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Introduction

In a repeated measures clinical trial groups of individuals are followed over time with
outcome measures taken from each individual at fixed time-points. Often the focus of
the trial is to compare the outcome means in two or more groups at some pre-specified
time after enrollment. Unfortunately, data are not always available for each individual
at each time-point. This can occur for a variety of reasons - individuals may discontinue
participating in the study, or they may become non-compliant with the study protocol,
or the outcome measure is not taken or it falls outside its detectable range, etc. If such
missingness in the data is ignored and an analysis is performed using only those data
available at the specified time-points then bias in the estimates and serious errors in the
conclusions drawn from the study can result.

The SAMON package, [1], allows the user to perform a sensitivity analysis in the
mean value of an outcome measure and the difference in the outcome measure between
two treatment groups. The SAMON package handles discrete outcome measures and
requires that the outcome measure should be coded as a positive integer (1,2,3, . . . ).
Data not in this format need to be transformed to make this work.

SAMON can deal with missing data in the following settings:

• Monotonicity - if the data for an individual is missing at a time-point, t, then data
for that individual is missing at all subsequent time-points. That is, there should
be no intermittent missing data. Monotonic missing data is handled by the samon
function.

• In cases where in addition to monotonic missing data, some individuals exhibit
intermittent missingness then the function samonIM can be used.
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In examples 1 through 4 we shall deal with monotonically missing data and in examples
5 and 6 we shall explore monotonically missing data with intermittent missing.

Data Structure

In general, the functions in SAMON deal with one treatment arm at a time. Results
from the samon or samonIM functions are then passed to summary functions to com-
pute confidence intervals and treatment effects. The input to data should have the
following structure.

• The data from an individual should constitute one observation in the data.

• A separate numeric variable or column should store the outcome measure at each
time-point.

• The variable corresponding to the first time-point (the baseline value) should not
contain any missing values.

Such a dataset is often referred to as being in the “wide” format. Throughout examples
1 through 4 we use the PANSS data. Although simulated, these data are based on an
actual placebo controlled randomized trial and maintain many of the characteristics of
the original data. Our data has two arms, placebo (treatment = 1) and an active arm,
those receiving a 6mg dose of the drug risperidone (treatment = 2). The outcome of
interest was the total Positive and Negative Syndrome Scale score (PANSS score). The
first few observations from treatment 1 of the PANSS data looks like this:

V1 V2 V3 V4 V5 V6
[1,] 90 87 86 93 72 87
[2,] 112 NA NA NA NA NA
[3,] 99 76 62 52 57 49
[4,] 86 78 91 113 89 68
[5,] 80 85 NA NA NA NA
[6,] 72 64 78 113 NA NA
[7,] 67 NA NA NA NA NA
[8,] 96 NA NA NA NA NA
[9,] 93 90 NA NA NA NA

[10,] 78 70 53 85 NA NA
[11,] 93 86 92 94 NA NA
[12,] 111 112 95 NA NA NA
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The V1 column contains the PANSS score at visit 0 (the baseline visit), V2, the PANSS
score at visit 1 and so on. The last visit here is visit 5 and it is for this visit that we wish
to compute the mean PANSS score. As can be seen, the twelfth individual shown has
PANSS scores at visits 0 to 2, but not thereafter, while, the third and fourth individuals
have PANSS scores at all time-points. There are 88 individuals in treatment group 1
in the PANSS dataset. We will compare this arm with treatment group 2 which has 86
individuals. We begin with a simple summary of the PANSS data (see [2] for further
details).

Table 0.1: Summary statistics for two arms of the PANSS data.
Placebo (treatment 1) Risperidone 6mg (treatment 2)

Visit N NMiss Mean Std Min Max N NMiss Mean Std Min Max
0 88 0 91.4 18.0 56 132 86 0 89.8 18.9 54 135

1 80 8 87.2 19.5 44 153 81 5 77.9 17.2 47 120

2 70 18 85.2 17.8 53 125 77 9 75.6 18.5 42 119

3 45 43 83.6 19.5 52 120 68 18 74.7 18.3 38 118

4 30 58 83.9 21.6 52 144 53 33 70.5 21.2 38 107

5 23 65 78.3 19.5 47 111 51 35 68.6 20.4 37 114

Of the 88 individuals at baseline in the placebo group only 23 have a PANSS score at
visit 5, while, of the 86 individuals at baseline in the Risperidone arm 51 have values at
visit 5. Figure 0.1 below shows the mean PANSS score at each visit stratified by when
individuals were last seen.

Figure 0.1: PANSS score by visit for placebo arm (left panel labeled treatment 1) and risperidone arm
(right panel labeled treatment 2) and by the time-point at which individuals were last observed.
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Notation

We briefly introduce some notation. We use t = 0, 1, 2, . . . Nt to represent time-points
and Yt to represent the outcome measure at time t. The indicator variable Rt takes the
value 1 if an individual is on-study at time t and 0 if not. One way of expressing the
fact that data has a monotonic missing pattern is to say for any individual i, if Ri,t = 0

for some t then Ri,k for all k > t.

For each time-point, t > 0, samon determines two distributions. The first is the prob-
ability that an individual will dropout at time t given that they provided an outcome at
time t−1 and their outcome value at that time. We denote this distribution byH so that
Ht−1(Yt−1) = Prob (Rt = 0 | Yt−1 and Rt−1 = 1). The second distribution is denoted
by Ft−1(Yt−1) and is the distribution of Yt given that an individual is on study at time t
and their outcome value Yt−1 at time t − 1. In samon the distributions Ht−1 and Ft−1

are estimated using Gaussian smoothing kernels where each kernel is paramaterized
by its standard deviation, denoted by σH and σF respectively. We refer to σH as the
smoothing parameter for dropout and σF as the smoothing parameter for outcome.

For a given set of data optimal smoothing values for σH and σF are chosen by cross
validation. The data is partitioned into a small number of partitions of approximately
equal size. In turn each partition is withheld and the remaining data is used to evaluate
working distributions of H and F . A loss function is then evaluated on the withheld
partition using the working distributions. Summing the loss across all partitions gives
the loss associated with a fixed value of a smoothing parameter. We choose optimal
smoothing parameters by minimizing this loss function.
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Example 1

We begin by examining the relationship between a loss function and its associated
smoothing parameter. Later we will compute their optimal value of the smoothing
parameter. Here is a partial printout of the R program “Example1a.R”. We use the
SAMON function samoneval to evaluate the loss functions in the PANSS data using
10 partitions of the data. We pass the vector “sigmas” to samoneval for which we want
the loss function. Plots are then made of the relationship.

In this example we compute the smoothing parameter for treatment 1 (the placebo arm)
of the PANSS data. The data are stored in “samonPANSS1” and can be accessed using
the data function. We request that the data be divided into 10 partitions.

