
wiseR: Helping your decisions from
complex datasets

Tavpritesh Sethi, Shubham Maheshwari

2018-10-13

Getting Started
To install latest developmental version of wiseR in R

devtools::install_github('SAFE-ICU/wiseR',build_vignettes=TRUE)

To launch the app:

wiseR::wiser()

Bayesian Networks

Why Bayesian Networks?

Networks are one of the most intuitive representations of complex data. However, most networks rely on
pair-wise associations which limits their use in making decisions. Bayesian Networks (BNs) are a class of
probabilistic graphical models which can provide quantitative insights from data. These can be used both
for probabilistic reasoning and causal inference depending upon the study design.

A BN is a directed acyclic graph and provides a single joint-multivariate fit on the data with a list of
conditional independencies defining the model structure. Unlike multiple pair-wise measures of
association, fitting a model decreases the chance of false edges because the structure has to agree with
global and local distributions. Importantly, unlike most other forms of Artificial Intelligence and Machine
Learning, BNs are not a black-box model. These are transparent, interpretable and help the user in
reasoning about the data generative process by looking at the motifs. This can be immensely useful in
learning systems such as healthcare where a feedback between the clinicians and the learning system is
paramount for adoption. The structure (independencies) of a BN can be learnt directly from data using
machine learning or be specified by the user, thus allowing expert knowledge to be injected. After the
dependence structure within the data is learnt (or specified) the parameters are learnt on the network
using one of many possible approaches. wiseR provides most of the existing approaches such as constraint
based algorithms and score-based algorithms for parametrization of the Bayesian Network.
Recommendations as per the state-of-the-art in the literature are specified at each step of the BN learning
process (i.e. the recommendatin of score based algorithms over constraint based algorithms for learning
structure and Bayesian Information Criteria over Akaike Information Criteria for evaluating the fit).
Parametrization of the network enables predictions and inferences. These inferences can be purely
observational (“seeing” the state of a variable and its effect on neighbours) or causal (“doing” something to
a variable, i.e. interventions and observing the effect on downstream nodes). wiseR provides scoring
methods both for observational (e.g. Bayesian Information Criterion) and interventional (e.g. modified
Bayesian Dirichlet Equivalent score) datasets.

The flexibility provided by BNs in probabilistic reasoning and causal inference has made these one of the
most widely used artificial intelligence methods in Computer Science. However, the sophistication required

to code all the features has limited their use by domain experts outside of computer science, e.g. clinicians.
wiseR plugs this gap by creating a GUI for the domain experts and is an end-to-end solution for learning,
decision making and deploying decision tools as dashboards, all from the wiseR platform.

What do the motifs (junctions) reveal about the data-generating
process

Carefully learnt BNs are representations of the generative process that produced the data. These
generative processes are captured in the the form of three basic motifs present in the network: chain, fork
and collider junctions.

Chain (Mediator effect)

This motif is the simplest structure in a BN with a sequence of nodes pointing in the same direction. The
intermediate nodes are called mediators and conditioning on any of the mediators makes the flanking
nodes independent of each other. A mediator can be thought of as a mechanism, hence capturing the
information about mechanism removes the need for capturing the triggering process, hence making the
triggering process independent of the outcome.

Fork (Confounders effect)

The second type of structure observed in a BN is a common parent pointing towards two or more child
nodes. The parent represents the common cause and not accounting for the parent is a common source of
error (confounding) in many statistical models built upon real world data. A folk example of such an effect
is Age as a confounder (common cause) of IQ and shoe-size in children. Failure to condition upon age will
lead to a spurious correlation between the IQ and shoe-size and change our reasoning (hence predictions)
about the system being modeled.

Collider or a V-structure (Inter-causal reasoning)

These are one of the most interesting motifs in an Bayesian Network and are indicated by two nodes
pointing towards a single child node. Although the two parent nodes are not causally connected,
conditioning on the state of the common child opens up a ghost-path for probabilistic inference flow (inter-
causal reasoning) which can explain many intriguing paradoxes (e.g. the Monty Hall problem).

Walkthrough of functionalities

Pipeline

The logical flow of analysis and reasoning conducted with wiseR is shown in Figure S1.

