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Summary

This paper examines penalized Hkelihood estimation in the context of general regression
problems, characterized as probability models with composite likelitood functions. The emphasis is
on the common situation where a parametric model is considered satisfactory but for inhomogeneity
with respect to a few exira variables. A finite-dimensional formulation is adopted, using a suitable
set of basis functions. Appropriate definitions of deviance, degrees of freedom, and residual are
provided, and the method of cross-validation for choice of the tuning constant is discussed.
Quadratic approximations are derived for all the required stafistics.
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1 Entroduction

It frequently arises that a statistician has some faith in the validity of a certain
parametric statistical model for his data, but for some suspected inhomogeneity with
respect to one or more extraneous variables. Typically, such variables might represent
space or time, the relationship between them and the response is not of primary interest,
and the statistician is inhibited from extending his parametric model to encompass them
because of a lack of experience, information or theory about the form of their
relationship. A simple example might arise with binomial data from different geographical
locations where it might be quite reasonable to model the response probability as a
logistic regression on various explanatory factors or covariates, but influenced also by
environmental effects, unknown in form but believed to vary smoothly with location. In
such situations, procedures derived from penalized likelihoods (Good & Gaskins, 1971
Silverman, 1985a) may well be appropriate. The purpose of the present paper is to
examine properties of such methods in the context of the rather general class of
regression models used by Green (1984), characterized as probability models expressed as
composite likelihood functions. (This is not to claim that such a view of regression is
universally appropriate.) The methods discussed combine the ideas of fitting the
parametric part of the model by maximizing the likelihood whilst smoothing with respect
to the extraneous variables.

Any regression model consists of random and systematic components. We consider
models in which the random component is specified by a log likelihood function L(y; 6)
for the responses y in terms of an n-vector of predictors €: a concrete example would be 2
particular exponential family

L(y; 8) = E (e — (6 + c(3)).
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The systematic component of our models is a specification of the general form of
dependence of 8 on explanatory factors and covariates. The focus of attention is on this
dependence, and we suppose that having recorded the explanatory variables, @ is known
but for a p-vector of parameters f§ and a real-valued function y lying in some prescribed
linear space 4. A concrete example would be the simple additive semi-parametric
regression function:

6; =x!B + y(t), (L.1)

where x; and ¢; (both in general vector-valued) are the observed values of expianatory
variables for the ith case.
Thus the complete model we consider is the composite likelihood function

L{y; 8(B, v)) = L(B(B, v)) (1.2)

in which the responses y, and the explanatory variables, can be suppressed from the
notation. Our principal interest will be in estimating f.

For an explicit example, consider a logistic regression model in which the ‘intercept’
term varies in time. Then if the ith case has y; successes out of m; trials, with covariates x;
recorded at time ¢;, we could write

L(0)= 3, {3 log m+ (m— ) og (1 = m)),

where 5, = exp (8,)/{1 + exp (8,)} and &, is given by (1.1).

This simple problem is typical of many where maximum likelihood leads to over-fitting,
in the absence of any restriction on the form of the function y; in particular, parameters
will be unidentifiable. In the context of density estimation, Good & Gaskins (1971)
proposed maximizing instead the penalized likelihood

L(8(B, v)) — 3AI(y), (1.3)

where J is a roughness penalty, increasing as the function y becomes less smooth, and A is
a nonnegative tuning constant or hyperparameter which may be adjusted to control the
smoothness of the fitted y. There is of course a Bayesian interpretation; see §4. For an
excellent account of the roughness penalty approach to nonparametric linear regression,
the reader is referred to Silverman (1985b). The present work is in the same spirit but
aims to extend these ideas by introducing parametric terms into the regression function as
well, and by allowing an arbitrary log likelihood L.

If the log likelihood L is that of independent observations y;, normally distributed with
means 6; given by (1.1), then this penalized likelihood approach is equivalent to a
semi-parametric linear regression as proposed by Green, Jennison & Seheult (1983, 1985)
in the context of agricultural field experiments, Engle et al. (1986) in an econometric
problem, and Wahba (1984), who with co-workers has developed a considerable body of
theory for ‘partial-spline’ methods. Use of penalized likelihood in simple generalized
linear models is discussed by O’Sullivan in his thesis (1983), by O’Sullivan, Yandell &
Raynor (1986) and by Silverman (1985b). Leonard (1982) considers such methods for a
variety of curve estimation problems from a full-blooded empirical Bayesian perspective.
In all of these papers the parametric part of the model is not present, but Wahba (1985)
remarks that the ideas of partial splines may be combined with penalized likelihood for
generalized linear models. In none of these papers is the general regression model (1.2)
addressed, and typically estimation of y is not regarded as of subsidiary importance to
that of 8. ,

The remainder of the paper is organized as follows. In §2 we discuss maximum
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penalized likelihood estimation for regression models, including a prototype algorithm for
obtaining such estimates numerically, Sections 3 and 4 respectively describe some
important special cases, and discuss appropriate choice of the roughness penalty J.
Sections 5, 6 and 8 provide information on various auxiliary statistics needed in inference
about these models, including standard errors for the parameter estimates, goodness-of-fit
statistics, and residuals. Section 7 refers to the problems of automatic data-based choice
of the tuning constant A, and the final section discusses complications caused by nuisance
parameters.