# Example 1a

library(samon, lib.loc="../../samlib")
data("samonPANSS1")

sigmas <- seq(0.1,50.0,by=0.1)
HF1 <- samoneval(

mat = samonPANSS1, # the data
Npart = 10, # number of partitions
sigmaList = sigmas, # vector of sigmas
type = "both" ) # both sigmaP and sigmaQ

Figure 1.1: Loss function by smoothing parameter. Smoothing associated with dropout (H) is on the
left and smoothing associated with outcome (F) is on the right.
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As the smoothing parameter for dropout (σH) moves away from 0, the loss function
flattens while the loss function for outcome (σF ) is more obviously quadratic. Indeed,
it may be the case that a loss function attains its minimum when σH or σF is large. In
such cases it may be desirable to limit the value of σ since increasing the value of σ
further does not substantially affect the smoothing or any other results we may obtain.

To estimate optimal smoothing parameters, σH and σF in the PANSS data we reproduce
part of the samon help page:

samon package:samon R Documentation

Description:

Given data from one arm of a repeated measures clinical trial, produces
estimates of the expected value of the outcome at the final time-point
for a range of sensitivity parameters.

Usage:

samon(mat, Npart = 10, InitialSigmaH = 1.0, HighSigmaH = 2.0,
InitialSigmaF = 1.0, HighSigmaF = 2.0, lb = 0, ub = 101, zeta1 = 1,
zeta2 = 1, NSamples = 0, seed0 = 1, MaxIter = 25, FAconvg = 1E-7,
FRconvg = 1E-7, SAconvg = 1E-7, alphaList = c(0), MJackknife = FALSE,
SJackknife = FALSE, retIFiM = FALSE, retIFiS = FALSE, Tfun= NULL)

Arguments:

mat: matrix with (i,j) entry representing value for subject i at
time-point j.

Npart: Number of partitions to use when estimating optimal smoothing
parameters, sigma H and sigma F.

InitialSigmaH: Initial value when calculating optimal sigma H.

HighSigmaH: Upper bound of search region when calculating optimal sigma H.

InitialSigmaF: Initial value when calculation optimal sigma F.

HighSigmaF: Upper bound of search region when calculating optimal sigma F.

MaxIter: Maximum iterations to use in optimizer.

FAconvg: Absolute change in function convergence criterion.

FRconvg: Relative change in function convergence criterion.

SAconvg: Step size convergence criterion.
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There are a large number of arguments that can be given to the samon function. Here
we will look at only those that immediately concern us.

• Mat is the name of the matrix holding the data. This needs to be in just the format
described earlier with each individual’s data stored in one row.

• Smoothing parameters are found by partitioning the data and then finding the
smoothing parameter that minimizes a loss function. The number of partitions
here is given by Npart. The data are broken into Npart parts based on row posi-
tion. The data have been randomly sorted to avoid bunching of missing data into
a small number of partitions.

• Minimization of the loss functions is by Newton’s method. The parameter Ini-
tialSigmaH to the samon function gives an initial value for σH . If σH should
go above HighSigmaH, the n the value HighSigmaH is returned. This allows
the user to limit the search region. In a similar manner, HighSigmaF is an up-
per bound in the search for σF and InitialSigmaF holds the starting point for the
search.

• MaxIter determines the maximum number of iterations to be performed in the
optimizer. SAconvg controls the absolute step size to use. That is, if xk is the
smoothing parameter estimate at iteration i and fi = f(xi) is the loss function
evaluated at xi, then, step size convergence is achieved when | xi+1 − xi |<
SAconvg. FAconvg is the absolute function convergence criterion. Convergence
is met by this criterion when | fi+1 − fi |< FAconvg. FRconvg is the relative
function convergence criterion. Convergence occurs when | fi+1−fi

fi+1+fi
|< FRconvg.

Again we use the placebo arm of the PANSS data which is stored in “samonPANSS1”
and accessed using the data function.

7



# Example1b.R
# Finding optimal Sigma_H and Sigma_F.
# ----------------------------------------------------
library(samon, lib.loc="../../samlib")

# get the treatment 1 data.
data("samonPANSS1")

samonResults <- samon(
mat = samonPANSS1, # input matrix
Npart = 10, # number of partitions

InitialSigmaH = 10.0, # initial value and upper bound
HighSigmaH = 50.0, # for sigma H

InitialSigmaF = 8.0, # initial value and upper bound
HighSigmaF = 50.0, # for sigma F

SAconvg = 1E-6, # stopping criteria
FAconvg = 1E-6,
FRconvg = 1E-6 )

print(samonResults$HM)
print(samonResults$FM)

To run this code from the Examples/Example1 subdirectory issue the command:

R CMD BATCH –no-save –no-restore Example1b.R

We request that the search for the optimal smoothing parameter, σH , go no larger than
50 and give as initial estimate of 10. For σF the search should go no larger than 50 with
an initial estimate of 8.0. The upper value of 50 is chosen because it represents over 2
and a half times the standard deviation of the data. Values of the smoothing parameter
greater than 50 will not affect the estimated distributions H and F substantially. It
can happen that there is no optimal value, that is, the loss function decreases as the
smoothing parameter increases. In such cases, choosing a large value for the smoothing
parameter is appropriate.

The results from the call to samon are placed in the samonResults matrix. A listing of
the samonResults follows.

> print(samonResults$HM)

Sample Type Convergence Iterations SigmaH lossH

[1,] 0 0 2 4 15.4519 5.398571

> print(samonResults$FM)

Sample Type Convergence Iterations SigmaF lossF

[1,] 0 0 2 3 8.399265 3.618053
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Samon returns a list. The HM object in this list contains the optimal smoothing param-
eter for σH and FM the optimal smoothing parameter for σF . Both HM and FM are
arrays. The M in the names HM and FM refers to the main data, i.e. the input data to
samon. Later we will see that samon returns similar arrays, HS and FS which corre-
spond to results from bootstrap samples, HMjk and FMjk which contain optimization
results for jackknifes for the main data, and HSjk and FSjk, the optimization results for
jackknifes of the bootstrap samples.

The first column in the output matrices represents the sample to which the results apply.
Since the results here refer to the input data, mat (samonPANSS1), the sample value is
set to 0. For the same reason the type value is set to 0. The next column, Convergence,
indicates which stopping criteria was used to stop Newton’s method. The table below
indicates the possible values for Convergence. Iterations gives the number of iterations
performed before convergence, and finally, SigmaH gives the optimal smoothing pa-
rameter for σH and lossH the associated loss function value. In like manner, SigmaF
and lossF give the optimal value for σF and the value of its loss function at the optimal
σF .

