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This report1 illustrates the use of so-called group kernels, investigated in [Roustant et al., 2020],
with kergp. They are suitable for categorical inputs when levels are gathered in predefined
groups.

1 Group kernels

Let G be the number of groups, and n1, . . . , nG their sizes. Let L = n1 + · · ·+ nG be the total
number of levels. Then a group kernel is a valid block covariance matrix T of size L, composed
of constant off-diagonal blocks Tg,g′ , (g 6= g′). Up to a condition on diagonal blocks, such block
matrices can be generated with

• one ‘between-{group means}’ covariance matrix B⋆ of size G, corresponding to the covari-
ance matrix of the group centers,

• and G ‘within’ centered covariance matrices W⋆
1
, . . . ,W⋆

G of size n1, . . . , nG.

The link betweenT,B⋆,W⋆
g corresponds to a probabilistic nested model (see [Roustant et al., 2020]

for details) and is given by the following equations:

Tg,g = B⋆
g,g Jng ,ng +W⋆

g (1)

Tg,g′ = B⋆
g,g′ Jng ,ng′

g 6= g′ (2)

where Jk,k′ is the k × k′ matrix of ones. More precisely, the within covariance matrices are
parameterized with full rank matrices M1, . . . ,MG of size n1 − 1, . . . , nG − 1 by

W⋆
g = AgMgA

⊤

g (3)

where A1, . . . ,AG are fixed contrast nG × (nG − 1) matrices, whose columns form an orthonor-
mal basis of centered vectors of ❘nG .

In kergp, the between and within covariance matrices can be chosen among three parame-
terizated classes:

• "Diag": Diagonal matrices,

• "compSymm": Coumpound symmetry (or exchangeable) matrices,

• "Symm": General symmetric matrices.

Furthermore, two other parameters can be used to refine parameterization settings:

1Compiled with R 4.0.4 using kergp 0.5.5.
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• covBet. A character string indicating the kind of covariance matrix for B⋆: correla-
tion ("corr"), homoscedastic ("homo") or heteroscedastic ("hete"). Partial matching is
allowed.

• covWith. A vector of size G (recycled if smaller) whose component g indicates the kind
of covariance matrix for group g : correlation ("corr"), homoscedastic ("homo") or het-
eroscedastic ("hete"). Partial matching is allowed.

Mind that, even when B⋆ and M are chosen to be correlation matrices (covBet = "corr",

covWith = "corr"), then T will not be a correlation matrix in general (see Eq 1). Finally,
notice that the model choice (within = "Diag", covWith = "homo") implies that the corre-
sponding diagonal block is a compound symmetry matrix.

2 Illustration on a toy example

We consider a real-valued output y = f(x, u) depending on one continuous input x ∈ [0, 1] and
one categorical input u with L = 8 levels. As visible in Figure 1, the levels can be split in 2
groups: a group of linear functions (levels 1–4), and a group of damped sinusoidal functions
(levels 5–8).

library(kergp)

n1 <- 4

n2 <- 6

L <- n1 + n2

cut <- c(0, n1, n1 + n2 / 2, L)

f <- function(x, u){
(x + 0.01 * (x - 1/2) ^ 2) * u / 10 * ((u >= cut[1] + 1) & (u <= cut[2])) +

0.9 * cos(2 * pi * (x + (u - cut[2]) / 20 )) * exp(-x) * ((u >= cut[2] + 1) & (u <= cut[3])) -

0.7 * cos(2 * pi * (x + (u - cut[3]) / 20 )) * exp(-x) * ((u >= cut[3] + 1) & (u <= cut[4]))

}
N <- 100

t <- seq(0, 1, length.out = N)

x <- rep(t, L)

u <- rep(1:L, each = N)

col <- lty <- c(rep("blue", n1), rep("red", n2))

# a basic stratified design

m <- 3 # number of points per level

set.seed(0)

x1 <- seq(0, 1, length.out = m * L)

u1 <- rep(sample(L), m)

Y <- f(x1, u1)

# graphics

matplot(t, matrix(f(x, u), ncol = L), type = "l", xlab = "x", ylab = "f(x,u)", col = 1:L)

points(x1, Y, pch = 19, col = u1)

We now aim at predicting these functions from a limited number of evaluations. We have
chosen here a stratified design extracted from a sequence of regularly spaced points, with m
points per level. They correspond to the black points in Figure 1. Alternatively, a sliced Latin
hypercube design could have been used [Ba, 2015].

First we define a group kernel. Here, we choose the simplest structure for the first group
(linear functions), but the most complex one for the second one (damped sinusoidal functions)
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Figure 1: A toy function for group kernels.

in order to capture the negative correlations within that group. Notice that the model choice
for the first group (covBet = "Diag", covWith = "homo") implies that the diagonal block
corresponding to the first group is a compound symmetry matrix. In general, these settings are
typically motivated by a tradeoff between complexity and parsimony.

twoGroupsList <- list(seq(1, n1),

seq(n1 + 1, length.out = n2))

kcat2 <- covQualNested(input = "u1",

groupList = twoGroupsList,

between = "Symm", within = c("Diag", "Symm"),

covBet = "homo", covWith = c("homo", "hete"))

Now, a kernel for the mixed input w = (x, u) is obtained by multiplying the kernel for the
categorical input u defined by T with a 1-dimensional kernel for the continuous input:

k(w,w′) = kcont(x, x
′)kcat(u, u

′).