The peculiar nature of penalized likelihood methods combines their strong plausibility
with at best sketchy mathematical justification. As it ranges over ali of these aspects of a
complete analysis, this paper aims both to make recommendations to the practical
. statistician on how to use these methods, and to offer to the mathematical statistician
suggestions of some profitable lines for further research.

2 The estimation procedure

We begin by apparently compromising the generality of prescription of our problem.
As it stands, {1.2) allows the predictor 8 to depend on the infinitely many values of the
function y. In practice, therefore, discretization will be necessary at some stage.
Following a suggestion of Leonard (1982), in maximizing (1.3}, we will restrict y to lie in
a finite-dimensional linear subspace % of %, namely % =span {¢;:j=1,2,...,q} fora
prescribed set of ¢ basis functions. These functions may depend on the explanatory
variables but not on the responses. We use the abbreviation

0B, £)=6(8, 2 §01). 1)

and will further restrict attention to roughness penalties of the form

(3 50,) = £7ks

for some fixed g X g nonnegative-definite matrix K.

It may seem that we are abandoning our intended semiparametric framework, but it
should be stressed that g, while it may be somewhat less than #, will still be ‘large’, and
parametric estimation of § will not be appropriate. Further, the intention is that % and %
should in practical terms be indistinguishable. This will entail appropriate choice of {g;}
as, for example, a large class of orthogonal polynomials or trigonometric functions in r.
This choice will depend on the observed values of £, and will also determine K. The
precise quadratic form of the roughness penalty accords with standard practice in several
special cases; it is hardly necessary in what follows, but it simplifies the algebra and is
likely to make little practical difference. This is discussed further in § 4.

There may in fact be no restriction at ali. In nonparametric regression, J is typically a
squared semi-norm on a reproducing kernel Hilbert space 4 see Aronszajn (1950).
Suppose 0 depends on y only through {y(x}),i=1,2,..., g} and the {4} are distinct.
Then since

mll’l{]()’)‘)’([,)‘: i:i':is 21---,Q}=ETK§

for a certain K, and we may choose a basis of spline functions with ¢;(t) =&, the
original and the restricted problem have the same solution so far as values of § and of
{y(t)} are concerned.
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We therefore maximize, in place of (1.3), the expression
L{B8(B, §)) — JAETKE (2.2)

over f e R?, &£ e RY, where & is a prescribed R"-valued function. This revised formulation
has the further advantage of allowing certain new problems into our framework, that
could not otherwise be naturally described with a vector of predictors of finite length.

We will only be concerned with problems where likelihood methods are appropriate:
we suppose sufficient regularity that L is approximately quadratic near the ‘true values’
Bo, & A modification to an iteratively reweighted least-squares algorithm derived from
the Newton-Raphson method, with Fisher scoring (Green, 1984) should therefore be
appropriate. Use of scoring is by no means essential, and observed information could be
used in place of expected. Presence of the nonparametric component of the model does
not usually complicate the choice of initial estimates.

Write

gL 3L a6 a0

“=3g AT { aeeT]’ D=5 E=%

The scores u form an n-vector, and the matrices A, D and Earen xXn, n Xpand nXgq.
All of these quantities in general depend on 8 and §, in the case of u and A only through
8, but these dependencies will be suppressed from the notation. The expectation is taken
at the current values of § and & Differentiating {2.2) gives the modified likelihood

equations D=0, E%w=AKE. {2.3)

Their solution gives our required maximum penalized liketihood estimates j, E.
Typically these equations are nonlinear and require iterative solution, The Newton-
Raphson method with expected second derivatives involves successively replacing trial
estimates (8, &), at which «, A, D and E are evaluated, by (8%, £*), where

{DTAD DTAE ][ﬁ*~ﬁ}m[ D' ] )4
ETAD EYAE +AKJLE*—E] LETu—AKEL (2.4)
or, equivalently,

