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Solution Sheet 6

1. (a) From your Parametric Families summary sheet (2.1 in handouts), E(X) = θ/2 and
Var(X) = θ2/12. ThusE(X̄) = E(

∑

Xi/n) =
∑

E(Xi)/n = nθ/2n = θ/2 = τ , so
bias(X̄) = E(X̄ − θ/2) = E(X̄)− θ/2 = 0, soX̄ is unbiased as an estimator ofτ .

Also Var(X̄) = Var(
∑

Xi/n) =
∑

Var(Xi)/n
2 = nθ2/12n2 = θ2/12n. Thus, as an

estimator of the population medianτ = θ/2, the method of moments estimator has mean
square error mse(X̄) = Var(X̄) + bias(X̄)2 = θ2/12n+ 0 = θ2/12n.

(b) HereE(Y ) =
∫

θ

0
yfY (y; θ)dy =

∫

θ

0
nyn/θndy = [nyn+1/(n+1)θn]θ0 = nθ/(n+1). Thus

E(τ̂mle) = E(Y/2) = nθ/2(n+1) and bias(E(τ̂mle) = E(τ̂mle−θ/2) = nθ/2(n+1)−θ/2 =
−θ/2(n+ 1).

2. (a,b) I calculated the sample meanx̄ and the maximum likelihood estimatêθ = 1/x̄ for each
sample with the commands:
> sample.mean <- apply(xsamples,1,mean)
> theta.mle <- 1/sample.mean
I used the commandsummary(theta.mle) to check the range of values in the ar-
ray theta.mle and decided to start the cell break points at 0, finish at 4, andhave cell
widths of 0.1. The following commands then produced the histogram shown below, where
probability = T gives a histogram of the normalised relative frequencies (i.e. approx-
imating the probability density function) rather than the total counts. Since the process is
random, your histogram may look slightly different, but theoverall features should be the
same.
> hist(theta.mle, probability=T,
+ breaks=seq(0,4,0.1),ylim=c(0,1.5), xlab="",
+ main="Histogram of maximum likelihood estimates")

Histogram of maximum likelihood estimates
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(c) Recall from Probability 1 that the median of a continuous distribution is the valueξ such
thatFX(ξ) = 1/2, i.e.ξ = F−1

X
(1/2). For the Exp(θ) distribution,X takes values in(0,∞)

and on this setFX(x) = 1− e−θx with inverseF−1

X
(y) = − log(1− y)/θ, so the population

median isξ = F−1

X
(1/2) = − log(1− 1/2)/θ = log(2)/θ.

To calculate the sample median and the maximum likelihood estimate of the population
medianτ(θ) = log(2)/θ I used the commands:
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> sample.median <- apply(xsamples,1,median)
> mle.median <- log(2)/theta.mle
To produce an annotated boxplot of the values of the sample median and the values of the
mle of the population median I used the commands:
> boxplot(sample.median, mle.median,
+ names=c("Sample median","mle of pop median"),
+ main="Estimators of the population median - Exp(1)")

(d) To add a horizontal dashed line at heightlog(2) to the plot I used the command:
> abline(h=log(2), lty=2)

The boxplot shows that the distribution of the sample medianis centered (i.e. has its me-
dian) on the true population median, whereas the median of the distribution of maximum
likelihood estimates gives a slight systematic under-estimate of the true population median.
However, the variability of the maximum likelihood estimate is clearly a lot smaller than
that of the sample median, so overall the maximum likelihoodestimate is likely to be much
closer to the true value of the population median than the sample median.

Sample median mle of pop median
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Estimators of the population median − Exp(1)

(e) The true value of the population median islog(2) = 0.6931. The sample mean and
variance of the 1000 maximum likelihood estimates and the 1000 sample medians are given
in the table below. We can approximate the bias of the estimators with the commands
> mean(mle.median-log(2))
> mean(sample.median-log(2))
and their mean square error (mse) with the commands
> var(mle.median) + (mean(mle.median-log(2)))ˆ2
> var(median) + (mean(median-log(2)))ˆ2 .
Note that the outliers affect the mean of the sample medians so much that it is further away
from the true population median than the mean of the mles - even though the median of the
mles was further away from the population median than the median of the sample medians.