Other operations are possible, such as the sum. Below, we have chosen a Matérn kernel with
ν = 5/2. In order to avoid overparameterization, the variance term of the continuous kernel is
fixed to 1 (by choosing cov = "corr"): thus the kernel variance is entirely parameterized by
the categorical one.

kcont <- covRadial(k1Fun1 = k1Fun1Matern5_2, d = 1, cov = "corr")

inputNames(kcont) <- "x1"

coef(kcont) <- c(0.5) # initial value

kmix2 <- covComp(formula = ~ kcont() * kcat2())

Next, the Gaussian process model is estimated from the data. The usage of multistart is
recommended in order to cope with possible local maxima of the log-likelihood function.

myData <- data.frame(u1 = u1, x1 = x1, Y = Y)

library(doFuture)

registerDoFuture()

plan(multisession, workers = max(parallel::detectCores( ) - 1, 1))

multistart <- 10
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Figure 2: Color plot of the estimated covariance matrix T (left) and corresponding correlation
matrix (right) for the categorical kernel.

res2 <- gp(formula = Y ~ 1, cov = kmix2,

data = myData, inputs = c("u1", "x1"),

multistart = multistart, noise = FALSE)

Then, we plot the estimated covariance matrix of the categorical part, obtained by choosing
a vector of zeros for the continuous input. We also report the resulting correlation matrix in
Figure 2. We can see that the model recovers the likely sign of correlations, as well as the group
heteroskedascity with a smaller variance for the group of linear curves.

library(corrplot)

T <- as.list(res2$covariance)$kcat2

plot(T, type = "cov")

plot(as.list(res2$covariance)$kcat2, type = "cor")

Next we try a second model obtained by considering the two subgroups of damped sinusoidal
curves as two different groups. Since the groups are now homogeneous, we choose the simplest
covariance homoscedastic within-structure (within = "Diag", covWith = "homo") for each
group, corresponding to a compound symmetry matrix. On the other hand, for flexibility, we
choose the most complex between structure (between = "Symm", covBet = "hete"), resulting
in different correlation values for each pair of groups.

threeGroupsList <- list(seq(1, n1),

seq(n1 + 1, length.out = n2/2),

seq(n1 + n2/2 + 1, length.out = n2/2))

kcat3 <- covQualNested(input = "u1",

groupList = threeGroupsList,

between = "Symm", within = "Diag",

covBet = "hete", covWith = "homo")

kmix3 <- covComp(formula = ~ kcont() * kcat3())

Then, we estimate this new GP model and draw the estimated covariance / correlation plot.
We obtain a similar picture.

res3 <- gp(formula = Y ~ 1, cov = kmix3,

data = myData, inputs = c("u1", "x1"),

multistart = multistart, noise = FALSE)
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Figure 3: Color plot of the estimated covariance matrix T (left) and corresponding correlation
matrix (right) for the categorical kernel.

plot(as.list(res3$covariance)$kcat3, type = "cov")

plot(as.list(res3$covariance)$kcat3, type = "cor")

Let us now look at the performance in prediction for the two models. We sample uniformly
N = 1000 new data, and compute predictions at these points. The result is plotted on Figure 4.
The Q2 of each model is also indicated, which compares the predicted values to the mean. We
also give the Q2 corresponding to each level.

N <- 1000

newdata <- data.frame(x1 = runif(N), u1 = sample(L, N, replace = TRUE))

Q2 <- function(obs, pred){
1 - sum( (pred - obs) ^ 2 ) / sum( (mean(obs) - obs) ^ 2 )

}
byLevelQ2 <- function(obs, pred, newdata){

val <- c()

for (i in 1:L){
index <- newdata$u1 == i

val <- c(val, Q2(obs = obs[index], pred = pred[index]))

}
val

}

p2 <- predict(res2, newdata, type = "UK")

matplot(t, matrix(f(x, u), ncol = L), type = "l", xlab = "x", ylab = "f(x,u)", col = 1:L)

points(x1, Y, pch = 19, cex = 1, col = u1)

points(newdata$x1, p2$mean, pch = newdata$u1, col = newdata$u1, cex = 0.3)

p3 <- predict(res3, newdata, type = "UK")

matplot(t, matrix(f(x, u), ncol = L), type = "l", xlab = "x", ylab = "f(x,u)", col = 1:L)

points(x1, Y, pch = 19, cex = 1, col = u1)

points(newdata$x1, p3$mean, pch = newdata$u1, col = newdata$u1, cex = 0.3)

Ynew <- f(x = newdata$x1, u = newdata$u1)

cat("Q2 for the model with 2 groups:\n", round(Q2(obs = Ynew, pred = p2$mean), 2))
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Figure 4: Prediction for the two models (left: with two groups; right: with three groups). The
original data are represented by big bullets.

## Q2 for the model with 2 groups:

## 0.83

cat("Q2 for the model with 3 groups:\n", round(Q2(obs = Ynew, pred = p3$mean), 2))

## Q2 for the model with 3 groups:

## 0.94

cat("by-level Q2 for the model with 2 groups:\n",
round(byLevelQ2(obs = Ynew, pred = p2$mean, newdata), 2))

## by-level Q2 for the model with 2 groups:

## 1 0.98 0.98 0.89 0.91 0.85 0.92 0.91 0.93 0.18

cat("by-level Q2 for the model with 3 groups:\n",
round(byLevelQ2(obs = Ynew, pred = p3$mean, newdata), 2))

## by-level Q2 for the model with 3 groups:

## 0.68 0.97 0.99 0.98 0.98 0.92 0.93 0.93 0.94 0.9

Finally, we provide the leave-one-out diagonostic plots, in order to have a first insight of the
validity of the two GP models.

plot(res2)

plot(res3)
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Figure 5: Leave-one-out plots for the GP models with 2 groups.
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Figure 6: Leave-one-out plots for the GP models with 3 groups.
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