G[g*]=(£) ENTAY, (2.5)

where

0 0

= T v =
H=(D EYA(D E), G H+[O K

], Y=AT'u+DB+EE (2.6)
These equations have the form of a combination of weighted normal equations, for g%,
and generalized ridge regression equations, for &*. The two ingredients are given
separately by Green {1984) and O’Sulfivan et al. (1986). See also Silverman (1985b, § 8.1).
We can now state conditions on the model (1.2}, (2.1) for these equations to be
soluble. First represent K as LTL, where L is r X ¢ of full rank r, which is usually less
than g. If so, then K has a nontrivial null space: let T be g X (g —r) such that LT =0
and [LT:T] is nonsingular. Qur conditions are that for all 8, & the matrix A is
nonsingular, and D, E and {D:ET] have full rankp, g and p + ¢ —r respectively. We
may then proceed with any positive finite A: the matrix G is readily seen to be
nonsingular. Convergence of the iteration (2.4) is not guaranteed, but in practice will
usually occur rather rapidly for sensible initial values. The algorithm has at least a
fixed-point justification: if (2.4) gives 8* = and §* = & then (2.3) is satisfied.
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Jointly with Dr. Brian Yandell, the author is developing various implementations of the
basic algorithm (2.4). Details appear elsewhere {Green & Yandell, 1985; Yandell &
Green, 1986).

3 Special cases

The general model (1.2) makes no assumptions about the independence of random
terms, or additivity and linearity among systematic components. Of course such
simplifications are sometimes available. If the log likelthood L is that of n independent
observations {y;} each indexed by the corresponding &,, then A is diagonal. If 8 is linear
in § or & then D or E will be constant. Such properties may be exploited in aigorithms,
but do not affect a general treatment.

(a) The linear independent normal case. If the observations y are independently
normally distributed, y ~ N(68, o°) with a linear parameterization 8 = D + EE, then D
and E are constant and A = ¢™%]. The scale factor ¢ factorizes from both sides of (2.4),
so may be ignored on redefining A: this is an example of a more general phenomenon: see
§ 9. The artificial response Y in (2.6) is identically y, and no iteration is necessary. If E, £,
A and K are omitted, we have the ordinary lincar model. If D and 3 are omitted instead
then we have a model including spline smoothing (as described in §2) and ridge
regression: when K =/ we obtain E=(ETE + AN™'E'y. With both D and E =/ present,
this covers the least-squares smoothing approach to the analysis of agricultural field trials
due to Green et al. (1983, 1985). They used a roughness penalty based on differencing
from neighbouring plots, for example

ETKé: = E (& — 281+ §i+2)2- (3. 1)

In this application, D represents the design matrix in a designed experiment, and the
resulting methodology may be related to other more classical approaches (Green, 1985).

In all these special cases, it may be more natural to focus on least-squares rather than
normal theory/maximum likelihood as the basic principle.

(b) Logistic regression. To continue the example from § 1, we now have 8, =x[8 + &,
and find that u; =y, — myr;, A is diagonal with A, = mu,(1 - x;), E is the identity and D
has ith row equal to x;. The equations (2.4) are no longer fixed and iteration is necessary.
An appropriate form for K will depend on the temporal or spatial configuration of the
{t;}: see § 4.

(¢} A grouped continuous model. For nonparametric regression of ordered categorical
data on a single explanatory variable, the following model may be appropriate. For
r=1,2,..., R we have an §S-vector multinomial response {y,;, s=1,2,...,5} with
associated probabilities p, ; assumed to satisfy

gpr.i = qj(ﬁs - gr)

for some prescribed distribution function W, where §, = (1} and ¢, is the value of the
explanatory variable for this response. This grouped continuous model is equivalent to
the assumption of a latent continuous variable with distribution function W(. ~ &,) which
is categorized into S classes at the unknown cutpoints {f,, B2, ..., fs-,} to vield the
observed frequencies {y,;}. See McCullagh (1980) for a complete discussion. This falls into
our present framework if we take 8 as {8, ,= B, — &}, so that p, ;= W(6,,) — W(8,,.,).
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The matrix A is no longer diagonal, but D and E have a very simple form. For
identifiability, one component of & must be held fixed and omitted from equations (2.4).

4 Choice of roughness penalty

Various authors have remarked in different contexts that choice of the amount of
smoothing, A in equation (2.2}, is more important than the form of the smoothing kernel
K itself. This might be amended by adding that the null space of the roughness, the space
{&:£"KE =0} may also be important; for vectors in this null space, since they are not
penalized in (2.2), are implicitly also fitted as covariates.

Advocates of spline smoothing would choose a penaity of the form

i) = [ ey ae (41

for a curve on a single-dimensional variable. As mentioned in § 2 this is an example of cur
approach; the kernel X is given by

b
K= omwer©d Gi=12. 9.

The rank of K will be ¢ — m for any spline basis, the null space of K consisting of those &
for which ¥ &p;, where the sum is over j=1,..., g, is a polynomial of degree (m —1)
or less.