Overall, we see from the table that the mle has substantiallysmaller mean square error (mse)
than the sample median, mainly because of its smaller variance, and for that reason, the mle
would be preferred to the sample median as an estimator.

approximate
Estimators of the population medianmean bias variance mse

mle 0.6845 -0.0086 0.0463 0.0463
sample median 0.7440 0.0509 0.0934 0.0960
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3. Fori = 1, . . . , 10, letXi denote the outcome of theith toss, soXi = 1 if a head is obtained
andYi = 0 if a tail is obtained. Then theXi are 10 independent Bernoulli(1/2) random
variables, and the total number of heads is justT =

∑

10

i=1
Xi.

(a) From your Probability notes,T has a Binomial(10,1/2) distribution. Thus the exact
probabilities forA andB are given by
P (A) = P (T ≤ 1) = P (T = 0) + P (T = 1) = (1

2
)10 + 10(1

2
)10 = 0.0107.

P (B) = P (T ≥ 6) =
∑

10

k=6
P (T = k) = (210 + 120 + 45 = 10 + 1)(1

2
)10 = 0.3770.

(b) If X1, . . . , Xn are i.i.d. random variables with meanµX and varianceσ2
X

, then the
corollary to the central limit theorem says that the approximate distribution ofX1+ · · ·+Xn

is N(nµX , nσ
2
X
). HereE(Xi) = 1/2, Var(Xi) = 1/4 andn = 10. Thus the distribution of

T = X1 + · · · +X10 is approximatelyN(5, 5/2) and so(T − 5)/
√

5/2 has approximately
the same distribution asZ ∼ N(0, 1).

Applying the central limit theorem without any continuity correction, we get
P (T ≤ 1) = P ((T − 5)/

√

5/2 ≤ (1− 5)/
√

5/2) ≃ P (Z ≤ −2.5298)
= Φ(−2.5298) = 1− Φ(2.5298) = 1− 0.9943 = 0.0057.

P (T ≥ 6) = P ((T − 5)/
√

5/2 ≥ (6− 5)/
√

5/2) ≃ P (Z ≥ 0.6325)
= 1− Φ(0.6325) = 0.2635.

(c) If X is integer valued, then the continuity correction suggeststhat a better approximation
to P (X1 + · · ·+X10 ≤ k) is given byP (S ≤ k + 1/2), whereS ∼ N(5, 5/2), so
P (T ≤ 1) = P (X1 + · · ·+Xn ≤ 1) ≃ P (S ≤ 1.5)

= P ((S − 5)/
√

5/2 ≤ (1.5− 5)/
√

5/2) = P (Z ≤ −2.2136) = 0.0134.
P (T ≥ 6) = P (X1 + · · ·+Xn ≥ 6) ≃ P (S ≥ 5.5)

= P ((S − 5)/
√

5/2 ≥ (5.5− 5)/
√

5/2) = P (Z ≥ 0.3162) = 0.3759.

(d) The true probabilities are0.0107 and0.3770. The approximations obtained using the
continuity correction (0.0134 and0.3759) are appreciably better than the approximations
(0.0057 and0.2635) obtained without the correction. This is what we would expect, since
the sample sizen is small and the sumX1 + · · ·+X10 is integer valued.

4. (a) LetX be the number of parking places required by the residents of arandomly chosen
apartment. ThenX can take value0, 1 or 2. The information in the question tells us that
P (X = 2) = 0.2, P (X = 1) = 0.7 andP (X = 0) = 0.1. ThusX has meanµX = E(X) =
(2× 0.2) + (1× 0.7) + (0× 0.1) = 1.1.
In a very similar way,E(X2) = 1.5, soX has varianceσ2

X
= E(X2)− [E(X)]2 = 0.29.

