tables. Later, these variables can be ‘popped’ (recovered) from the stack
using pop(); this overwrites any more recent values for the saved global variables, and (by default)
removes the saved values from the stack. The stack operates on the usual ‘last in, first out’ basis.

5

The current contents of the stack are summarised by calling peek(); items most recently pushed
onto the stack are listed first.

In fact, the storage structure is a little more general than a simple stack. The function pop()
has two arguments: which to specify which item to pop, default the most recently pushed, and
keep, default FALSE, to specify whether the item should be left on the ‘stack’ after it is recovered.

3.7 Functions for setting up conditional probability tables for genetics applica-
tions

Applications in genetics tend to have features that can be exploited to produce particularly succinct
model specifications. These features include: ‘gene’ nodes usually having the same value (allele)
sets, ‘genotype’ nodes having values determined by the gene values, ‘mixture’ nodes representing
mixed traces (mixtures of two or more genotypes), founder nodes often all having the same distri-
butions (the population gene frequencies), and many of the CPTs representing simple genetic laws
and logical relationships, such as that between a child’s gene and those of its parents (Mendel’s
law), and the rule determining a genotype from the two genes.

All of these features are provided using the following functions in Grappa:

founder(g,freq)
genotype(gt,mg,pg,nall)
mendel(cg,tmg,tpg,nall)
select(tfg,pfg,tfeqpf,freq)
mix(mix,agt,bgt,nall)
or(p,q,r,qv=c(T,F),rv=c(T,F))
and(p,q,r,qv=c(T,F),rv=c(T,F))
by(v,v1,v2,...)
which(v,w,lw=1:ll,...)

Before using these, it is useful to set two key global variables: vs.alleles and gene.freq. For
example:

vs(’alleles’,c(’8’,’10’,’11’,’x’))
gene.freq<<-c(.184884,.134884,.233721,.446511)

The default value of the freq argument of the functions above is gene.freq, and that of the
‘number of alleles’ argument nall to the length of gene.freq or vs.alleles. Also all nodes are
given default value sets based on the allele names.

The purpose of the functions should be self-evident; one possible exception is
select(tfg,pfg,tfeqpf,freq), which is useful in paternity testing and in models with simple
mutation: if tfeqpf takes its first value, tfg is a copy of pfg, otherwise it is drawn randomly from
freq.

The functions or and and create tables in which p is a deterministic function of q and r –
boolean ’or’ and ’and’ respectively. The qv and rv arguments specify the boolean values associated
with each of the values of the variables q and r. For example, if q and r have 3 and 4 values
respectively, and default value sets, then and(p,q,r,c(F,T,T),c(T,F,F,T)) specifies that p is
TRUE if ‘q is 2 or 3, and r is 1 or 4’, and FALSE otherwise.

The function by is useful in defining a variable to be used as an inferential ‘target’. The ‘output’
variable v takes a different value for each combination of values of the input variables v1,v2,v3,...;
these values are used in the usual first-variable-varies-fastest fashion. These variables must have
already been introduced in a previously created CPT, so that their numbers of values are known.

6

For example, if v1 and v2 both have three values, by(v,v1,v2) creates a table introducing a
variable v with 9 values, determined by v1,v2, with, for example, v=4 if v1=1 and v2=2.

The function which is a table specification function, used for multiple indexing or selection. It
has various uses, depending on the arguments given. The general form is which(v, w,..., lw=1:ll);
this makes a table for the (degenerate) conditional distribution of node v, given w and any other
(...) node arguments. A common use of which is to make binary selections, e.g.
which(’trace’,’guilty’,’suspectgt’,’altsuspectgt’).

If other node arguments (...) are given, but lw is absent, variable v is deterministically the
lv[l]’th of the remaining arguments. e.g. which(’a’,’i’,’b1’,’b2’,’b3’) means that a is
“bi”. If lw is also present, the selection is made indirectly through the index values in lw, for
example, which(’smg’,’pattern’,lv=c(3,3,3,3,2,1,3),’spg’,’aspg’,’pool’) sets ’smg’ to
be equal to the value of ’aspg’ if ’pattern’ is 6, to that of ’spg’ if ’pattern’ is 5, and otherwise
(’pattern’ is 1, 2, 3, 4 or 7) to that of ’pool’.

If there are no additional parent nodes (...), which makes a table where v is lw[i] when w is
i e.g.

