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Abstract: Hierarchical mixed models are used to account for dependence be-
tween correlated data, in particular dependence created by a group structure
within the sample. In such models, the correlation between observations is mod-
elled by including, in the regression model, group-indexed parameters regarded as
random variables, so called random effects. Gaussian distributions are commonly
used for the random effects. However, this choice places a strong constraint on
the shape of the random parameter distribution.In this presentation, we focus
on misspecification in mixed model with random intercept, a commonly used
model in epidemiology. We propose to model the prior distribution of the ran-
dom intercept by gaussian mixtures with an unknown number of components in a
Bayesian framework. This methodology has recently been developed by Richard-
son & Green (1997) to analyse heterogeneous data. Another use of gaussian mix-
tures with unknown number of components is that of density estimation.
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1 Introduction

The influence of misspecification in random effects’ distributions was stud-
ied by Neuhaus et al (1992) for logistic mixed model. These authors have
shown cases of non consistency for fixed and random parameter estima-
tion. The use of finite mixture for modelling random effects’ distribution in
linear mixed model has recently been proposed. Verbeke & Lesaffre (1996)
used empirical Bayes estimation and defined the number of components of
the mixture by a test. Magder & Zeger (1996) used Maximum Likelihood
estimation and defined constraints on the variances to enforce smoothness
of the distribution. Modelling the prior distribution of the random inter-
cept by gaussian mixtures with an unknown number of components in a
Bayesian framework is an appealing alternative. It requires to introduce
an additional hierarchical level to the mixed model which comprises the
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unknown number of components and the mixture component parameters
for the random intercept distribution.

2 Formulation of the model :

We use the notations :

-z group index, ¢ = 1 ton

- j observation index in a group, 7 = 1 to J;

- J;i size of group 1

- Y;; known outcome of observation j in group 1

- U;; known covariates for observation j in group i

- a; random intercept

- 3 regression parameters (fixed effects)

The covariate subscripts for U and [ are suppressed in order not to over-
burden the notation.

The complete model is defined by two submodels which are linked through
their common parameters {a;}

e Regression model [Y;;|Ui;, o5, 8] = [Yijln:;] where n;; = ﬁUg + a;,
with associated conditional independence assumptions of the [Y;;]n;;]
for each 7 and j,

o Mixture model for «; :
k
; ~ Z wp f(:|6p) independently for i =1,2,...,n
p=1
with f(:|6) ~ N(up,07) and {6}, {wp}, k unknown parameters.

The hierarchical formulation of the mixture model introduces latent al-
location variables z; indicating to which mixture component the random
intercept a; belongs.
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The graphical structure of the model can be represented by the fol-
lowing Directed Acyclic Graph :
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where 6, = {11,, 0}
The joint distribution is given by :

(BRI 1K k] (=l K] T Tleil, 2] TT (Y51, 7]

1 i
nij = PUL + a

We use weakly informative hyperpriors, normal priors for p,, and gamma
priors for 0'p_2, which are based on a notional range of values of {a;} (see
Richardson & Green, 1997).

As k (the unknown number of mixture components) is altered, the es-
timation of the posterior distribution uses reversible jump MCMC with
dimension-changing moves based on splitting/merging adjacent compo-
nents while preserving their overall “combined shape” (Green, 1995). Moves
for updating the fixed effects or the component parameters are performed

either by Gibbs sampling or by using random walk Metropolis moves.

3 Simulation study

Misspecification of the random intercept distribution, for linear and logistic
mixed model, and its consequences for fixed and random effects estimation
are studied by simulations. These simulations will also allow an assessment
of the performance of our proposed method in identifying the shape of the
random intercept distribution.
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3.1 Linear model

k3

[Yijl]~ N(oi + BUS, 7)) i=1,.nj=1,.,J;
equivalently — Yj; ~ E’;Il wp N (p + UL, 02 4 72).

In this case, the joint model 1s a gaussian mixtures with a particular struc-
ture on the components mean and variances. Parameters values for the sim-
ulations where inspired by paper of Magder & Zeger (1996). We have chosen
a case where the value for the ratio Var(a;)/r? is equal to 0.5 rather than
the value of 1.0 considered in Magder & Zeger because a previous analysis
(Watier, Richardson & Green, 1998) has indicated that the performance of
our method is closely linked to this ratio (results not shown).

The data sets consist of 180 clusters, with sizes varying from 1 to 6 (a total
of 540 observations are obtained). Two fixed effects 3 = (81, 62) = (2,5)
are introduced. The covariate Us;;; linked with £ differs within group in
contrast to U;;2 which it is constant within group. U;;, are simulated as
independent standard gaussian random variables, whereas the values of
Uijo are equal to zero for 90 clusters and to one for the others. The error
term in the regression is an independant gaussian random vector with mean
zero and variance 2.

Two different distributions, f;, for the random intercept a; were considered
fit oa; ~ N(0,2%)

foi ai~{0.25N(14,v/10°) + 0.75x2}e

The multiplicative constant term ¢ = 4/\/@ is chosen to ensure that fo
has a variance equal to that of f.

A total of 20 simulations were done for each of the two cases. For each sim-
ulation, runs of 70 000 iterations of MCMC algorithm were obtained. As
can be seen on Figure 1, there is a reasonable convergence of the posterior
probability of k after a burn-in period. From these runs, parameters esti-
mates (posteriors means, posterior standard deviations) where computed
from the last 50 000 iterations. The results presented below are the aver-
age of posterior means and posterior standard deviation (SD) over the 20
simulations and the mean square error (MSE). For the sake of comparison,
besides using our model with the mixture prior for «;, we also analysed the
data using a standard gaussian prior for a;.

