
Robust Functional Linear Regression Models

Ufuk Beyaztas Han Lin Shang
Marmara University Macquarie University

Abstract

With advancements in technology and data storage, the availability of functional data whose
sample observations are recorded over a continuum, such as time, wavelength, space grids, and
depth, progressively increases in almost all scientific branches. Accordingly, the functional linear
regression models, including scalar-on-function and function-on-function, have become popular
tools for exploring the functional relationships between the scalar response-functional predictors
and functional response-functional predictors. However, most of the existing estimation strate-
gies are based on the non-robust estimators that are seriously hindered by outlying observations,
which are common in empirical applications. In the case of outliers, the non-robust methods lead
to undesirable estimation and prediction results. Using a readily-available R package robflreg,
this paper presents several robust methods build upon the functional principal component anal-
ysis for modeling and predicting scalar-on-function and function-on-function regression models
in the presence of outliers. The methods are demonstrated via simulated datasets.

Keywords: function-on-function linear regression; functional principal component analysis; robust
estimation; scalar-on-function linear regression.

Introduction
Our aim with this paper is to present a hands-on tutorial for the implantation of readily-available R
package robflreg. This package is designed for robustly modeling and predicting scalar-on-function
and function-on-function linear regression models (abbreviated as SFLRM and FFLRM, respectively).
This article is motivated by recent advances in data collection tools, causing (ultra) high dimensional
and complex data structures, such as ultra-dense curves.
In the last few decades, the interest and need for developing statistical methods to analyze functional
data has been tremendously increased. Consult Ramsay and Dalzell (1991), Ramsay and Silverman
(2002, 2006), Ferraty and Vieu (2006), Horváth and Kokoszka (2012), Cuevas (2014), Hsing and
Eubank (2015), Marron, Ramsay, Sangalli, and Srivastava (2015), Srivastava and Klassen (2016),
Dryden and Mardia (2016), and Kokoszka and Reimherr (2017) for many theoretical developments
and applications in functional data analysis tools. Among many others, the SFLRM, where the
response is scalar-valued and predictor(s) consist of random functions, and FFLRM, where both the
response and predictor(s) consist of random curves, have received considerable attention among
researchers to explore the functional relationship between a scalar response-functional predictors
and a functional response-functional predictors, respectively. Consult Cardot, Ferraty, and Sarda
(1991, 2003), James (2002), Reiss and Ogden (2007), Chen, Hall, and Müller (2011), Jiang and Wang
(2011), Goldsmith, Bobb, Crainiceanu, Caffo, and Reich (2011), Dou, Pollard, and Zhou (2012),

2 Robust Functional Linear Regression Models

Tucker, Lewis, and Srivastava (2019), Ahn, Tucker, Wu, and Srivastava (2020), and Beyaztas and
Shang (2022) for the SFLRM and Yao, Müller, and Wang (2005), Harezlak, Coull, Laird, Magari,
and Christiani (2007), Şentürk and Müller (2008), Matsui, Kawano, and Konishi (2009), Ivanescu,
Staicu, Scheipl, and Greven (2015), Scheipl, Staicu, and Greven (2015) Chiou, Yang, and Chen
(2016), and Beyaztas and Shang (2020) for the FFLRM. In addition, please see the available R
packages fda (Ramsay, Graves, and Hooker 2022) and refund (Goldsmith, Scheipl, Huang, Wrobel,
Di, Gellar, Harezlak, McLean, Swihart, Xiao, Crainiceanu, and Reiss 2022) for the implementation
of many functional data analysis methods including SFLRM and FFLRM.
Most of the existing methods developed to estimate the SFLRM and FFLRM are non-robust to
outlying observations, which are generated by a stochastic process with a distribution different from
that of the vast majority of the remaining observations (see, e.g., Raña, Aneiros, and Vilar 2015).
In the case of outliers, the non-robust methods produce biased estimates; thus, predictions obtained
from the fitted model become unreliable (see, e.g., Zhu, Brown, and Morris 2011; Maronna and
Yohai 2013; Shin and Lee 2016; Kalogridis and Aelst 2019; Boente, Salibian-Barrera, and Vena 2020;
Hullait, Leslie, Pavlidis, and King 2021; Beyaztas and Shang 2022). In this paper, we provide a
hands-on tutorial for the implementation of several robust approaches, which are readily available
in the R package robflreg, for robustly modeling and predicting the SFLRM and FFLRM in the
presence of outliers.
The methods available in the robflreg package are centered on the robust functional principal
component analysis (RFPCA) approach of Bali, Boente, Tyler, and Wang (2011). It uses the robust
projection pursuit approach of Croux and Ruiz-Gazen (1996) combined with a robust scale estimator
to produce functional principal components and the corresponding principal component scores. With
this approach, the infinite-dimensional SFLRM and FFLRM are projected onto a finite-dimensional
space of RFPCA bases. Then, for the SFLRM, the robust estimation methods, including the least
trimmed squares (LTS) of Rousseeuw (1984), MM-type regression estimator (MM) of Yohai (1987)
and Koller and Stahel (2011), S estimator, and the tau estimator of Salibian-Barrera, Willems, and
Zamar (2008), are used to estimate the parameter vector of the regression model of the scalar-valued
response on the robust principal component scores of functional predictors. For the FFLRM, on
the other hand, the robust estimation methods, including the minimum covariance determinant
estimator (MCD) of Rousseeuw, Driessen, Aelst, and Agullo (1984), multivariate least trimmed
squares estimator (MLTS) of Bali, Boente, Tyler, and Wang (2008), MM estimator of Kudraszow
and Moronna (2011), S estimator of Bilodeau and Duchesne (2000), and the tau estimator of
Ben, Martinez, and Yohai (2006), are used to estimate the parameter matrix of the regression
model between the robust principal component scores of the functional response and functional
predictor variables. Besides the robust procedures, the package robflreg allows to obtain the non-
robust estimation of the functional linear regression models using the classical functional principal
component analysis (FPCA) of Ramsay and Silverman (2006) and the least-squares estimator.
The remainder of this paper is organized as follows. The SFLRM and FFLRM, as well as the
techniques used for modeling and predicting these regression models, are reviewed, and they are
implemented using the robflreg package. Conclusions are given in the end.