Wahba (1978) derives spline smoothing from a Bayesian model in which an appropriate
prior, which is partially improper, is constructed on a space of smooth functions; see also
Silverman (1985b). In the notation above, the prior is a multivariate normal distribution
for £ with mean 0 and inverse variance matrix AK. Impropriety of the prior is equivalent
to rank deficiency in K. In our present partially parametric context, with an uninformative
prior for § as an additional ingredient, the maximum penalized likelihood estimate for
(8, E) is the mode of the corresponding posterior distribution. We can make the prior
more explicit, whilst avoiding impropriety, as follows. Let L and T be as constructed in
§ 2, then we can generate the prior for & as

E=T8+ LYLLTY e, {4.2)

where & is a fixed (¢ —r)-vector and £ an r-vector of zero mean, uncorrelated normally
distributed random variables with variance A~!. We can see that the penalty term AE'KE
is indeed twice the negative of the appropriate log likelihood term.

Leonard {1982) provides a more completely Bayesian approach for the nonparametric
case, again using a Gaassian process as a prior for y: specifically he recommends an
QOrnstein—Uhlenbeck process, with two hyperparameters in place of A, for the difference
between the derivative of y and a prescribed or estimnated base curve. The full empirical
Bayesian approach allows estimation of the hyperparameters.

If the observations are located at equaily-spaced {f} on a line, the squared mth
derivative penalty (4.1} will in practice be indistinguishable from that involving mth
differences, for example (3.1), with a basis such that @,(t)) = §;. Use of other roughness
penalties was also considered by Green et al. (1985).

When, and only when, the log likelihood L is that of a normal distribution with
expectation 6 linear in &, addition of the roughness penalty corresponds to use of a
‘random effects’ model for &, or equivalently, as far as f§ is concemed to maodification of
the assumed variance structure for y (Green, 1985).
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Whatever form of K is chosen, the tuning constant A controls the relative impact of
roughness, as judged by K, and error, determined by the likelihood. The extreme cases
A—so and 0, between which we wish to compromise, can be interpreted as follows. As
4— e, the likelihood is maximized subject to a roughness penalty of 0; that is we restrict
to the purely parametric model L(8(8, T8)). As A—0, the probiem degenerates to the
minimization of £TK& subject to the ‘interpolation’ condition that &(f, &) maximizes
L(6(B, £)); whether this is a constraint on & depends on the form of the regression
function 6.

5 Asymptotic theory

A rigorous asymptotic theory for the general class of regression models considered here
is not yet available. From the home ground of the normal linear model we have
simultaneously relaxed five assumptions: normality, the exponential family, independ-
ence, the linear parameterization and the purely parametric nature of the model. As we
have seen, these five relaxations do not disturb the conceptual and pedagogical unity of
these models and adds little complication to computation, but they are a considerable
barrier to mathematical tractability. The practical statistician must therefore tread warily in
applying the heuristics and ‘rules of thumb’ suggested here, and the mathematical
statistician may find some fruitful problems to be tackled. Much of this section is
therefore speculative.

For the purely parametric regression model, the general results of McCullagh (1983)
show that the other relaxations mentioned above do not prohibit a familiar-looking
asymptotic theory. Working in the framework of quasi-likelihood, we obtain asymptotic
normality for parameter estimates, and the associated results for score statistics and
likelihood ratios, under the main condition that DTAD has determinant diverging to o
but a nonsingular limit when properly normalized. Thus as expected, for example, the
same asymptotic theory applies in logistic regression, example (b} in §3 without the
nonparametric component, whether » or the binomial denominators {m;} tend to infinity.
This distinction is explored further by Jergensen (1986) with his ‘small-dispersion
asymptotics’. It might be expected that this type of result could be extended to
semi-parametric models in a framework where the space of basis functions remains stable,
and in particular g is fixed.

However such a framework will not usually be adequate. For example, in discussing
nonparametric smoothing the usual situation is that the observed {1} become increasingly
dense in a finite interval as ¢ = n— e (Craven & Wahba, 1979; Cox, 1984). Results have
been extended to nonnormal models (O’Sullivan, 1983; Cox & O’Sullivan, 1983).

For a more specific discussion, let us first consider the more straightforward linear
normal case, and then indicate the way in which moving to the general case will
complicate matters. ~

(a) The linear normal case. Supposc that the matrices A, D, E and K do not depend
on B or £ Then the log likelihood is quadratic, and we are dealing with the linear normal

model: y ~N(DB + EE, A™Y).

The working response Y is identically y so the solution to the equations (2.4) does not
depend on the initial estimates, and the maximum penalized likelihood estimates f and &
are obtained without iteration. Concentrating on the parametric component, standard
manipulations of partitioned matrices then reveal that

B =(DTA(I - S)D)'DTA(I - S)Y, (5.1)
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where
S=FE(ETAE + AK)'E" A4, (5.2)
and 50 B is exactly normally distributed with
EB)=B+ (DA - 5)D) 'DTA(Il - S)EE, (5.3)
var () = (DTA( - SYDY 'DTA(I ~ SYD(D A - S)D)™ L. (5.4)

Note that in general § is biased.