The optimal value for σH is found to be 15.4519 and for σF , the optimal value is
8.3993. In a similar manner the optimal values for σH and σF can be found for treat-
ment group 2. See the program Example1b.R in the Examples/Example1 subdirectory
for full details.

convergence

0 absolute step size less than SAconvg
1 absolute function change less than FAconvg
2 relative function change less than FRconvg
3 second derivative of loss function too small (< 1.0E-50) to take step
4 Maximum iterations reached
5 step takes value beyond HighSigmaH or HighSigmaF.
6 value of loss function smallest at HighSigmaH or HighSigmaF
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Example 2

In this example we set the selection bias function and create influence function esti-
mates for various values of the parameter alpha. As before we will obtain optimal
values for σH and σF . Much of the call to the samon function is the same as in Exam-
ple 1. We will need to provide some extra calling parameters to samon and returning
to the help we have:

samon package:samon R Documentation

Usage:

samon(mat, Npart = 10, InitialSigmaH = 1.0, HighSigmaH = 2.0,
InitialSigmaF = 1.0, HighSigmaF = 2.0, lb = 0, ub = 101, zeta1 = 1,
zeta2 = 1, NSamples = 0, seed0 = 1, MaxIter = 25, FAconvg = 1E-7,
FRconvg = 1E-7, SAconvg = 1E-7, alphaList = c(0), MJackknife = FALSE,
SJackknife = FALSE, retIFiM = FALSE, retIFiS = FALSE, Tfun= NULL)

Arguments:

mat: matrix with (i,j) entry representing value for subject i at
time-point j.

Npart: Data is partitioned into Npart parts when when estimating
optimal sigma p and sigma q.

...

alphaList: a vector of sensitivity paramaters.

lb: Lower bound for Y.

ub: Upper bound for Y.

zeta1: parameter to cumulative beta.

zeta2: parameter to cumulative beta.

• The outcome values (PANSS scores in our example) have a bounded range. The
selection bias function is of the form r(x) = α

∫ x
0 β(t, ζ1, ζ2)dt where β is the

Beta distribution function with parameters ζ1 and ζ2. Consequently the outcome
values need to be mapped into the [0,1] interval. This is done using the function
tran(y) = (y−lb)/(ub−lb). So we need to choose values lb and ub bounding the
outcome values. Since PANSS scores range from 30 to 210 we use these for our
bounds. The choice of zeta1 and zeta2 affect the amount of tilting that is done.
For now let’s set zeta1 to 4 and zeta2 to 7.

• We would like to compute influence function estimates for a range of alpha = -10,
-9, . . . , -1, 0, 1, . . . , 10 so we set alphaList to this. We first run samon on one of
the two arms samonPANSS1 and look at the output.
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# Example2.R
# Produce bias corrected estimates: PANSS group 1.
library(samon, lib.loc="../../samlib")
data(samonPANSS1)

Results1 <- samon(
mat = samonPANSS1,
Npart = 10,

InitialSigmaH = 10.0, # initial value and
HighSigmaH = 50.0, # high value for H
InitialSigmaF = 8.0, # initial value and
HighSigmaF = 50.0, # high value for F

lb = 30, # parameters to cumulative
ub = 210, # beta distribution
zeta1 = 4.0,
zeta2 = 7.0,

alphaList = -10:10 )

print(Results1$IFM)
saveRDS(Results1,"Results1.rds")

The output from samon is stored in the list Results1. We run this code from the Exam-
ples/Example2 subdirectory using the command:

R CMD BATCH –no-save –no-restore Example2.R

> print(Results1$IFM)
Sample Type alpha AEst AVar IFEst IFVar

[1,] 0 0 -10 73.80653 0.003674158 74.42125 11.38067
[2,] 0 0 -9 74.25204 0.004203255 74.93015 11.11602
[3,] 0 0 -8 74.76982 0.004849061 75.52206 10.87071
[4,] 0 0 -7 75.37143 0.005630058 76.20172 10.65344
[5,] 0 0 -6 76.06902 0.006564284 76.96972 10.46880
[6,] 0 0 -5 76.87548 0.007670310 77.82398 10.31811
[7,] 0 0 -4 77.80430 0.008965139 78.76183 10.20520
[8,] 0 0 -3 78.86901 0.010453580 79.78070 10.14286
[9,] 0 0 -2 80.08139 0.012103703 80.87672 10.15367
[10,] 0 0 -1 81.44781 0.013809232 82.04413 10.26326
[11,] 0 0 0 82.96345 0.015360609 83.27915 10.48833
[12,] 0 0 1 84.60378 0.016481795 84.58388 10.81612
[13,] 0 0 2 86.31396 0.016986635 85.95778 11.18204
[14,] 0 0 3 88.00769 0.016942922 87.37985 11.50141
[15,] 0 0 4 89.59388 0.016585733 88.80761 11.73461
[16,] 0 0 5 91.01113 0.016091793 90.18900 11.86197
[17,] 0 0 6 92.23428 0.015535476 91.47237 11.87248
[18,] 0 0 7 93.26288 0.014954200 92.61856 11.79351
[19,] 0 0 8 94.11085 0.014382178 93.60797 11.67698
[20,] 0 0 9 94.79955 0.013853455 94.43884 11.56730
[21,] 0 0 10 95.35321 0.013393276 95.12201 11.48693
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The output array of interest here is called IFM, i.e. the influence function estimates for
the main or input data.

For each alpha there are two types of estimates given. The first is based on the a∗

estimator

a∗ =
∫

y0

∫
y1

∫
y2

. . .
∫

yK

yK

K∏
j=1

{
Fj(1−Hj) +

Fjexp(rj)Hj∫
exp(rj)Fj

}

= Ey0

 RKYK∏K
j=1 (1 + exp(gj(Yj−1) + αr(Yj)))

−1


where gj(Yj−1) = log

(
Hj(Yj−1)

(1−Hj(Yj−1))

)
. This is the plug-in estimate (see [2] for details).

The second estimate is the influence function estimate and is given in the column
named IFEst. Simulation studies have shown that confidence intervals based on the
influence function variance leads to confidence intervals with poor coverage. In Ex-
ample 3 we will compute influence function estimates together with 95% confidence
limits using parametric bootstrap and the jackknife.

For now we repeat the above for treatment group 2 and plot the results. The estimates
in each case should be a monotone function of the sensitivity parameter alpha.

Figure 2.1: Bias corrected estimates of PANSS score
at visit 5 by sensitivity parameter α.
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Example 3

We are now ready to produce confidence bands for the PANSS data. Samon uses the
bootstrap and the jackknife in combination to produce confidence intervals. Again we
return to the samon function this time asking for N bootstrap samples and jackknife
estimates. Here are the arguments to samon to request the bootstrap and jackknife:

samon package:samon R Documentation

Description:

Given data from one arm of a repeated measures clinical trial, produces
estimates of the expected value of the outcome at the final time-point
for a range of sensitivity parameters.

Usage:

samon(mat, Npart = 10, InitialSigmaH = 1.0, HighSigmaH = 2.0,
InitialSigmaF = 1.0, HighSigmaF = 2.0, lb = 0, ub = 101, zeta1 = 1,
zeta2 = 1, NSamples = 0, seed0 = 1, MaxIter = 25, FAconvg = 1E-7,
FRconvg = 1E-7, SAconvg = 1E-7, alphaList = c(0), MJackknife = FALSE,
SJackknife = FALSE, retIFiM = FALSE, retIFiS = FALSE, Tfun= NULL)

Arguments:

mat: matrix with (i,j) entry representing value for subject i at
time-point j.