> t.a
a=A B C D
0.25 0.25 0.25 0.25
> which(’b’,’a’,lw=c(3,1,2,1))
> t.a.b

a=A B C D
b=1 0 1 0 1

2 0 0 1 0
3 1 0 0 0

3.8 Simulating data from models in Grappa

You can generate values from the current model using

simulate(nobs=1)

for example x<-simulate(1000). This uses the current clique and separator tables, and thus
generates values conditional on all evidence inserted so far.

The function returns values as a matrix with nobs rows, and one column for each variable in
the model. The variables are in the same order as they are in the globals variables var.names.

Empirical marginal distributions computed from such a matrix x can be obtained using the
function fq(x), whose other arguments are described above in Section 2.3.

3.9 Data structures

Grappa uses variables in the global environment. This avoids problems with scope in programming,
but does require some discipline to avoid overwriting important data. The following variables are
used:

7

Name Purpose Created/modified by
t.var1.var2... CPTs tab(), query(), etc.
vs.var Value set for variable vs(), etc.
var.names Names of variables makeadj()
j.adj Adjacency matrix makeadj()
j.cq Clique memberships mcwh(), mcs()
j.sp Separator memberships mcwh(), mcs()
j.tree Junction tree mcwh(), makejt()
var.nvals Numbers of values of variables initcliqs()
tcq Clique tables initcliqs() and trav()
tsep Separator tables initcliqs() and trav()
vs.alleles, gene.freq See Subsection 3.7

3.10 Other reserved symbols

Users should take care not to overwrite definitions of the functions and global variables in Grappa.
The current complete list, including those described in this document, various auxiliary routines,
and utility functions, is

acliq and by clean compile
cs equil evid fast.trav fetch
fns founder fq ftrcs ftrjt
genotype Grappa.dir gtvals initcliqs join
joint jt make makeadj makejt
marg mcs mcsf mcsr mcwh
mendel mix mult needcomp needequil
nm norm nvals or pass
passf peek pl.adj pnmarg pop
print.tab prop.evid prvs push put
query rdargs rdir rmtables se
select set si sim simn
simulate sizes ss stack tab
tables trav travf travr vars
vs which

3.11 Programming using Grappa

3.11.1 Systematic naming of variables, and looping

Example:

for(x in c(’mother’,’father’,’son’,’daughter’))
genotype(cs(x,’gt’),cs(x,’mg’),cs(x,’pg’))

3.11.2 Use of built-in R functions for distributions

Example:

p<-c(.04,.98)
P<-array(0,c(5,2,4))
for(i in 1:2) for(n in 1:4) P[,i,n]<-dbinom(0:4,n,p[i])
tab(c(’test’,’disease’,’number’),c(5,2,4),P)

8

4 Comparisons with Hugin

Advantages of Grappa Disadvantages of Grappa

Compared to Larger problem sizes No graphical interface
Hugin Lite Programmability No continuous variables

No decision or utility nodes
No retraction of evidence

Compared to Cost See above
Hugin Professional

5 Changes in Grappa

Since Grappa was first released, numerous facilities have been added, particularly those for auto-
matically initiating compilation and equilibration, for using a dynamically linked library for the ma-
jor computation, and for faster compliation by elimination, using minimum clique weight heurstic.
The only changes that would possibly prevent an earlier Grappa computation from working are:

1. The argument putsw to the function tab() is now in 5th place, not 4th.

2. The change of the default value for the quiet argument in the compilation and propagation
functions from FALSE to !getOption(’verbose’). This only affects the form of the reports
from these functions.

3. You should no longer specify the numbers of values of the input variables to the function
by()

6 Obtaining Grappa

The source code for Grappa, this user guide, a file of examples (in a plain text file so that they
can be copy-pasted into an R session), and background material can all be downloaded from
http://www.stats.bris.ac.uk/∼peter/Grappa/

7 Examples

The following complete examples illustrate some of the ideas above. In each case, the input is
shown, assuming all tables have been deleted before starting. The output is not shown completely,
and not in sequence, but extracts from it are shown after the => symbol.