Figure S1. Flowchart showing logic of wiseR

Start

Calling the wiseR() function from the wiseR package launches the application in the default browser. The
recommended browser for wiseR is Chrome. On launching the application for the first time, it conducts
background checks, which takes 5-10 seconds depending upon the machine. This delay only happens on
the first launch and all subsequent launches take less than a couple of seconds to initialize the user
interface.

The toolbar on the left side of the page has icons for navigating to home, analysis engine, github
development version and team information at any point of time.

Click “Start Analyzing” for navigating to the analysis engine with tabs specifying the functions. Hovering over
most of the tabs brings up a tool-tip that briefly describes the function performed on that action.

Figure S2. Homepage of the wiseR application

Main page of the wiseR engine

“Start Analyzing” takes us to the main page of the wiseR engine. An intuitive left-to-right ordering of tabs
guides the user into the analysis. This page has 5 tabs named ‘App Settings’,‘Data’,‘Association
Network’,‘Bayesian Network’ and ‘Publish your dashboard’, each tab covering a specific functionality (Figure
S3). Each of these is described next.

Figure S3. Functional tabs on the main page of the wiser engine and the first tab (App Settings)
for parallel computation.

App Settings

This tab (Figure S3) is used to set the parallel computing option (number of cores) for learning BN structure.
Learning structure is known to be NP-hard problem and may be time consuming on large datasets. Setting
the number of clusters allows each core to learn a structure when bootstrap learning is performed. Since
learning one structure cannot be parallelized, this is an example of task parallelization.

Data

This tab is used to load, pre-process and explore the dataset (Figure S4.)

The dataset panel contains the upload and preprocess menu while explore panel is used to visualize the

distribution of the data.

Figure S4. Data upload, exploration and pre-processing functions.

Upload

Users can upload their own data in one of the ‘.CSV’,‘.RData’ & ‘.txt’ formats. For large data, saving the data
as .RData is recommended for its compression of data, hence efficient storage. For ‘.txt’ files different
options of file formatting are provided such as:

Comma Separated
Semi-colon Seperated
Tab separated
Space Separated

New users trying to learn about BNs or testing the functionality of the app can work with the pre-loaded
datasets (Alarm, Hailfinder, Asia, Coronary) to replicate BN analysis commonly demonstrated with these
datasets.

Users must note that the default setting of the app is to treat all variables with less than 53 levels as factor
variables. Variables with more than 53 levels are treated as numeric variables and the user is prompted for
discretization of such numeric variables to factors. While this is a convenient general option, it may be true
that a numeric variable may have less than 53 levels in a particular dataset. In such cases, the user can un-
check this option and specify the numeric variables explicitly to be converted to factors in the next step.

Current limit of file upload is 8000 mb, however it is recommended to use .RData for large datasets.

Figure S5. Features of the upload sub-section of Data tab.

Pre-process

The preprocess menu is used to edit the data before using through the app. It is essential that data is
discrete and complete for learning association network and bayesian network. Multiple options to pre-
process the data have been provided.

User can convert any variable which has been misclassified as numeric to factor
User can convert any variable which has been misclassified as factor to numeric
User can choose from a number of algorithms to discretize their data -
Hybrid(Recommended),Hartemink(Recommended),K-means,Quantile,Frequency,Interval
Hybrid discretization is the default and it automatically chooses the best option for discretizing the
variable. If discretization fails with the current method, it uses the next preferable method in the
following sequence- k-means, quantile and interval discretization in that order of preference.
Hartemink requires 2 parameters ‘break’ and ‘ibreak’ which can be passed using the text input boxes.
Transpose the data frame if necessary.
Sort variables alphabetically.
Drop/Reset variables from the analysis. Using the delete button after entering variable names drops
these from the analysis and reset button restores the original data.them from the data using the
delete button.
Select Interventions. The learning algorithm will recognize the selected variable as intervention, and
will use modified Bayesian Dirichlet Equivalent score for structure calculation after accounting for the
intervention.

Figure S6. The data pre-processing sub-section of Data tab allows imputation, discretization, type-
conversion, variable deletion and transposing and setting of interventional variables.

Download

Users can download the pre-processed dataset in current state as a .CSV file

Figure S7. Users can download the pre-processed data as CSV files.

Exploratory Data Analysis

Pre-processed data can be explored by looking at their frequency distributions visualized as barplots. This
is an important step in the analysis as it allows the users to catch any anomalies that may bias the
downstream analysis.