...

NSamples: Number of bootstrap samples to generate.

seed0: Seed to use.

MJackknife: Jackknife main data (logical)

SJackknife: Jackknife bootstrap samples (logical)

Most of the parameters passed to samon are identical to those used in the previous
example. Suppose we wish to create 1,000 bootstraps in each arm of the PANSS data.
Instead of running one program to achieve this, we split the task across 4 programs
each requesting 500 bootstraps for one treatment arm. In this way we can distribute
the job across 4 processors, saving run time. We do need to make sure to use different
seeds in each program and to save the results under different names. Since there are
only 4 programs we can write and run the programs manually. The 4 programs are
Example3_1a.R, Example3_1b.R, which produces bootstraps for treatment 1 (placebo)
and Example3_2a.R, and, Example3_2b.R which produces bootstraps for treatment 2
(active arm). Here is Example3_1a.R:
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# Example3_1a.R
# Produce bias corrected influence function estimates
# and 500 bootstrap estimates for treatment 1.
# ----------------------------------------------------

library(samon, lib.loc="../../samlib")

# Treatment 1 data.
data("samonPANSS1")

Results1a <- samon(
mat = samonPANSS1,
Npart = 10,

InitialSigmaH = 10.0, # initial value
HighSigmaH = 50.0, # high value for H

InitialSigmaF = 8.0, # initial value
HighSigmaF = 50.0, # high value for F

lb = 30, # parameters to cumulative
ub = 210, # beta distribution
zeta1 = 4.0,
zeta2 = 7.0,

NSamples = 500, # number of bootstraps
seed0 = 81881,

MJackknife = TRUE, # jackknife main data
SJackknife = TRUE, # jackknife bootstraps

alphaList = alphaList
)

# save results for later use
saveRDS(Results1a, "Results1a.rds")

Program Example3_1b.R is the same except that it uses a different seed and saves the
results in Results1b.rds. The other two programs, Example3_2a.R and Example3_2b.R
also change the seed and the name of the output and in addition read the data for
treatment 2 instead of treatment 1. The 4 programs are in the Example3 folder. To run
the programs we issue the commands:

R CMD BATCH –no-save –no-restore Example3_1a.R

R CMD BATCH –no-save –no-restore Example3_1b.R

R CMD BATCH –no-save –no-restore Example3_2a.R

R CMD BATCH –no-save –no-restore Example3_2b.R
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Once the bootstraps have been produced the results can be combined to produce a
single samon object using the samonCombine function. Other functions are then used
to produce confidence intervals for estimates and differences in estimates. Here is a
list of some samon functions. We will illustrate their use in Example 3 and 4.

function description
samonCombine combines the outputs from samon into one samon object.

The results are stored in rds files. samonCombine takes
a list of such files and combines them.

samonSummary a function to summarize the results from a call to samon.
This combines the jackknife and bootstrap estimates to produce
treatment estimates and confidence intervals.

samonDifferenceSummary Takes two samonSummary objects and computes a difference in
treatment estimate with confidence intervals for each value
of the sensitivity parameter.

samonCrossSummary Similar to the samonDifferenceSummary function. Takes two
samonSummary objects (one from each treatment group)
and computes a difference in treatment estimate with
confidence interval for each pair of sensitivity parameters.
This is used to produce the contour plot.

When samon have been run in parallel as it has been in Example 3, the samonCombine
function is useful in gathering up the pieces and building a single samon object. We
have produced 4 rds files each containing the results from 500 bootstraps. The program
Example3_plots.R uses samonCombine to put the results together and the function sa-
monSummary to summarize the estimates from each treatment arm. The samonDif-
ferenceSummay function takes the two summary objects produced by samonSummary
and produces the difference in influence function estimates between treatments (treat-
ment2 - treatment1). Finally plots are produced showing influence function estimates
as a function of the sensitivity parameter, alpha, together with a 95% confidence inter-
val. In Example 4 we will repeat this exercise increasing the number of bootstraps in
each treatment group. Here is Example3_plots.R which uses the functions mentioned
above:
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# Example3_plots.R
# Gather previously run results and plot them using samonPlot.
#
# Results are stored in rds files
# treatment 1: Results1a.rds, Results1b.rds
# treatment 2: Results2a.rds, Results2b.rds
# ---------------------------------------------------------------
library(samon,lib.loc="../../samlib")

# Retrieve the results and combine them
filenames1 <- c("Results1a.rds", "Results1b.rds")
filenames2 <- c("Results2a.rds", "Results2b.rds")

trt1Results <- samonCombine( filenames1 )
trt2Results <- samonCombine( filenames2 )

# summarize
Summary1 <- samonSummary( trt1Results )
Summary2 <- samonSummary( trt2Results )
SummaryD <- samonDifferenceSummary( Summary1, Summary2 )

# Get estimates and confidence intervals
TM1 <- Summary1$TM[,c("alpha","IFEst")]
TM2 <- Summary2$TM[,c("alpha","IFEst")]
TMD <- SummaryD$TM[,c("alpha","Difference")]
CI1 <- Summary1$CI[,c("lb8","ub8")]
CI2 <- Summary2$CI[,c("lb8","ub8")]
CID <- SummaryD$CI[,c("lb8","ub8")]

Results1 <- cbind( TM1, CI1)
Results2 <- cbind( TM2, CI2)
ResultsD <- cbind( TMD, CID)

# treatment 1
samonPlot(Results1, "Trt1Est.pdf", 5.5,6, "PANSS Estimate (visit 5)",

c(-20,20), c(60,110), c(3.6,63.0), maintext = "Placebo" )

# treatment 2
samonPlot(Results2, "Trt2Est.pdf", 5.5,6, "PANSS Estimate (visit 5)",

c(-20,20), c(60,110), c(3.6,63.0), maintext = "Active" )

# and treatment 2 minus treatment 1
samonPlot(ResultsD, "TrtDEst.pdf", 5.5,6,
"Difference in PANSS (visit 5)", c(-20,20), c(-40,5), c(3.6,-9.0),
maintext = "Difference (Active minus Placebo)" )
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Example3_plots also employs the samonPlot function given here:

# function samonPlot
# Takes a matrix of results, Res, with Res[,1] to be plotted on the
# xaxis, Res[,2] to be plotted on the yaxis. Res[,3] and Res[,4]
# contain lower and upper bounds to be plotted as a band.
samonPlot <- function( Res, file, height, width,

ylab, xlim, ylim, legpos, maintext) {

pdf(file=file, height=height, width=width)
par(mar=c(4,4,2,2))
plot.new()
plot.window( xlim = xlim, ylim = ylim )

cols <- c("#CC8866FF","#77AAFFFF")
lines( x=Res[,1], y=Res[,3], lwd=3, lty=c("solid"), col=cols[2])
lines( x=Res[,1], y=Res[,4], lwd=3, lty=c("solid"), col=cols[2])
lines( x=Res[,1], y=Res[,2], lwd=3, col=cols[1])

axis(1); axis(2)

title( main = maintext, xlab = expression(alpha), ylab = ylab)
box()

dev.off()
invisible(return())

}
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Figure 3.1: Bias corrected estimates of PANSS scores at visit 5 by sensitivity parameter α with 95%
confidence intervals. The control arm is on the top left, the intervention arm on the top right, and, the
effect estimate (the difference between the intervention arm and the control arm) is on the bottom left.
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Another useful plot is a surface plot of the difference in the estimated mean value be-
tween the two treatment groups given as a function of the two sensitivity parameters
(one for each treatment group). We use the samonCrossSummary function to com-
pute the difference in estimates for each pair of alphas. The plotting is done with the
filled.contour function.