7.1 Simple illustration of Bayes’ theorem: ‘blood tests’

There are two diseases, ‘harmless’ and ‘serious’ with prevalences 95% and 5% among patients
presenting with a certain symptom. A blood test is available to diagnose the serious disease, with
a 4% false positive rate and a 2% false negative rate. The test can be applied up to 4 times, results
being independent. What are the posterior probabilities of the serious disease given one positive
test result, out of one test? Or for one positive out of 3 tests?

tab(’disease’,,c(0.95,0.05),c(’harmless’,’serious’))
tab(’number’,4,rep(0.25,4))
p<-c(.04,.98)

9

P<-array(0,c(5,2,4))
for(i in 1:2) for(n in 1:4) P[,i,n]<-dbinom(0:4,n,p[i])
tab(c(’test’,’disease’,’number’),c(5,2,4),P,0:4)

prop.evid(’number’,1)
prop.evid(’test’,1,usevs=T)
pnmarg(’disease’)

equil()
prop.evid(’number’,3)
prop.evid(’test’,1,usevs=T)
pnmarg(’disease’)

=>
disease=harmless disease=serious

0.4367816 0.5632184
likrat= 0.7755102

disease=harmless disease=serious
0.9994406 0.0005593543

likrat= 1786.776

7.2 An ordinary Markov chain

This makes use of numerical variable ‘names’, and also uses the function fq() to extract and print
normalised marginal distributions.

tab(0,5,rep(0.2,5))
for(i in 1:20) tab(c(i,i-1),c(5,5),c(
.7,.3,0,0,0,
.3,.4,.3,0,0,
0,.3,.4,.3,0,
0,0,.3,.4,.3,
0,0,0,.3,.7))
prop.evid(10,2)
fq(0:20,tr=T)

=>

[,1] [,2] [,3] [,4] [,5]
0 0.26574 0.24110 0.20058 0.15926 0.13332
1 0.27397 0.24653 0.20100 0.15409 0.12441
2 0.28308 0.25273 0.20171 0.14833 0.11416
3 0.29303 0.25986 0.20291 0.14194 0.10226
4 0.30369 0.26816 0.20498 0.13492 0.08826
5 0.31470 0.27799 0.20850 0.12726 0.07155
6 0.32520 0.29020 0.21450 0.11880 0.05130
7 0.33300 0.30700 0.22500 0.10800 0.02700
8 0.33000 0.34000 0.24000 0.09000 0.00000

10

9 0.30000 0.40000 0.30000 0.00000 0.00000
10 0.00000 1.00000 0.00000 0.00000 0.00000
11 0.30000 0.40000 0.30000 0.00000 0.00000
12 0.33000 0.34000 0.24000 0.09000 0.00000
13 0.33300 0.30700 0.22500 0.10800 0.02700
14 0.32520 0.29020 0.21450 0.11880 0.05130
15 0.31470 0.27799 0.20850 0.12726 0.07155
16 0.30369 0.26816 0.20498 0.13492 0.08826
17 0.29303 0.25986 0.20291 0.14194 0.10226
18 0.28308 0.25273 0.20171 0.14833 0.11416
19 0.27397 0.24653 0.20100 0.15409 0.12441
20 0.26574 0.24110 0.20058 0.15926 0.13332

7.3 A mixed-trace problem in forensic genetics

A crime scene blood sample contains alleles 8, 10 and 11 at a certain STR marker, so must be a
mixture of blood from two (or more) individuals. A body is found, elsewhere, with genotype 8-10;
a suspect is 8-11. If the population gene frequencies for 8, 10 and 11 are (.184884,.134884,.233721),
what is the likelihood ratio for the hypothesis: the trace is a mixture from the suspect and victim,
vs. that for: the trace is a mixture from the victim and an unknown member of the population,
assuming Hardy-Weinberg and linkage equilibrium apply, and that there are exactly two individuals’
blood present in the mixture? (For further explanation of this example, see Mortera (2002).)

vs(’alleles’,c(’8’,’10’,’11’,’x’))
gene.freq<<-c(.184884,.134884,.233721,.446511)
founder(’vmg’)
founder(’vpg’)
genotype(’vgt’,’vmg’,’vpg’)

founder(’smg’)
founder(’spg’)
genotype(’sgt’,’smg’,’spg’)

query(’T2eqv’,,c(’V’,’U’))
query(’T1eqs’,,c(’S’,’U’))
by(’target’,’T2eqv’,’T1eqs’)

select(’T2mg’,’vmg’,’T2eqv’)
select(’T2pg’,’vpg’,’T2eqv’)

select(’T1mg’,’smg’,’T1eqs’)
select(’T1pg’,’spg’,’T1eqs’)

genotype(’T2gt’,’T2mg’,’T2pg’)
genotype(’T1gt’,’T1mg’,’T1pg’)

mix(’mix’,’T2gt’,’T1gt’)

prop.evid(’vgt’,’8-10’)