Figure S8. Exploratory data analysis such as barplots of distributions.

Association Network

Before going to Bayesian Network analysis, it is instructive to visualize the association graph constructed
upon the data. Learning association networks on the data before bayesian learning can give useful insights.
Additionally the association network can serve as a starting structure for Bayesian Network structure
learning. This can be achieved by using the edgelist downloaded from association network analysis in the
structure learning part of the app. Various association scores are provided in the app as explained in the
next section.

Figure S9. Build and Explore Association networks

Build

The build menu is used to build association networks. It consists of different metrics for association
strength which are used to build association networks including,

cramer’s V(Recommended)
cohen’s D
Goodman kruskal lambda
Tschuprow’s T

Each method returns a value between 0 and 1. 0 being two variables are not associated and 1 being highly
associated. Users can select a threshold value between 0 and 1 for eliminating edges below the threshold.

Figure S10. Options to build association networks

Detect Modules

Most real world networks have communities. These may form due to preferential attachment to hub
nodes, often leading to a scale free network structure. To leverage this phenomenon, the app has a
module/community detection pipeline revealing sub-graphs in the original graph. These graphs can be
individually explored and analysed from the drop-down menu.

There are different clustering algorithms available in the app for module/community detection which is
powered by linkcomm package, like ward.D (Recommended),ward.D2,single,complete,average,mcquitty,
median,centroid for user to choose from.

Figure S11. Detection of communities within the association network.

Visual settings

Visualization is often key in deriving useful inferences from a complex dataset and these functions are
provided through the “Visual Settings” menu.

Color/Shape attributes: The user can either select variable names or provide a vector of variable indices
that need to be grouped for node sape and color. These tools are useful in analyzing bipartite or multi-
partite networks.

n-Nearest Neighbor Visualization:To ease the exploration of large graphs a threshold for visible neighbor
chain is provided, such that clicking on a node only display its neighbors upto that degree. Alternatively, a
user can see the list of n-th degree neighbors by clicking on a variable return. This returns a list of nth
degree neighbors. n can be interactively set.

Graph layout: Further, the app allows various graph layout options, some of which are more suitable for
particular kinds of data. Useful layouts include tree (for directed), Sugiyama (for directed), star and circle
(both for undirected graphs).

Font Size: User can adjust the font size of the node labels to improve visibility

Download graph:User also has the option to download the network graph in html format from the current
tab or using the save network option present in the bottom right corner of the graph.

Figure S12. Visual settings to explore assocation graphs.

Export tables

Association networks are essentially a list of edges with corresponding weights. This data obtained from
association networks analysis can be exported as an edgelist in tabular form and can also be downloaded it
as a .CSV file to allow user to switch between different networks analysis tools that can utilize edgelists.

Figure S13. Export the assocation graph

Bayesian Network Analysis

This is the core functionality of the wiseR app. Multiple features have been added to state-of-the-art
practices including bootstrapping, ensemble averaging, error bars of approximate inference etc. These
ensure robustness of reasoning and decisions derived from the BN.

Figure S14. Build and Explore Bayesian Networks

Structure learning

The structure of a graphical models reveals the generative process of the data at hand. For this reason, BNs
are interpretable and intuitive. Learning the structure from data is the most challenging yet insightful step
in a BN analysis. However, if the structure is already known, or can be guessed, this can be pre-specified by
an expert. In this way, BNs represent a perfect hybrid of expert and data-driven learning.

Initialize structure

This section relies on expert/prior knowledge and enables the user to upload a network graph as a .CSV file
to initialize the bayesian learning graph. The user can also add, remove or reverse the direction of any arc,
once the graph has been uploaded. (Only used in score-based learning)

Figure S 15. Graph initialization settings

Learn Structure

In the absence of expert knowledge, independencies can be directly learnt from the data itself. The
computational learning of structure can be done using a number of bayesian learning algorithms such as

Score-based (Recommended):- Hill Climbing, Tabu
Constraint-based:- Grow-Shrink, Incremental Association, Fast IAMB, Inter IAMB,PC
Hybrid Learning:- Max-Min Hill Climbing, 2-phase Restricted Maximization
Local Discovery:- Max-Min Parents and Children,Semi-Interleaved HITON-PC, ARACNE, Chow-Liu