# Example3_contourPlot.R
# --------------------------------------
library(samon,lib.loc="../../samlib")

# the first two files are for treatment 1, the second
# two are for treatment 2.
filenames1 <- c("Results1a.rds", "Results1b.rds")
filenames2 <- c("Results2a.rds", "Results2b.rds")

trt1Results <- samonCombine( filenames1 )
trt2Results <- samonCombine( filenames2 )

# summarize
Summary1 <- samonSummary( trt1Results )
Summary2 <- samonSummary( trt2Results )

XRes <- samonCrossSummary( Summary1, Summary2 )
XRes <- as.matrix(XRes$CI)

pdf(file="Example3_contour.pdf", height=5, width=6)
par(mar=c(4,4,2,2))

filled.contour(
x = -20:20,
y = -20:20,
z = matrix(XRes[,3],41,41, byrow=TRUE),
xlab = expression(paste(alpha, " (Placebo)")),
ylab = expression(paste(alpha, " (Active)")),
nlevels = 8,
color.palette = colorRampPalette(c( "#993404","#D95F0E",

"#FE9929","#FFD9BE","#FFFFD4"), space="rgb"),
plot.axis = (

points( XRes[ sign(XRes[,18]) == sign(XRes[,19]),
c(1,2)],

pch=15, cex=0.6, col = c("#44447799")))
)

dev.off()
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Figure 3.2: Contour plot showing the estimated difference in bias corrected PANSS
scores (intervention - control). The sensitivity parameter α is allowed to differ between
arms. Black markers appear where the estimated difference in employment rates is
statistically significant at the 95% confidence level.

−30

−25

−20

−15

−10

−5

0

5

−10 −5 0 5 10

−10

−5

0

5

10

α (Placebo)

α 
(A

ct
iv

e)

The contour plot shows the estimated difference in mean PANSS scores at visit 5. The
difference is the mean for the active arm minus the mean for the placebo arm. The dots
indicate whether the treatment difference would be statistically significant at the 0.05
level.
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Example 4

In the previous example it may be felt that 1,000 bootstrap samples may not be enough
to estimate 95% confidence intervals with precision. However, increasing the number
of samples may result in a program that takes a long time to complete. One possibility,
if a number of processors are available, is to split the program into parts and run the
parts in parallel. In this example we will see how to go about this.

Here we outline the procedure used employing a SUN grid engine (sge). The technique
may be modified for use on other systems. When we submit a job to the Grid we can
request multiple copies of the job to be run in parallel. Each of these copies are identical
but are run in an environment with an environment variable called SGE_TASK_ID
unique to each instance. We write a single R program which consults this environment
variable and so alters the seed and output name depending on the value it finds there.

Here we run samon on the PANSS treatment 1 data and have our programs generate
50 bootstraps. We let SGE run 50 instances of our program each in an environment
having the environment variable SGE_TASK_ID set to the values 1 to 50. Since we
do not wish to compute the jackknife values for the main data in each instance of our
program we request that MJackknife be set to TRUE when SGENID is 1 and to FALSE
otherwise.

# samonRuns1.R
# Produce 50 bootstraps each with jackknife estimates.
# Both the output filename and the seed used are based on the
# SUN grid engine task id.
# ----------------------------------------------------------------
# Get SGE_TASK_ID from the envirnonment.
SGETID <- Sys.getenv(c("SGE_TASK_ID"))
SGENID <- as.numeric(SGETID)
oname <- sprintf("RDS/Sample1/results_%05d.rds", SGENID)

set.seed(826847827)
seedList <- ceiling( 1000000 * runif( 1000 ) )
seed <- seedList[SGENID]

# only do the jackknife on the main data once
MJK <- ( SGENID == 1 )

library(samon, lib.loc="../../samlib")
data("samonPANSS1")

. . . continued
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# samonRuns1.R (continued from previous page)
# ----------------------------------------------------------------
Results <- samon(

mat = samonPANSS1, # imput matrix
Npart = 10, # number of partitions

InitialSigmaH = 10.0, # initial value
HighSigmaH = 50.0, # high value for H
InitialSigmaF = 8.0, # initial value
HighSigmaF = 50.0, # high value for q

lb = 30, # parameters for cumulative
ub = 210, # beta distribution
zeta1 = 4.0,
zeta2 = 7.0,

NSamples = 50, # bootstraps
seed0 = seed,

MJackknife = MJK,
SJackknife = TRUE,

alphaList = -10:10 )

saveRDS(Results, file=oname) # save the results

Since the environment variable SGE_TASK_ID takes on the values 1 to 50 we use it as
a pointer into a vector of seeds. Since the seed is explicitly set the results can be repro-
duced exactly if needed. The output names have the form RDS/Sample1/results_00001.rds,
RDS/Sample1/results_ 00002.rds, . . . , RDS/Sample1/results_00050.rds.

Having run 50 instances of this program and 50 of a similar program for treatment 2
we are in a position to gather the results.

# together.R
# Put together results from various runs of samon.
# Makes treatment1Results.rds with treatment 1 results
# treatment2Results.rds with treatment 2 results
# --------------------------------------------------------------
library(samon,lib.loc="../../samlib")

# there are 100 files each with 50 bootstraps per treatment arm.
filenames1 <- sprintf("RDS/Sample1/results_%05d.rds", 1:100 )
filenames2 <- sprintf("RDS/Sample2/results_%05d.rds", 1:100 )

trt1 <- samonCombine( filenames1 )
trt2 <- samonCombine( filenames2 )

saveRDS( trt1, file = "treatment1Results.rds")
saveRDS( trt2, file = "treatment2Results.rds")

Plots and other outputs are produced in a similar manner to that in Example 3.
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Figure 4.1: Bias corrected estimates of PANSS scores at visit 5 by sensitivity parameter α with 95%
confidence intervals. The control arm is on the top left, the intervention arm on the top right, and, the
effect estimate (the difference between the intervention arm and the control arm) is on the bottom left.
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Figure 4.2: Contour plot showing the estimated difference in bias corrected PANSS
scores (intervention - control). The sensitivity parameter α is allowed to differ between
arms. Black markers appear where the estimated difference in employment rates is
statistically significant at the 95% confidence level.
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Comparing the contour plot from this example with that produced in Example 3, you
may notice that the contour lines are not identical – although they are close. This is
because the IF estimates depend on the bootstrap samples and in this example we have
increased the number of these samples from 1,000 in each treatment arm of Example
3 to 5,000 in each treatment arm of Example 4. See [1,2] for further details.
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Example 5

We consider the data from two arms of a clinical trial where the primary outcome of
interest is a measure of neurological pain using the visual analog scale (VAS). Diabetic
subjects were enrolled in a study to evaluate the efficiency of treatment with the drug
Topiramate. During a baseline phase subjects were evaluated for eligibility and tapered
off existing neuropathic medication. Having been free of neuropathic pain medication
for at least seven days, subjects were randomized to one of 4 arms. The data we
consider here are from two of these arms – a placebo arm and subjects taking 200 mg
of Topiramate. See [3] for further details.