- Results for fixed effects

Analysis with gaussian prior

fils SD MSE|B SD MSE|~ SD  MSE
fi 200 .073 .003 [5.09 .328 .113 | 143 .0563 .002
f2 1200 .072 .004 [5.09 .325 .104 | 142 .053 .003
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Analysis with gaussian mixture prior
fils SD MSE|B SD MSE]|+ SD  MSE
fi | 1.99 072 .003 | 510 .331 114 | 1.43 .053 .002
f2 1201 .072 .003 | 495 .248 .070 | 1.42 .053 .003

For the two prior models, posterior means for fixed parameters are close to
their true values. Posterior standard deviations and MSE are also similar
between the two priors models, except for the parameter B in the case
of random intercept distribution simulated with f5. In this case, the use
of a gaussian mixture prior resulted in a 24% decrease of the posterior
standard deviation for 8» and a 33% decrease of the corresponding MSE.
This remark is in accordance with Magder and Zeger. It is important to
note that using a mixture when the random intercept is gaussian (case
f1), which is a substantial overparametrization, does not lead to a poorer
performance.

- Results for the random intercept distribution

With the gaussian prior, posterior mean values for the parameters (p, o)
are respectively equal to -0.17 and 1.97 for the distribution fi, estimates
are close to the original values and identical to the ones obtained with
mixture prior when k = 1 (see Table below).

In the table below, average results obtained with the gaussian mixture
prior are shown. Only components with probability greater than 10% are
indicated.

gaussian mixture prior

fo |k plkly) v p G
fill .673 1 -0.17  1.97
2 .193 b2 -1.23 178
48 1.01  1.81

fo 12 541 68 140 081
832 511 1.38

3 .269 52092 0.77
.28 3.24  1.02

20 6.11 1.13

4 115 40 039 0.71
28 232 0.84

A9 431 0.94

A3 697 0.97

In the case of f; one sees a high probability on & = 1. Posterior density
estimate of the mixture is represented in Figure 1. As expected, gaussian
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mixtures with unknown number of components gave a good fit to the sim-
ulated mixing distribution fs, using between 2 and 4 normal components.

3.2 Logistic model
logit pij = o+ BUS i=1,.,n,j=1,.,J

The data sets consist of 100 clusters with size 10. Two fixed effects § =
(81,82) = (.5,1) are introduced. The covariate U;;1 linked with gy differs
within group in contrast to U;;» which is constant within group. Us;i, {k =
1,2} are independent standard gaussian random variables. The random
intercept distribution is simulated from an asymmetric mixture :

a; ~ 0.50N (=2.0, (.5)%) + 0.5N (2,27

As for linear model, a total of 20 simulations were done. For each simulation,
runs of 300 000 iterations of MCMC algorithm were obtained because we
found that in this case the convergence was slower. In fact in the 20 simula-
tions we found that in about half the cases, the algorithm did not converge
well. On Figure 1, we see a case where there is stability convergence of
the posterior probability of k after a burn-in period. From these runs, pa-
rameters estimates (posteriors means, posterior standard deviations) where
computed from the last 150 000 iterations. The results presented below are
similar to those described for the linear model. For the sake of comparison,
besides using the mixture prior for a;, we also used a standard gaussian
prior for «; in the analysis.

- Results for fixed effects

Analysis B SD MSE|pj3 SD MSE
gaussian prior 0.53 .105 .016 | 1.08 .322  .105
gaussian mixture prior | 0.53 106 .016 | 1.09 .288 .068

For the two prior models, posterior means for fixed parameters are close to
their true values. Posterior standard deviation and MSE are similar between
the two priors models, except for the parameter F5. Again we see that the
use of a gaussian mixture prior resulted in a 11% decrease of the posterior
standard deviation for 8s and a 35% decrease of the corresponding MSE.
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- Results for the random intercept distribution

In the table below, average results obtained with gaussian mixture prior
are shown for k = 2.

gaussian mixture prior

o) [o @ o
2 291 61 -1.77 1.38
39 4.33 1.87

Over the 20 simulations, the gaussian mixture prior did not recover well
the underlying true random effect distribution. However, in the cases were
the algorithm converge, the 2 components were reasonably well estimated

(see the Figure 1). A previous analysis (Watier, Richardson & Green, 1998)

has indicated that the performance for the logistic model is conditioned,
notably, by the cluster size. Indeed we found that the underlying random
effect distribution is well recovered for cluster size equal to 50 (results not
shown). Posterior density estimate of the random intercept in a case of
good convergence can be appreciated in Figure 1.
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Figure 1 : For one simulation (a) Cumulative occupancy fractions (b) Com-
parison of simulated random intercept distribution (Histogramm) and pos-
terior density estimate of the mixture.
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4 Conclusion

For linear and logistic mixed models, our simulations did not shown an im-
portant effect of misspecification on fixed effect associated with covariates
differing within cluster. This is not true when the covariates are constant
within cluster, for which the gaussian mixture prior improves the results
with a decrease in posterior standard deviation as well as the MSE. If
the interest is in the shape of the between groups variability, analyses with
standard gaussian priors are not, for the linear model, appropriate and mix-
ture priors are a viable alternative. For the logistic model, convergence for
gaussian mixture prior necessitates long runs. To recover the true random
intercept distribution large number of cluster size is needed.
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