Functional linear regression models
In this Section, we present the SFLRM and FFLRM, respectively.

Ufuk Beyaztas and Han Lin Shang 3

The SFLRM

We consider a random sample {Yi,X i(s) : i = 1, . . . , n} from the pair (Y,X), where Y ∈ R is the
scalar response and X = [X1(s), . . . ,XP (s)]> with Xp(s) ∈ L2[0, I], ∀ p = 1, . . . , P is the vector of
P set of functional predictors whose sample elements are denoted by curves belonging to L2 Hilbert
space, denoted by H, with bounded and closed interval s ∈ I. We assume that the functional
predictors Xp(s), for p = 1, . . . , P , have second-order finite moments, i.e., E[‖Xp(s)‖] <∞. Without
loss of generality, we also assume that Y and Xp(s), for p = 1, . . . , P , are mean-zero processes, so
that E[Y] = E[Xp(s)] = 0 and s ∈ [0, 1]. Then, the SFRM is defined as follows:

Yi =
∫ 1

0
X>i (s)β(s)ds+ εi, (1)

where βp(s) ∈ L2[0, 1] is the regression coefficient function linking Y with Xp(s), and β(s) =
[β1(s), . . . , βP (s)]> ∈ LP2 [0, 1], and εi is the error term which is assumed to follow a Gaussian
distribution with mean-zero and variance σ2.

Simulation of a dataset for the SFLRM

The interface generate.sf.data() in the package robflreg allows to simulate a dataset for the
SFRM (1) as follows:

generate.sf.data(n, n.pred, n.gp, out.p = 0)

Here, the argument n denotes the number of observations for each variable to be generated, n.pred
denotes the number of functional predictors to be generated, n.gp denotes the number of grid
points, i.e., a fine grid on the interval [0, 1], and out.p is an integer between 0 and 1, denoting the
outlier percentage in the generated data. In the data generation process, first, generate.sf.data()
simulates the functional predictors based on the following process:

X (s) =
5∑
j=1

κjνj(s),

where κj is a vector generated from a Normal distribution with mean one and variance
√
aj−3/2,

where a is is a uniformly generated random number between 1 and 4, and

νj(s) = sin(jπs)− cos(jπs).

The regression coefficient functions are generated from a coefficient space that includes ten different
functions such as b sin(2πt) and b cos(2πt), where b is generated from a uniform distribution between
1 and 3. The error process is generated from the standard normal distribution. Finally, the scalar
response is obtained using (1). If outliers are allowed in the generated data, i.e., out.p > 0, then, the
randomly selected n× out.p of the data are generated in a different way from the aforementioned
process. In more detail, if out.p > 0, the regression coefficient functions (possibly different from the
previously generated coefficient functions) generated from the coefficient space with b∗ (instead of
b), where b∗ is generated from a uniform distribution between 3 and 5, are used to generate the

4 Robust Functional Linear Regression Models

outlying observations. In addition, in this case, the following process is used to generate functional
predictors:

X ∗(s) =
5∑
j=1

κ∗jν
∗
j (s),

where κ∗j is a vector generated from a Normal distribution with mean one and variance
√
aj−1/2 and

ν∗j (s) = 2 sin(jπs)− cos(jπs).