Data from the placebo arm can be found in the VAS1 dataset and data from the Topi-
ramate (200 mg) arm can be found in the VAS2 dataset within the samon package.

The double-blind phase included 2 periods, a 10 week titration period and a 12 week
maintenance period. VAS scores were scheduled on day 1 of the baseline period, every
two weeks during titration, and every four weeks of the maintenance phase.

Treatment effects were based on the VAS scores at the final follow-up visit. The data
exhibit both dropout and intermittent missing data.

In this chapter we analyze some clinical trial data with intermittent missingness and
dropout. We’ll chiefly use the SAMONIM function in the SAMON package.

We begin by examining the missing data patterns in the two arms of the VAS data.
The placebo arm has 255 subjects while the Topiramate arm has 256 subjects with
measurements taken at 9 time-points in total. Among the placebo arm, 81 individuals
have data at all time-points (32%) while 152 display what might be termed a monotone
missing (non-intermittent) structure. Among those with intermittent missing data 82
are missing data at time-point 2, the time-point immediately after the baseline measure.
In the Topiramate arm there were 67 completers (25%) while 251 display a monotone
missing pattern. Among those with intermittent missing data 60 are missing data at
time-point 2. Tables 5.1 and 5.2 list the the most frequently occurring data patterns.
In these tables an asterisk (∗) represents data being available at a time point while an
underline (_) represents missing data.
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Table 5.1: Some Missing data patterns from the placebo arm.

Monotone missing patterns:
N proportion

*________ : 5 0.0196

**_______ : 5 0.0196

***______ : 10 0.0392

****_____ : 3 0.0118

*****____ : 19 0.0745

******___ : 12 0.0471

*******__ : 12 0.0471

********_ : 5 0.0196

********* : 81 0.3176

Intermittent missing patterns:
N proportion

*_*_***** : 14 0.0549

*_******* : 13 0.0510

****_**** : 7 0.0275

***_***** : 6 0.0235

******_** : 5 0.0196
Other : 47

Table 5.2: Some Missing data patterns from the Topiramate arm.

Monotone missing patterns:
N proportion

*________ : 4 0.0156

**_______ : 14 0.0547

***______ : 19 0.0742

****_____ : 7 0.0273

*****____ : 19 0.0742

******___ : 10 0.0391

*******__ : 9 0.0352

********_ : 2 0.0078

********* : 67 0.2617

Intermittent missing patterns:
N proportion

*_*______ : 15 0.0586

*_*_***** : 9 0.0352

*_******* : 8 0.0312

***_***** : 7 0.0273

*_*_***__ : 5 0.0195
Other : 56
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Examining Tables 5.3 and 5.4 we see that in the placebo group the mean value of VAS
at baseline was 58.9 while the mean value at time point 9 for those observed at that
time point is 35.6. The VAS mean at baseline among the Topiramate group is 58.3 and
at the last time point it was 31.5.

Table 5.3: Number of observed values at each time-point, mean and standard deviation of observed
outcome - Placebo arm.

Last Observed Intermittent Missing

On- N % of N % of N % of N Observed
T Study Obs N On-Study Observed N On-Study mean SD
1 255 255 5 1.96 1.96 58.902 19.196
2 250 188 5 2.00 2.66 62 24.80 53.202 23.048
3 245 238 14 5.71 5.88 7 2.86 48.899 24.888
4 231 186 5 2.16 2.69 45 19.48 45.849 23.928
5 226 203 27 11.95 13.30 23 10.18 42.291 25.338
6 199 192 24 12.06 12.50 7 3.52 38.896 25.117
7 175 162 15 8.57 9.26 13 7.43 37.549 25.827
8 160 150 10 6.25 6.67 10 6.25 35.047 26.313
9 150 150 150 100.00 100.00 35.613 26.446

Table 5.4: Number of observed values at each time-point, mean and standard deviation of observed
outcome - Topiramate arm.

Last Observed Intermittent Missing

On- N % of N % of N % of N Observed
T Study Obs N On-Study Observed N On-Study mean SD
1 256 256 4 1.56 1.56 58.305 19.958
2 252 192 14 5.56 7.29 60 23.81 51.297 22.605
3 238 223 34 14.29 15.25 15 6.30 47.466 25.268
4 204 162 12 5.88 7.41 42 20.59 44.228 22.956
5 192 174 28 14.58 16.09 18 9.38 41.879 23.851
6 164 159 26 15.85 16.35 5 3.05 36.528 24.101
7 138 133 20 14.49 15.04 5 3.62 36.211 24.334
8 118 109 6 5.08 5.50 9 7.63 33.138 21.842
9 112 112 112 100.00 100.00 31.482 22.149
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Figure 5.1: Mean VAS score at visit t stratified by visit at which individuals were last observed.
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Figure 5.1 shows the mean value among individuals who provided data at a time point
stratified by the time they were last observed.
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Optimal Smoothing Parameters

Using multiple imputation we estimate the smoothing parameters within each group.
Using 5 imputations Figure 5.2 shows the loss function as a function of smoothing
parameter σH . It can be observed that the relationship between the loss and σH is
similar among imputes and results in similar minimal values. The situation in the
other treatment arm is similar. The situation involving the other smoothing parameter
σF shows more variation in both treatment arms and the minimal loss value is more
clearly defined.

# HF.R
# Examining the loss functions.
# For a range of smoothing parameters produce data for loss by
# smoothing parameter. Multiple imputations are used.
# -------------------------------------------------------------
library(samon, lib.loc="../../samlib")
sigmaList <- seq(0.2,40,by=0.1)

data("VAS1"); data("VAS2") # the data

# create a NT by 6 matrix indicating which variables to
# include in logistic regression. Here use all 6 except
# at the NT-1 time-point when we include only the first 3.
inmodel <- matrix(1,9,6)
inmodel[1,] <- 0
inmodel[9,] <- 0
inmodel[9-1,4:6] <- 0

for ( impute in 1:5 ) {
seed <- 3121 + impute

HF1 <- samonevalIM(
mat = VAS1, Npart = 10, sigmaList = sigmaList,
inmodel = inmodel, seed = seed, type = "both" )

HF2 <- samonevalIM(
mat = VAS2, Npart = 10, sigmaList = sigmaList,
inmodel = inmodel, seed = seed, type = "both" )

o1 <- cbind( impute, 1, HF1$OutSig )
o2 <- cbind( impute, 2, HF2$OutSig )

if ( impute == 1 ) {
out1 <- o1; out2 <- o2

} else {
out1 <- cbind( out1, o1 )
out2 <- cbind( out2, o2 )

}
}
saveRDS(out1,"RDS/HF1.rds")
saveRDS(out2,"RDS/HF2.rds")
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Figure 5.2: Loss function by smoothing parameter. The control arm is on the left, the intervention
arm on the right. Smoothing associated with dropout is on the top row and smoothing associated with
outcome is on the bottom.
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Bias corrected estimates

Within each treatment arm we estimate bias corrected estimates using the samonIM
function. Figure 5.3 displays the results as a function of the sensitivity parameter
α. Confidence intervals are calculated using parametric bootstraps with multiple im-
putation employed within each bootstrap. There were 2000 bootstraps each with 5
imputations involved in computing these confidence intervals.