(b) If we assume the demands of the residents of the 200 apartments are independent, then
the total demand isT , whereT = X1 + · · · + Xn, n = 200, andX1, X2, . . . , Xn are
independent random variables with the same distribution asX. From (the corollary to) the
central limit theorem, the distribution ofT is approximatelyN(nµX , nσ

2
X
). HerenµX =

220 andnσ2
X
= 58, soT is approximatelyN(220, 58).

The event that there are not enough parking places to satisfydemand corresponds to{T >
230}. SinceT is integer valued we use a continuity correction. LetS ∼ N(220, 58), then
P (T > 230) ≃ P (S > 230 + 1/2) = P ((S − 220)/

√
58 > (230.5− 220)/

√
58) = P (Z >

1.3787) = 1− Φ(1.3787) = 0.0840.

Without the continuity correction, the approximation indicated by the central limit theorem
gives givesP (T > 230) ≃ P ((S − 220)/

√
58 > (230.5− 220)/

√
58) = P (Z > 1.3130) =

1− Φ(1.3130) = 0.0946.

Since to haveP (Z > z) = 0.01 implies thatz = 2.3263, according to the first approximation
we needk places where(k + 0.5− 220)/

√
58 ≥ 2.3263, i.e. k ≥ 238.
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5. LetX1, X2, X3, . . . be independent random variables withP (Xi = 1) = 0.37 = 1−P (Xi =
0). Thus eachXi has the same distribution asX whereX ∼ Bernoulli(0.37), withE(X) =
µX = 0.37 andVar(X) = σ2

X
= 0.37× 0.63 = 0.2331.

Now let Tn = X1 + · · · + Xn be the total number in the sample that say they support the
government. Heren = 1500. From the central limit theorem, the integer valued r.v.Tn has
approximately the same distribution as the continuous r.v.Sn, whereSn ∼ N(nµX , nσ

2
X
) =

N(555, 349.65) and(Sn − 555)/
√
349.65 has the same distribution asZ ∼ N(0, 1)

ThenP (|Tn/n− 0.37| ≤ 0.02) = P (|Tn − 555| ≤ 30) = P (525 ≤ Tn ≤ 585) ≃ P (525−
0.5 ≤ Sn ≤ 585 + 0.5) [with the continuity correction]= P (|(Sn − 555)/

√
349.65| ≤

30.5/
√
349.65) = P (|Z| ≤ 1.6311) = 2Φ(1.6311) − 1 = 2(0.94857) − 1 = 0.89713.

The exact Binomial probability is0.89636. Without the continuity correction we would
approximateP (|Tn/n− 0.37| ≤ 0.02) by P (525 ≤ Sn ≤ 585) = · · · = 0.89137.

6. (a) LetZ = (U1+ · · ·+U12)− 6, whereU1, . . . , U12 is a a random sample of size 12 from a
U(0, 1) distribution. A random variableU with U(0, 1) distribution has meanE(U) = µU =
1/2 and varianceVar(U) = σ2

U
= 1/12. ThusE(Z) =

∑

12

1
E(Ui)−6 = (12×1/2)−6 = 0

andVar(Z) =
∑

12

1
Var(Ui) = (12× 1/12) = 1.

(b) I used the following commands inR. Note that, to stop the graph of the Normal density
going off the top of my histogram, I need to specify the heightof the y-axis in my histogram
with the sub-commandylim=c(0,0.37) .

> unif.dat <- runif(12000)
> unif.mat <- matrix(unif.dat,nrow=1000)
> unif.sum <- apply(unif.mat,1,sum)
> z.sample <- unif.sum - 6
> hist(z.sample, probability=T, ylim=c(0,0.4),
+ main = "Histogram of Z values")
> range <- seq(-3,3,0.01)
> lines(range, dnorm(range)) # pause to look at first plot
> qqnorm(z.sample)
> abline(0,1)

The resulting plots are shown below. The fit to the Normal distribution is quite good. You
could get a better idea of the detailed fit by specifying smaller cell widths in your histogram
with a sub-command such asbreaks = seq(-4,4,0.1) - where you would need to
adjust these limits if any of yourZ values were outside the range(−4, 4).

Histogram of Z values

z.sample
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