11

prop.evid(’sgt’,’8-11’)
prop.evid(’mix’,’8-10-11’)
pnmarg(’target’)

=>
target=VS target=US target=VU target=UU
0.7278388 0.09543417 0.1485508 0.02817623

7.4 Mixtures with an unknown number of contributors

With a larger, or unknown, number of contributors to the mixed trace, a different formulation,
due to Mortera, Dawid and Lauritzen (2002) proves more efficient. Here is the Grappa code for
the HBGG marker case of data in Tables 1 and 5 of Mortera, Dawid and Lauritzen, but with the
maximum number of unknown contributors (nmax) allowed to vary freely (nmax is 2 in the tables
cited, but set to 4 in the code below):

vs(’alleles’,c(’A’,’B’,’C’))
gene.freq<<-c(.566,.429,.005)
nmax<-4

for(id in c(’v’,’s’,paste(’u’,1:nmax,sep=’’)))
{founder(cs(id,’mg’)); founder(cs(id,’pg’))}

query(’v.in.mix’,,c(’V’,’U’))
query(’s.in.mix’,,c(’S’,’U’))
tab(’n.unknown’,nmax+1,rep(1/(nmax+1),nmax+1),nmax:0)
by(’target’,’v.in.mix’,’s.in.mix’,’n.unknown’)
for(al in vs.alleles)

{
for(id in c(’v’,’s’,paste(’u’,1:nmax,sep=’’)))

or(cs(id,’has’,al),cs(id,’mg’),cs(id,’pg’),
al==vs.alleles,al==vs.alleles)

for(id in c(’s’,’v’))
and(cs(al,id),cs(id,’has’,al),cs(id,’.in.mix’))

for(n in 1:nmax)
{
id<-cs(’u’,n)
and(cs(al,id),cs(id,’has’,al),’n.unknown’,,(nmax:0)>=n)
}

or(cs(al,’m’,0),cs(al,’v’),cs(al,’s’))
for(n in 1:nmax)

or(cs(al,’m’,n),cs(al,’m’,n-1),cs(al,’u’,n))
}

prop.evid(cs(’Am’,nmax),’yes’)
prop.evid(cs(’Bm’,nmax),’yes’)
prop.evid(cs(’Cm’,nmax),’no’)

prop.evid(’vhasA’,’yes’)
prop.evid(’vhasB’,’yes’)

12

prop.evid(’shasA’,’yes’)
prop.evid(’shasB’,’no’)
prop.evid(’shasC’,’no’)

pnmarg(’target’)
joint(c(’v.in.mix’,’s.in.mix’))
fq(’n.unknown’,tr=T,va=T)

=>
target=VS4 target=US4 target=VU4 target=UU4 target=VS3 target=US3 target=VU3
0.05841203 0.05777163 0.05841203 0.05770188 0.05900056 0.05700155 0.05900056
target=UU3 target=VS2 target=US2 target=VU2 target=UU2 target=VS1 target=US1
0.05662253 0.0595949 0.05335493 0.0595949 0.0512955 0.06019511 0.04071695
target=VU1 target=UU1 target=VS0 target=US0 target=VU0 target=UU0
0.06019511 0.02952696 0.06080143 0 0.06080143 0

s.in.mix=S s.in.mix=U
v.in.mix=V 0.2980040 0.2980040
v.in.mix=U 0.2088451 0.1951469

4 3 2 1 0
n.unknown 0.2323 0.23163 0.22384 0.19063 0.1216

References

Kjærulff, U. (1990). Triangulation of graphs - algorithms giving small total state space. Technical
report R90-09, Institute of Electronic Systems, Aalborg University.

Jensen, F. V., Olesen, K. G. and Andersen, S. K. (1990). An algebra of Bayesian belief universes
for knowledge-based systems. Networks, 20, 637–659.

Lauritzen, S. L. and Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical
structures and their application to expert systems (with discussion). Journal of the Royal
Statistical Society B, 50, 157–224.

Mortera, J. (2003). In Highly structured stochastic systems, eds P. J. Green, N. L. Hjort and S.
Richardson. Oxford: OUP.

Mortera, J., Dawid, A. P. and Laurizten, S. L. (2002). Probabilistic expert systems for DNA
mixture profiling. Research report 225, Department of Statistical Science, University College,
London.

13