# samonIM.R
# -----------------------------------------------------------
# Create bias corrected estimates for treatment 1 of the VAS
# data. 2000 bootstraps using 5 imputes.
# -----------------------------------------------------------
library(samon, lib.loc="../../samlib")

# Retrieve the data
data("VAS1")

# create a NT by 6 matrix indicating which variables to
# include in logistic regression. Here use all 6 except
# at the NT-1 time-point when we include only the first 3.
inmodel <- matrix(1,9,6)
inmodel[1,] <- inmodel[9,] <- 0
inmodel[8,4:6] <- 0

Results <- samonIM(
mat = VAS1, # imput matrix
Npart = 10, # number of partitions

InitialSigmaH = 25.0, # initial value and
HighSigmaH = 100.0, # high value for h

InitialSigmaF = 6.5, # initial value and
HighSigmaF = 100.0, # high value for f

lb = 0, # parameters for
ub = 102, # cumulative
zeta1 = 1.2, # beta distribution
zeta2 = 1.6,

NSamples = 2000, # bootstraps
NIMimpute = 5, # number of inputes

seed0 = 2122, # bootstrap seed
seed1 = 281, # imputation seed
inmodel = inmodel, # input model

alphaList = -10:10 # sensitivity parameters
)

saveRDS(Results, file=oname)
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As with the samon procedure there are a number of functions that can be used to
combine samonIM objects and produce confidence intervals from the bootstrap and
imputation results. These functions should be used with the outputs from the samonIM
function.

function description
samonCombineIM combines the outputs from samonIM into one samonIM object.

The results are stored in rds files. samonIMCombine takes
a list of such files and combines them.

samonSummaryIM a function to summarize the results from a call to samonIM.
This deals with the imputed and bootstrap estimates to produce
treatment estimates and confidence intervals.

samonDifferenceSummaryIM Takes two samonIMSummary objects and computes a difference in
treatment estimate with confidence intervals for each value
of the sensitivity parameter.

samonCrossSummaryIM Similar to the samonIMDifferenceSummary function. Takes two
samonIMSummary objects (one from each treatment group)
and computes a difference in treatment estimates with
confidence interval for each pair of sensitivity parameters.
This is used to produce the contour plot.

# summaryIM.R
# ---------------------------------------------------------------
# Summarize the results for the VAS data.
# ---------------------------------------------------------------
library(samon, lib.loc="../../samlib")

trt1Results <- readRDS("RDS/treatment1Results.rds")
trt2Results <- readRDS("RDS/treatment2Results.rds")

# CI for treatment 1 and 2 respectively
TM1 <- samonSummaryIM(trt1Results)
TM2 <- samonSummaryIM(trt2Results)

# Difference in outcome at same value of alpha
DM <- samonDifferenceSummaryIM(TM1,TM2)
# Difference in outcome at different values of alpha
CM <- samonCrossSummaryIM(TM1,TM2)

Results <- list( TM1 = TM1, TM2 = TM2, DM = DM, CM = CM )
# save results
saveRDS(Results, "RDS/Results.rds" )
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Figure 5.3: Bias corrected estimates of VAS scores at visit 9 by sensitivity parameter α with 95%
confidence intervals. The control arm is on the top left, the intervention arm on the top right, and, the
effect estimate (the difference between the intervention arm and the control arm) is on the bottom left.
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Considering the difference in estimates (Topiramate arm minus placebo arm) using
the same sensitivity parameter in each treatment arm using parametric bootstraps and
multiple imputation to compute confidence intervals we arrive at Figure 5.3.

Employing different sensitivity parameters in the two arms and computing the differ-
ence we obtain the contour plot:

Figure 5.4: Contour plot showing the estimated difference in bias corrected VAS scores
at visit 9 (intervention - control). The sensitivity parameter α is allowed to differ be-
tween arms. Black markers appear where the estimated difference in employment rates
is statistically significant at the 95% confidence level.
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Example 6

The DepWork data is a subset of the JOBSII dataset (see Vinokur 4). JOBSII was an in-
tervention study designed to measure the effect of an education program on job search
strategies, interview techniques and resume building. Unemployed individuals were
randomly assigned to one of two groups, a control group (N = 552) and a treatment
group (N = 1249). Individuals assigned to the control group were given a pamphlet
outlining job search strategies. The treatment group were invited to a job search sem-
inar. The seminar series was provided over a one-week period and in all lasted for 20
hours. In the treatment group 39% did not attend the seminar. Employment status for
each individual was measured at 6 weeks after baseline, 6 months after baseline and
2 years after baseline. An individual was considered employed if they worked for 20
hours or more a week.

The dataset DepWork1 contains the data for the control arm and DepWork2 the data
for the treatment arm. The data contain intermittent missing data. That is, for some
individuals their employment status may be missing at one time-point but be available
at some subsequent time-point.

We use the samonIM function in the samon package to analyze data with intermittent
missingness. This function uses multiple imputation of the intermittent missing data.
Normally only a small number of imputations are needed (about 5). Each imputed
dataset has a monotone missing data structure and can be analyzed using the techniques
used in the preceding examples. However the use of the jackknife is not advisable
under these circumstances. Instead, samonIM induces intermittent missing data within
parametric bootstraps and performs multiple imputation on data thus produced. Results
from the different imputations are pooled to produce standard errors.

The focus of this analysis is on the mean employment rate at 2 years from baseline
within the control group and the intervention group and the treatment effect, the differ-
ence in the mean employment rates between the two groups.

We begin by examining the missing data patterns in the two arms of the DepWork
data. The control arm has 552 subjects while the treatment arm has 1249 subjects with
measurements taken at 4 time-points in total.

Among the control arm, 349 have data at all time-points (63%) while 449 in all have no
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intermittent missing data. Among those with intermittent missing data 50 are missing
data at time-point 2, that is, at 6 weeks after follow-up. In the treatment arm 743 have
complete data (59%) while 962 have no intermittent missing data. Among those with
intermittent missing data 144 are missing data at the second time-point.