Informatly, the aim from this point will be to choose A so that, for suitably ‘smooth’ &,
the bias is negligible compared with the standard errors implied by (5.4): this must hoid in
a suitable asymptotic framework in which the form of A, D, E and K and usually even the
dimension ¢ will depend on #.

However, to make progress rather more specialization is needed. As an example,
consider one-dimensional spline smoothing. The relevant model is

y~N(DB + y(1), o°I},

where y(r) denotes the vector with ith component y(f), and the roughness penaity
assumed will be

5) = [ )y du

An appropriate basis for theoretical study is that due to Pemmler & Reinsch (1975} who

demonstrated the existence of a basis {g,, k=1,2,..., g}, where g =nr, such that
E =Vn times an orthogonal matrix U, and K is diagonal with K, = v,, say, depending
also on n, and ranked sothat 3 =v,=. . . =v, _,=v,,_;...<v, Then

_ T, 1T A . no - T
S=E(E'AE+AK)T'ETA = U diag [nmﬂa‘2+ )»v,-]U .

This explicit expansion, together with estimates of the eigenvalues (v} due to
Speckman (1982), enables a study of the bias and variance in (5.3) and (5.4). This is the
approach used by Rice (1986) in a study of a simple example where D has p =1 column
that is constructed to have a nontrivial regression on . With a degree of smoothing
asymptotically equivalent to that chosen by typical automatic methods (see §7), he
demonstrates that, while the standard errors of # are of order n~%, indeed var (B is
asymptotically (DTAD)™* as in the parametric case, the bias term (5.3) will in general be
of larger order. In fact this is intuitively unsurprising. We assume that (D ET) is of full
rank, not that this is true of (D E): indeed with g = n basis functions the latter could not
be true. Thus the decomposition DS+ EE is ambiguous. Given the true model
DB, + EE,, dissection of Rice’s proof reveals conventional Vr-consistency for some
such that D + EE = DB, + E&,: but in general there is no reason for this to be the
correct 3, as the two parts of the model are confounded. Undersmoothing would be
necessary for this problem of bias to disappear.

In a similar framework, but with general p and the rows of D chosen independently and
identically distributed so that they are not correlated with ¢, Heckman (1986) indeed
obtains the familiar result,

(b) The general case. The special case just considered is not as narrow as it may seem,
since we know that in many standard statistical models, the matrices A, D and E actually
vary rather slowly with 8 and &: that is why the asymptotic theory is true so generally
(McCullagh, 1983) and the method of scoring so widely applicable (Green, 1984).
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However, technical difficulties are certainly introduced, and the author is not aware of
published asymptotic theory for any nonlinear semi-parametric models.

Because of the curvature in such models, even consistency is not certain, and indeed
establishing consistency will be the crucial step. Thereafter careful approximations should
allow the transfer of results for the linear normal case to give the same asymptotic
distribution 3 ~ N(Bq, (DTAD)™") for some f, related to f, but giving sufficiently small
‘asymptotic confounding’ between the parametric and nonparametric components of the
model. The normality will be obtained using a central-limit type argument under a
condition on (DTAD) such as that quoted earlier.

Apart from theoretical study, there is scope for empirical work in assessing the value of
these asymptotics and their utility with finite samples, although it would be difficult to
design such studies to generate very widely applicable conclusions. In practice in the
meantime, we propose to use (5.3) and (5.4), even with data-dependent choice of
smoothing parameter, but to be wary of any formal inference based on these. It may be
useful to assess the risk from the bias problem using diagnostics that examine the
association between y{r}) and columns of D, evaluated at the maximum penalized
likelihood estimates.

6 Deviance and degrees of freedom

In generalized linear models, the deviance with its associated degrees of freedom
provides a goodness-of-fit statistic, to be referred to the appropriate y* distribution;
differences in deviances and degrees of freedom give tests of model adequacy (Nelder &
Wedderburn, 1972). Such tests are exact only in the normal linear model with known
variances. The practice of performing such tests will not be rehearsed here, but we shaill
attempt to derive appropriate definitions of deviance and degrees of freedom for the
general semi-parametric regression model.

We need the notion of ‘saturated model’ to be well defined, Suppose that, as a function
of 8 freed from its functional dependence on § and &, L is uniquely maximized at &',
Then the deviance associated with a particular regression function 8(8, £) is

A =2{L(6") - L(6(B, £))). 6.1)

The maximum penalized likelihood estimates i and £ minimize not (6.1) but the
penalized deviance A + A£7KE. How many degrees of freedom should we associate with
A? In parametric models, of course, the answer is the null asymptotic expectation.