Options used in structure learning include:-

Parameter fitting algorithm:- Bayesian parameter estimation (recommended), maximum likelihood
parameter estimation
Network score:- Bayesian Information Criterion, Bayesian Dirichlet Equivalent, modified Bayesian
Dirichlet Equivalent, log-likelihood,Akaike Information Criterion,Bayesian Dirichlet Sparse,Locally
Averaged Bayesian Dirichlet (Only used in score-based learning)
Imaginary sample size (Only used in score-based learning)
Incorporate expert knowledge via blacklisting (explicitly restrict edges in structure learning) and
whitelisting (explicitly enforce edges in structure learning) edges by uploading a .CSV file for the same
Disabling data resampling in bootstrap learning. This is particularly useful for data with low sample
size. In this case, the data remain same but the graph is re-initialized every time. This method is only
possible for score based algorithms as it requires random graph initialization.
Bootstrap iterations:- Bootstrapping means sampling the data with replacement. This parameter
specifies the number of bootstrap iterations to run for bootstrapped structure learning.
Bootstrap sample size:- Proportion of data to be used as sample for bootstrap learning.
Edge strength:- Set a threshold value between 0 and 1 to remove edges below specified strength
from the final structure. Edge strength can be interpreted as the probability of occurrence of an edge
in bootstrap learning.
Edge direction:- Set a threshold value between 0 and 1 to remove edges below specified direction
confidence from the final structure. Edge direction can be interpreted the confidence of direction of a
learned arc in bootstrap learning.

Although not recommended, bootstrap based structure learning may be by-passed via the “Direct
Learning” option for learning the structure without bootstraps. Please note that this is suitable only
for quick exploration and may give less robust structure.

Important Notes

The user does not have to do the bootstrap learning every time if they wish to explore different thresholds
for edge and direction strength. This can be achieved by using the parameter tuning option.

The final learnt structure can be saved as a as a bnlearn object in .RData format through the save option.

Figure S16. Structure learning settings

Upload pre-learnt structure

A user returning to analysis should not need to repeat the above steps. An already learnt and saved
bayesian network structure can be uploaded as an .RData file.

Options to upload both bootstrapped and direct structure and adjusting their parameters are available in
the app.

Figure S17. Upload pre-learnt structure

Edit structure

wiseR allows expert checks at every step and an expert can identify edges and directions that are not
plausible in the real world (e.g. smoking cannot influence natural gender, but the reverse can happen). An
expert can add/remove arcs, or reverse the direction of the existing ones on the basis of plausibility.

Figure S18. Edit learned structure via adding, removing or reversing directions based upon expert
knowledge and plausibility.

Validate structure

This section enables the analyst to validate the learnt structure using 10-fold cross-validation or hold-out
testing.

The log-likelihood loss and network score outputs produced can then be used to judge the usability of the
learned structure.

Figure S6. Validation of the learnt structure through cross-validation and hold-out testing.

Inference

After the parametrization of BN is complete, it can be queried to derive inferences and reason about the
data. The inference learning menu enables the user to learn and explore conditional probability plots on
the learned structure. The user can set an event and multiple evidences can be inserted as per the query.
This crucial feature enables the user to explore probability plots on event nodes in the network
conditionalized on chain of evidences, which is the essence of decision making through bayesian networks.

Inferences can be learnt through two methods using wiseR

Approximate Inference (Fast, Monte Carlo sampling of local structure). This option is useful for large
datasets where exact inference is intractable. However, the sampling is implemented every time,
hence adding incrementally to computational overhead over time. Also it yields slightly different
results on each iteration. The app has the feature to re-compute approximate inferences for a
specified number of times and to plot error bars in the inference.
Exact inference (Fast for small networks, slow for large networks, one-time computation)

Assuming that the User is working with large datasets, approximate inference is the default setting. This
can be switched in the app. It is observed that the inference plots produced using approximate inference
with error bars, is almost as accurate as exact inference, hence can enable robust reasoning and decisions
on large datasets where exact inference is not possible.

Figure S20. BN Inference. Approximate, Exact and Robustness.