The frequency tables 6.1 and 6.2 list the the most frequently occurring data patterns.
In these tables an asterisk (∗) represents data being available at a time point while an
underline (_) represents missing data.

Table 6.1: Some Missing data patterns from the control arm.

Monotone missing patterns:
N proportion

*___ : 30 0.0543

**__ : 17 0.0308

***_ : 53 0.0960

**** : 349 0.6322

Intermittent missing patterns:
N proportion

*__* : 15 0.0272

*_*_ : 15 0.0272

*_** : 50 0.0906

**_* : 23 0.0417

Table 6.2: Some Missing data patterns from the intervention arm.

Monotone missing patterns:
N proportion

*___ : 78 0.0624

**__ : 34 0.0272

***_ : 107 0.0857

**** : 743 0.5949

Intermittent missing patterns:
N proportion

*__* : 38 0.0304

*_*_ : 56 0.0448

*_** : 144 0.1153

**_* : 49 0.0392

Examining Table 6.3 we see that the observed employment rate rises from 0 at baseline
to 0.71 at 2 years after baseline among the control group, while, the observed employ-
ment rate among the intervention group rises from 0 at baseline to 0.78 at 2 years after
baseline.
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Table 6.3: Number of individuals on-study and number observed values at each time-point together
with the number of intermittent missing data-points and the mean and standard deviation of observed
outcome.

Last Observed Intermittent Missing

On- N % of N % of N % of N Observed
T study Obs N On-study Observed N On-study Mean SD

The Control Group
1 552 552 30 5.43 5.43 0.000 0.000
2 522 442 17 3.26 3.85 80 15.33 0.351 0.478
3 505 467 68 13.47 14.56 38 7.52 0.621 0.486
4 437 437 437 100.00 100.00 0.707 0.456

The Intervention Group
1 1249 1249 78 6.24 6.24 0.000 0.000
2 1171 933 34 2.90 3.64 238 20.32 0.419 0.494
3 1137 1050 163 14.34 15.52 87 7.65 0.626 0.484
4 974 974 974 100.00 100.00 0.778 0.416

Alternatively, we can examine the data displayed in Figure 6.1 where the employment rate is plotted
against time separately for each treatment arm and for the time-point at which an individuals were last
observed.

Figure 6.1: Employment rate by time-point for control arm (left panel) and intervention arm (right
panel) and by the time-point at which individuals were last observed.
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Smoothing Parameters

Using multiple imputation we estimate the smoothing parameters in each group. Using 5 imputes Figure
6.2 shows the loss function as a function of the smoothing parameter σh. It can be observed that the
relationship between the loss and σh is similar among imputes and results in similar minimal values. The
situation in the other treatment arm is similar. The situation involving the other smoothing parameter
(the one associated with outcome), σf , shows more variation in both treatment arms and the minimal
loss values are all small.

# HF.R
# Examining the loss functions.
# For a range of smoothing parameters produce data for loss by
# smoothing parameter plots. Multiple imputations are used.
# -------------------------------------------------------------
library(samon, lib.loc="../../samon3.0/samlib")
sigmaList <- seq(0.05,5,by=0.01)

# the data
data("DepWork1"); data("DepWork2")

# create a NT by 6 matrix indicating which variables to
# include in logistic regression. Here use all 6 except
# at the NT-1 time-point when we include only the first 3.
inmodel <- matrix(1,4,6)
inmodel[1,] <- inmodel[4,] <- 0
inmodel[3,4:6] <- 0

for ( impute in 1:5 ) {
seed <- 3121 + impute

HF1 <- samonevalIM(
mat = DepWork1, Npart = 10, sigmaList = sigmaList,
inmodel = inmodel, seed = seed, type = "both" )

HF2 <- samonevalIM(
mat = DepWork2, Npart = 10, sigmaList = sigmaList,
inmodel = inmodel, seed = seed, type = "both" )

o1 <- cbind( impute, 1, HF1$OutSig )
o2 <- cbind( impute, 2, HF2$OutSig )

if ( impute == 1 ) {
out1 <- o1; out2 <- o2

} else {
out1 <- cbind( out1, o1 )
out2 <- cbind( out2, o2 )

}
}
saveRDS(out1,"RDS/HF1.rds")
saveRDS(out2,"RDS/HF2.rds")

38



Figure 6.2: Loss function by smoothing parameter. The control arm is on the left, the intervention arm
on the right. Smoothing associated with staying on study is on the top row and smoothing associated
with outcome is on the bottom.
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Bias corrected estimates

Within each treatment arm we estimate bias corrected estimates of the employment rate at 2 years after
baseline using the samonIM function. Figure 6.3 displays the results as a function of the sensitivity
parameter α. Confidence intervals are calculated using parametric bootstraps with multiple imputa-
tion employed within each bootstrap. There were 2000 bootstraps each with 5 imputations involved in
calculating these confidence intervals.

# samonIM.R
# -----------------------------------------------------------
# Create bias corrected estimates for treatment 1 of the
# DepWork data. 2000 bootstraps using 5 imputes.
# -----------------------------------------------------------
library(samon, lib.loc="../../samon3.0/samlib")

# Retrieve the data
data("DepWork1")

# create a NT by 6 matrix indicating which variables to
# include in logistic regression. Here use all 6 except
# at the NT-1 time-point when we include only the first 3.
inmodel <- matrix(1,4,6)
inmodel[1,] <- inmodel[4,] <- 0
inmodel[3,4:6] <- 0

Results <- samonIM(
mat = DepWork1, # imput matrix
Npart = 10, # number of partitions

InitialSigmaH = 0.31, # initial value and
HighSigmaH = 10.0, # high value for h

InitialSigmaF = 0.31, # initial value and
HighSigmaF = 10.0, # high value for f

lb = 1, # parameters for
ub = 2, # cumulative
zeta1 = 1.0, # beta distribution
zeta2 = 1.0,

NSamples = 2000, # bootstraps
NIMimputes = 5, # number of inputes

seed0 = 2122, # bootstrap seed
seed1 = 281, # imputation seed
inmodel = inmodel, # input model

alphaList = -10:10 # sensitivity parameters
)

saveRDS(Results, file=oname)
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The difference in estimates (employment rate in intervention arm minus the employment rate in the
control arm) using the same sensitivity parameter in each treatment arm using parametric bootstraps and
multiple imputation to compute confidence intervals is shown in the bottom panel.

Figure 6.3: Bias corrected estimates of employment rate at 2 years after baseline by sensitivity pa-
rameter α with 95% confidence intervals. The control arm is on the top left, the intervention arm
on the top right, and, the effect estimate (the difference between the intervention arm and the control
arm) is on the bottom left.
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Employing different sensitivity parameters in the two arms and computing the difference in employment
rates at 2 years after baseline we arrive at the contour plot:

Figure 6.4: Contour plot showing the estimated difference in bias corrected employ-
ment rates at 2 years after baseline (intervention - control). The sensitivity parameter
α is allowed to differ between arms. Black markers appear where the estimated differ-
ence in employment rates is statistically significant at the 95% confidence level.
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