As in § 5, the first-order approximation is that given by the linear normal case, where
A, D, E and K are constant. Then

A=A =047, (6.2)
where i = u(6{B, £)); here 2 =A(8'— 0(B, §))=A(Y — DB — EE)). In general, (6.2) is
only an approximation: we call A, the linearized deviance. In generalized linear models, it
is essentially Pearson’s x* statistic; for a discussion of its asymptotic distribution in this
case, see McCullagh {1985). Let B be a square root of A= BB", and define the n x n
matrix T

D
M= {I — BT[D E}G“‘[ET]B}. (6.3)
Simple manipulations using (2.5) establish that
A, =Y'BM?BTY, METKE=YTB(M - MHBTY.

In the present case, Y ~ N(Df,+ E&y, A™') so we can caiculate the expectations of these
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quadratic forms. Since
[

ET]BM’BT[D El=(G -G Y

0
1=ly &)
0 AK
we find that

E(AD)=tr (M) +Q,~ @y, E(A, +AETKE) =11 (M)} + Qy— O,

forr=0,1,2,..., where

where
0, = Eg&K{[ETAE + AK - EYAD(DTAD)“'DTAE}“)»K}’EO.

The value of these expressions is limited by the presence of the correction terms,
quadratic forms in the unknown true &,. Note that 0= Q,,, = (,, with mutual equality if
and only if K&, = 0. Such quadratic forms are inherently difficult to estimate so we are left
with two alternatives:

(a) neglecting these terms, leading to an over-estimate of degrees-of-freedom and
thence conservative goodness-of-{it tests, or
{b) replacing them by their expectations under the prior distribution {4.2).

Using this latter approach, further matrix manipulations give E(Q;)=¢;, say, where
to=r, and =tr(M)+p+qg—nforj=1,2,3 .... Denoting tr (M) by v, we finally
have the estimates

E(A)=v, E(@A+AE'KEy=n—(p+q)+r.
It may be shown that for any A > 0, v satisfies the inequality
n—rank [DE]svsn—(p+qg)+r

Its exact form as a function of A is given by Green (1985). In the notation of that paper, R
is ET and V is

I+ AT E(ETE) ' LN(L(ETE) ' L) P L(ETE)ET,

Combining this with the information above about expectations supports the use of v as a
surrogate for degrees of freedom for A. Parameters corresponding to the columns of
[D ET), that is B and &, are always fitted, requiring (p + g — r) degrees of freedom, and
the remaining n — {p +¢) + r — v are associated with the nonparametric component of &
permitted by A <o, Even in this linear normal case, there is no tractable distribution
theory for A: for discussion of x* approximations to the distribution of error sums-of-
squares in nonparametric regression, see Buckley & Eagleson (1986). Further we have
neglected the effects of a data-dependent choice of A,

When we turn to the general nonlinear or nonnormal case, the additional difficulties are
similar to those of § 5.

(i) The deviance is not identical to its linearized approximation.
(i) The dependence of the estimated values of 4, D, E and possibly K on the data
has been neglected in the expectation calculations.

Notwithstanding these difficulties our tentative recommendation is to use the deviance
A (without the addition of the penalty term) with degrees of freedom v in the analysis of




Penalized Likelihood for Semi-Parametric Regression 255

deviance just as for generalized linear models (Nelder & Wedderburn, 1972). Calculation
of v can proceed directly by finding the trace of (6.3), or more economically using the
easily-proved identity

ve=n—tr($)—tr (DA~ S)DY'DTA( ~ SYDY,

where S is given by (5.2).
The remarks at the end of §5 advocating further theoretical work are equally
applicable here.

7 Cross-validation

In practice, some automatic data-dependent choice of the tuning constant A will often
be required. Model selection by means of cross-validation was discussed in a systematic
way by Stone (1974). Its use in determining an appropriate degree of smoothing in
nonparametric regression problems has been enthusiastically espoused by Wahba and
co-workers in the past ten years and, in a refined form, known as generalized
cross-validation (Wahba, 1977), seems to have become the de facto standard approach. In
the linear problem, generalized cross-validation has additional invariance over the
ordinary version, it has now become computationally practicable, and it is known to
provide an asymptotically optimal degree of smoothing in a predictive mean-square sense.
O’Sullivan (1983) generalizes the application of generalized cross-validation to general-
ized linear models by transcribing a formula from the linear case, without deriving the
criterion afresh from its plausible first principles. This we attempt to do here, for our
more general class of regression problems.

The basic idea in cross-validation is to delete one observation at a time from the data
set, and endeavour to predict it from the model as fitted to the remaining observations.
The smoothing parameter is chosen to optimize the overall quality of prediction. The
appropriate generalization of this ‘delete-one’ operation in our model L{8(j3, £)) consists
of decoupling each component of # in turn f{rom its dependence on § and & The
predictive discrepancy will be measured in likelihood or deviance terms.