Apart from structure and inference learning which are the workhorse of a BN analysis, the bayesian
network tab allows options for visualization and exploration

Bayesian network panel is used to explore the learned structure and is equipped with all the graph
exploration features as available in association graph

Figure S21. Example of a learnt bayesian graph

Fitted local distribution panel is used to explore the local probability distribution tables of variables in

the learned network structure

Figure S22. Local probability distribution tables

Infer decisions is used to visualize the inference plots once the user has chosen the event and
evidence nodes. It also has option to sort the plot axis and prune the no. of plot bars

Figure S23. Inference plot

Export tables section is used to visualize the network graph, blacklist-whitelist edges and variable
wise validation results in tabular format. User can also download these tables as .CSV file

Figure S24. Visualiation and tables available to be exported from the application.

Taking Decisions with the learnt network

Heads-up: This section relies upon JAGS installation on their system. JAGS can be downloaded from its
official page.

As per our knowledge, there is no available open-source tool or a package in R that integrates structure
learning with decision making. Influence diagrams have typically been defined by hand by experts. wiseR
integrates these two capabilities to help the analyst arrive at the best (or next-best) policy for optimizing a
payoff. For this purpose, the use can create a payoff node based off the variable that they wish to optimize
(known as the utility node, e.g. Blood Pressure optimization in the Intensive Care Unit). This brings up the
table to enter the utility of each state in the range of -1 to 1. For example, a user may assign a negative
utility to an abnormally low or high blood pressure event (-1) and a positive (+1) utitilty to normal blood
pressure. Alternatively, if the user does not care as much about the high blood pressure as they would care
about low blood pressure (e.g. shock in the ICU), they can assign a zero utility to the high blood pressure
event. After this the user sets the decision nodes that are direct parents of the node their utility node. If the
policy from parents is expected to be obvious, they can go to grandparents or orders higher, however the
effects may diminish. Finally the user runs the Monte-carlo simulation that displays the best policy along
with the payoffs in a sorted table. This leap from making subjective inferences to policy advice makes wiseR
a white-box appproach to actionable, transparent and interpretable machine learning.

Publish your dashboard

Finally, the user can abstract the learning and decision making process into their own dashboard
deployments. We consider this section to be a key highlight of wiseR. Publishing the analysis as an
interactive dashboard helps reproducibility and effective communication. wiseR enables the user to
produce a custom dashboard of their results as an R package.

The user has options to select the name and theme for the dashboard, and select the build option. wiseR
builds the dashboard as a downloadable R/Shiny package which can be served as a web-application or
launched as a local Shiny app. The custom dashboard is equipped with the most useful features of wiseR

such as the interactive graph exploration and inference learning and visualization.

This feature save author hassle of creating a dashboard for their findings, and helps propagating research
output to the community in an efficient manner, thus helping bridging the gap between the research and
actual use.

Figure S25. Publish your dashboard as a web-application or a local package

Comparison
This section compares the features of wiseR with other existing Bayesian Networks tools (Table) Table Key:

Open source (OS): Is the source code available ? If yes what programming language?
Target Audience (TA) :What is the target audience? Based on the source code availability and
programming language used, the app can be target to end user, data scientist or both.
Enabled Statistical/ML extensions (MLE) : Does the backend language supports AI/ML libraries for
customizations in those directions?
Structure Learning (SL): Is structure learning possible?
Bootstrapped Learning (BL): Is robust bootstrap structure learning possible?
Interventional Data(INT): Can it handle interventional data and incorporate it in structure learning?
Cross Validation(CV): Does the app provides means for cross validation and evaluation of learned
models?
Parameter learning(PL): is parameter learning possible using the app?
Informed Layout(IL): is network visualization using a wide variety of efficient and targeted graph
layouts for exploration ?
Community Detection(CD) : are subgraphs based on communities/modules detected in the graph
using available for visualization and exploration?
Inference with Confidence (IC): Can the app perform inference learning with confidence intervals ?
Chained Inferences(CI): can the app handle multi-evidence inference learning?
Exact Inference(EI): can the app perform exact inference learning?
Approximate Inference with error bars(AIE): can the app perform much faster approximate
inferences, verified over multiple iteration and produce final results with error bars(Much faster and
equally accurate than exact inference on large datasets)?

Parallel processing(PP) : Does the app enable the user to run the process in parallel for faster
runtime?
Free: Is the app free for public use?

A comparison of wiseR and other bayesian learning apps

Name OS TA MLE SL BL INT CV PL IL CD IC CI EI AIE PP Free

wiseR Yes (R)
Data
Scientists,End
users

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Bayesian
Networks Yes (R)

Data
Scientists,
End users

Yes Yes No No No Yes No No No No No No No Yes

BayesiaLab No End Users No Yes No No No Yes No No No Yes Yes No No No

Bayes Server No End Users No Yes No No No Yes No No No Yes Yes No No No

BNJ Yes
(Java) End Users No No No No No Yes No No No No Yes No No Yes

CIspace Yes
(Java) End Users No No No No No No No No No No Yes No No Yes

OpenMarkov Yes(Java) End Users No Yes No No No Yes No No No Yes Yes No No Yes

Sam Iam No End Users No Yes No No No No No No No No Yes No No Yes

UnBBayes Yes
(Java) End Users No Yes No No No Yes No No No Yes Yes No No Yes

Example
This section provides a hands-on example to conduct a step by step analysis to replicate one of the
landmark results obtained using data-driven Bayesian Network learning and Inference, the Sachs dataset
on yeast pathway modeling presented in Sachs et al. (2005), which utilizes bayesian learning on complex
interventional data.

Steps

We upload the sachs interventional data which is in a space separated text file into the app. Variables are
read as factors as it is a numerically encoded discrete data.

Figure S26. Sachs data uploaded

The variable INT holds interventional information, adjustment is made for the same in the preprocess
menu. This will now be used as a part of bayesian structure learning.

Figure S27. Handling interventional information

Next we learn a simple bayesian network on the data using Hill climbing algorithm and mbde network
score. This graph will now be used to initialize structure learning using tabu algorithm. This mechanism of
graph initialization in structure learning is especially useful in score-based learning like Tabu, which
prevents it from getting stuck in local maxima.

Figure S28. Learn structure using hill climbing

Figure S29. Download network graph as CSV file.

We now upload the graph as initialization for structure learning.

Figure S30. Initialize a new structure using the previously learnt graph

Next, we set the appropriate parameters for structure learning. * Algorithm: tabu * Network score:
modified bayesian dirichlet equivalent * ISS(imaginary sample size): 15 * Parameter fitting algorithm:
bayesian parameter estimation

This performed a direct structure learning without bootstraps using tabu, to replicate the results as it was
published in the study. However, we recommend that the user should select the bootstrap parameters and
do a bootstrap learning, to produce more robust structures.

Figure S31. Structure learning using tabu algorithm on Sachs data

The final learnt structure replicates the results of the original paper and has all the validated arcs
presented therein. It also discovered additional arcs which were not present in the original paper and may
be useful for future research and exploration.

Figure S32. Final learned structure

We now confirm exact inference results with approximate inference with error bar to show that the unique
approximate inference mechanism provided in the app produces as accurate results as exact inference
without computational constraints in case of large structures. For this purpose we set the node ‘Akt’ as
event conditional on ‘Erk = 1’. In the probability plots produced we can clearly see that approximate
inference with error bars produces as accurate results as exact inference within 0.05 range of error, which
is negligible

Exact Inference

Figure S33. Exact inference plot

Approximate Inference with error bars

Figure S34. Approximate inference plot

This concludes the walk-through example for replicating a BN analysis using wiseR