The decoupling is achieved by the introduction of dummy covariates. For some
generality, let F be an arbitrary n X f matrix (f = 1), and let B, E and T maximize the
penalized decoupled likelihood L(6(B, &) + FT) —1A&"KE. We define the predictive
discrepancy in the column space of F as the nonnegative quantity

AYF)=2{L(8(B, &) + Ft) - L(8(B, £))}; (7.1)

if this is zero then the decoupled estimates (5, £) coincide with (8, £). We will average
A'(F) over an appropriate set of directions to give an overall predictive discrepancy, but
first we obtain a quadratic approximation for A'(F).

At (B, E, ©) we have DTii =0, E"it = AKE and F'l =0, where

i@ =u(8(B, &)+ F&)=u(0(B, £)) — ADB - B) + E(& - &) + F¥).

But we know that DT =0 and E%& =AK§, so by subtraction, treating A, D and E as
fised, evaluated at (B, £), say, we have

DTAD DTAE  DTAF|| f-5 0
ETAD ETAE+AK ETAF|| E-E|=| 0 |,
FYAD FTAE FTAF i Fi
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whence f and £ may be eliminated to give
- DT —~1
= (F‘AF - F'A(D EYG™! [ ET]AF) Fla = (F"BMBTF)"'FTi.
So, by linearizing the expression (7.1) and noting that (8, £, £) maximizes the first term,
penalized, we have
ANF) = (FD)TA(Ft) = 0" F(F'BMBTF) ' FTAF(FTBMBF) \F g, (7.2}

This expression measures the result of decoupiing any number f of components of §; for
an analogue of delete-one cross-validation we set f = 1. For example if F =", the unit
vector in the ith coordinate direction,

Anlf
{((BMB™):}*
If A is not diagonal, we may prefer to orthogonalize the predictor space and use

BY(B™Ye) = (B~ )}/

Al(e®) =

In generalized cross-validation the individual predictive discrepancies are combined over
different directions by a weighted sum enjoying certain invariance properties. Let
w; = M, /tr (M), so that ¥ w; =1, and define the generalized cross-validation criterion

V()\.) = j w?ﬁ?((B—l)Te(i)) o~ (uTAulu)/tr (M)Z o~ A/.vz‘
=1

We can choose A to minimize this quantity, which has the same form as that used by
(3’Sullivan (1983).
- That this is the correct weighting of the individual predictive discrepancies can be seen
by examining the invariance properties of V(A). Re-parameterization by invertible
appropriately differentiable transformations of 8, § and & does not change the model; it
alters u, A, D and E, but 47", A, M and v remain invariant, and so therefore does
V(A).

One justification for use of the generalized cross-validation criterion in the linear
(spline) case is provided by the result of Craven & Wahba (1979) stating that such a
criterion is asymptotically optimal in the sense of minimizing the mean squared error

R()=7 5 (700) = (e

Of course, this property may be shared by many other criteria for choosing A. The only
natural expression of R(A) in likelihood terms seems to be via the divergence defined by
Kullback & Leibler (1951). We define R(1) so that

nR(A) = 2E 5,(L(60) — L(8)) = (8 — uo) A" (@ ~ uo)

to give an appropriate weighted mean squared error for (8, £) which makes connections
with the lnearized deviance apparent. Cross-validation and Kullback—ILeibler distance
are also discussed by Bowman, Hall & Titterington (1984). O’Sullivan (1983) sketches an
argument suggesting that the Craven & Wahba result extends to the generalized linear
model case, with a definition of R(A) equivalent to the above; it therefore seems likely
that if his proof could be rigorized, it might apply to the present more general set-up as
well.
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Note that by arguments similar to those of § 6, we have
ERM)) =@y~ Qo +tr (I ~ M)*)

whose expectation under the prior for & is just tr {{ — M).

8 Residuals

How best to define residuals depends very much on the purpose to which they are to be
put. The multitude of definitions available even in simple linear regression models (Cook
& Weisberg, 1982) strongly suggests that even more aiternatives will be available in our
present general context. Here we attempt only a limited discussion. We seek residuals
primarily for diagnostic purposes, and, in view of our reliance on the likelihood function
L(8(B, &) prefer these to be likelihood based and associated with the predictors & rather
than directly with the observations. Use of such residuals for diagnosis of data inadequacy
will require inspection of the likelihood function to determine the data points instrumen-
tal in giving a particular component of 6 a iarge residual. Detection of model inadequacy
can proceed more directly, and note that we do not desire invariance of residuals to
transformation of § itself.