wiseR is powered by the following libraries:-

RBGL (Vince Carey, Li Long and R. Gentleman (2017). RBGL: An interface to the BOOST graph library.
R package version 1.52.0. http://www.bioconductor.org)
graph (R. Gentleman, Elizabeth Whalen, W. Huber and S. Falcon (2017). graph: graph: A package to
handle graph data structures. R package version 1.54.0.)
bnlearn (Marco Scutari (2010). Learning Bayesian Networks with the bnlearn R Package. Journal of
Statistical Software, 35(3), 1-22. URL http://www.jstatsoft.org/v35/i03/.)
rhandsontable (Jonathan Owen (2018). rhandsontable: Interface to the ‘Handsontable.js’ Library. R
package version 0.3.6. https://CRAN.R-project.org/package=rhandsontable)
shiny (Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2017). shiny: Web
Application Framework for R. R package version 1.0.5. https://CRAN.R-project.org/package=shiny)
shinydashboard (Winston Chang and Barbara Borges Ribeiro (2017). shinydashboard: Create
Dashboards with ‘Shiny’. R package version 0.6.1. https://CRAN.R-project.org
/package=shinydashboard)
dplyr (Hadley Wickham, Romain Francois, Lionel Henry and Kirill Müller (2017). dplyr: A Grammar of
Data Manipulation. R package version 0.7.4. https://CRAN.R-project.org/package=dplyr)
visNetwork (Almende B.V., Benoit Thieurmel and Titouan Robert (2018). visNetwork: Network
Visualization using ‘vis.js’ Library. R package version 2.0.3. https://CRAN.R-project.org
/package=visNetwork)
shinyWidgets (Victor Perrier and Fanny Meyer (2018). shinyWidgets: Custom Inputs Widgets for Shiny.
R package version 0.4.1. https://CRAN.R-project.org/package=shinyWidgets)
missRanger (Michael Mayer (2018). missRanger: Fast Imputation of Missing Values. R package version
1.0.2. https://CRAN.R-project.org/package=missRanger)
tools (R Core Team (2017). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.)
shinyalert (Dean Attali and Tristan Edwards (2018). shinyalert: Easily Create Pretty Popup Messages
(Modals) in ‘Shiny’. R package version 1.0. https://CRAN.R-project.org/package=shinyalert)
shinycssloaders (Andras Sali (2017). shinycssloaders: Add CSS Loading Animations to ‘shiny’ Outputs.
R package version 0.2.0. https://CRAN.R-project.org/package=shinycssloaders)
rintrojs (Carl Ganz (2016). rintrojs: A Wrapper for the Intro.js Library. Journal of Open Source
Software, 1(6), October 2016. URL http://dx.doi.org/10.21105/joss.00063)
arules (Michael Hahsler, Christian Buchta, Bettina Gruen and Kurt Hornik (2018). arules: Mining
Association Rules and Frequent Itemsets. R package version 1.6-1. https://CRAN.R-project.org
/package=arules)
psych (Revelle, W. (2018) psych: Procedures for Personality and Psychological Research,
Northwestern University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version =
1.8.4.)
DescTools (Andri Signorell et mult. al. (2018). DescTools: Tools for descriptive statistics. R package
version 0.99.24.)
DT (Yihui Xie (NA). DT: A Wrapper of the JavaScript Library ‘DataTables’. R package version 0.4.11.
https://rstudio.github.io/DT)
linkcomm (Kalinka, A.T. and Tomancak, P. (2011). linkcomm: an R package for the generation,
visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics
27 (14), 2011-2012.)
igraph (Csardi G, Nepusz T: The igraph software package for complex network research, InterJournal,
Complex Systems 1695. 2006. http://igraph.org)
parallel (R Core Team (2017). R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.)
snow (Luke Tierney, A. J. Rossini, Na Li and H. Sevcikova (2016). snow: Simple Network of
Workstations. R package version 0.4-2. https://CRAN.R-project.org/package=snow)
shinyBS (Eric Bailey (2015). shinyBS: Twitter Bootstrap Components for Shiny. R package version 0.61.
https://CRAN.R-project.org/package=shinyBS)
gRbase (Claus Dethlefsen, Søren Højsgaard (2005). A Common Platform for Graphical Models in R:
The gRbase Package. Journal of Statistical Software, 14(17), 1-12. URL http://www.jstatsoft.org

/v14/i17/.)
gRain (Søren Højsgaard (2012). Graphical Independence Networks with the gRain Package for R.
Journal of Statistical Software, 46(10), 1-26. URL http://www.jstatsoft.org/v46/i10/.)
RCy3 (Ono K, Muetze T, Kolishovski G, Shannon P, Demchak, B. CyREST: Turbocharging Cytoscape
Access for External Tools via a RESTful API [version 1; referees: 2 approved]. F1000Research 2015,
4:478.)
BiocManager (Martin Morgan (2018). BiocManager: Access the Bioconductor Project Package
Repository. R package version 1.30.1. https://CRAN.R-project.org/package=BiocManager)
HydeNet (Jarrod E. Dalton and Benjamin Nutter (2018). HydeNet: Hybrid Bayesian Networks Using R
and JAGS. R package version 0.10.7. https://CRAN.R-project.org/package=HydeNet)