The likelihood emphasis suggests concentrating on the deviance A, defined in §6.
Restricting attention to one or more particular components of 8, define

ACF) = 2{sup LO@, &)+ Fy = LGB, ), (5.1

twice the maximum increase in log likelihood attained by freeing 8 from its dependence
on 8 and £ in the directions spanned by columns of F. If Fis nonsingular, A(F) = A. Note
that A(F) = A'(F); the sole difference between the two quantities lies in the inclusion or
exclusion of the corresponding components of € from the firing of the model. Also note
that the maximum penalized likelihood ratio statistic lies between A(F) and A'(F).
Choosing a single coordinate direction ¢ for F, we obtain the raw deviance and
discrepancy A(e®™) and A'(e") respectively, which we abbreviate as A; and Af. The raw
deviances have been customarily used to define residuals in generalized linear models; see
discussion of paper by Green (1984). Finally, we denote the signed square roots by
z; = sign (rmax)\/A,- and z] =sign (rmax)\//_\}, where 1,,,, denotes the value of 7 in the
maximization of (8.1} and in (7.1) respectively.

These concepts tie in well with other treatments of residuals. In the case of normal
linear regression (with known variances =1, say, for simplicity), z; and z] are just the
ordinary and predicted residuals, respectively, of Cook & Weisberg (1982, Ch. 2). These
are known to be correlated, and improperly standardized for variance. Cook & Weisberg
point out that z and z! respectively under- and over-emphasize discrepancies for
high-leverage data points. This difficulty will persist in the more general cases. There is a
very detailed treatment of various definitions of residuals for generalized linear models in
the paper by Pierce & Schafer (1986), which advocates the use of deviance-based
residuals for most purposes.

When y is distributed normally with expectation € =Df and known nondiagonal
variance matrix V we find '

z; = {V_l()’ - 9)}:'{(V_l)ﬁ}_i’
2= (V7 y = )V )MV =V DDTD) DTV )

which are in fact y, standardized by its expectation and variance assuming the parameters
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to be equal to their estimates with and without y;, respectively, conditional an the other
components of y.

In contrast to Jargensen (1984), we believe that the use of unconditional moments in
this standardization is inappropriate for dependent observations.

For these examples, the lincarization leading to (7.2) and by a simpler argument to
A(F)=a"F(FTAF)"'FTa involves no approximation. In general, when the likelihood is
not quadratic, replacing A; and A by these approximations leads to different residuals z
and z]. The former have been called ‘score residuals’ (Jgrgensen, 1983). But as pointed
out by Green (1984), these score residuals are not appropriate when the quadratic
approximation is badly wrong: for example, they are not monotonic functions of the
observations in linear regression with a prescribed error density that is not log concave.

9 Nuisance parameters

The approach to penalized likelihood estimation described here can handle with no
difficulty certain types of nuisance parameter entering the probability model in addi-
tion to the predictors 8. Suppose, following Jgrgensen (1983) that L=[L{(y; 6, k)=
c(y; k) + o(x)(y; 0), where o, which we might term the precision parameter, is a scalar
function of the possibly vector-valued nuisance parameter k. See also Green (1984). This
is in a sense the ultimate generalization of the property of generalized linear models in
which the scale parameter factors out from the fitting procedure and is estimated at
convergence from the deviance. Examples include the variance in the normal distribution,
the index in the gamma distribution, and also the extra parameter often allowed as a
modification of the binomial or Poisson distributions to allow for ‘over-dispersion’.

The maximum penalized likelihood estimates of § and & now satisfy oD% =0,
oETd = AKE. Fisher scoring is no longer available necessarily, because the expectation of
t(y; 6) will in general involve x but, if we write A =-38%/36007, then neglecting the
second derivatives of & with respect to 8 and &, the ‘linearization method’ of Jorgensen
(1983), we obtain the approximate Newton~Raphson iteration:

[DTA D DTAE ] [ B*
ETAD ETAE+ o 'AKILE*
demonstrating that § and £ can be estimated without paying any attention to the nuisance
parameter k except that the value of the tuning constant A is now effectively measured

with respect to the unknown precision o, a consequence that is not likely to be of any
serious concern.

] = (D E)TAY,
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Résumé

On examine ici P'estimation par la vraisemblance pénalisée dans le contexte des probidmes généraux de
régression, caractérisés comme des mod2les avec des fonctions composites de vraisemblance. On accentue la
situation fréquente guand on trouve un modele paramétrique comme utile sauf pour la nonhomogénéité a
I'égard de quelques variables suppiémentaires. Une formulation de dimension finie est adoptée avec une base
convenable de fonctions. Des définitions appropriées de la déviation, des dégrés de liberté, et de résidu sont
examinées, et la méthode de validation croisée pour un choix du paramétre d’ajustement est discutée, Des
approximations quadratiques sont présentées pour toutes les statistiques nécessaires.
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