Moreover, the error process is generated from a normal distribution with mean 1 and variance 1. A
graphical display of the generated dataset with five functional predictors and n = 400 observations
at 101 equally spaced point in the interval [0, 1] obtained by generate.sf.data() is presented in
Figure 1. This Figure can be produced by the following code:

library(robflreg)
library(fda.usc)
set.seed(2022)

Generate a dataset with five functional predictors and 400
observations at 101 equally spaced point in the interval [0, 1]
for each variable for the scalar-on-function regression model
sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101, out.p = 0.1)

Response variable
Y <- sim.data$Y
Predictors
X <- sim.data$X
Regression coefficient functions
coeffs <- sim.data$f.coef
Plot the scalar response
out.indx <- sim.data$out.indx
plot(Y[-out.indx,], type = "p", pch = 16, xlab = "Index", ylab = "",
main = "Response", ylim = range(Y))
points(out.indx, Y[out.indx,], type = "p", pch = 16, col = "blue") # Outliers
Plot the first functional predictor
fX1 <- fdata(X[[1]], argvals = seq(0, 1, length.out = 101))
plot(fX1[-out.indx,], lty = 1, ylab = "", xlab = "Grid point",
main = expression(X[1](s)), mgp = c(2, 0.5, 0), ylim = range(fX1))
lines(fX1[out.indx,], lty = 1, col = "grey") # Leverage points

The FFLRM
Let us consider a random sample {Yi(t),X i(s): i = 1, 2, . . . n} from the pair (Y,X), where Y ∈
L2[0, 1] is the functional response and X = [X1(s), . . . ,XP (s)]> with Xp(s) ∈ L2[0, 1], ∀ p = 1, . . . , P
is the vector of P set of functional predictors. We assume that the functional response and functional
predictors have second-order finite moments, i.e., E[‖Y(t)‖] = E[‖Xp(s)‖] < ∞, for p = 1, . . . , P .
Without loss of generality, we also assume that both Y(t) and Xp(s), for p = 1, . . . , P , are mean-zero
processes, so that E[Y (t)] = E[Xp(s)] = 0. Then, the FFRM is defined as follows:

Yi(t) =
∫ 1

0
X>i (s)β(s, t)dsdt+ εi(t), (2)

Ufuk Beyaztas and Han Lin Shang 5

0 50 100 150 200 250 300 350

−
20

0
20

40

Response

Index

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20
30

X1(s)

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

X2(s)

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20
30

X3(s)

Grid point

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20
X4(s)

Grid point

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

X5(s)

Grid point

Figure 1: Plots of the simulated scalar response and functional predictor variables. The outlying
points in the scalar response are denoted by blue points while the outlying curves in the functional
predictors are denoted by grey lines.

where βp(s, t) ∈ L2[0, 1] is the bivariate regression coefficient function linking Y(t) with Xp(s), and
β(s, t) = [β1(s, t), . . . , βP (s, t)]> ∈ LP2 [0, 1], and εi(t) ∈ L2[0, 1] is the error term which is assumed
to be independent of Xp(s), for p = 1, . . . , P and E[εi(t)] = 0.

Simulation of a dataset for the FFLRM
The robflreg package with the interface generate.ff.data() allows for simulation a dataset for
the FFLRM as follows:

generate.ff.data(n.pred, n.curve, n.gp, out.p = 0)

In this interface, n.pred denotes the number of functional predictors to be generated, n.curve
denotes the number of functions for each functional variable to be generated, n.gp denotes the
number of grid points, i.e., a fine grid on the interval [0, 1], and out.p is an integer between 0 and
1, denoting the outlier percentage in the generated data. When generating a dataset, first, the
interface generate.ff.data() first simulates the functional predictors via the following process:

X (s) =
5∑
j=1

κjνj(s),

6 Robust Functional Linear Regression Models

where κj is a vector generated from a Normal distribution with mean one and variance
√
aj−1/2,

where a is is a uniformly generated random number between 1 and 4, and

νj(s) = sin(jπs)− cos(jπs).

The bivariate regression coefficient functions are generated from a coefficient space that includes ten
different functions such as b sin(2πs) sin(πt) and be−3(s−0.5)2

e−4(t−1)2 , where b is generated from a
uniform distribution between 1 and 3. The error process ε(t), on the other hand, is generated from
the Ornstein-Uhlenbeck process:

ε(t) = l + [ε0(t)− l]e−θtσ
∫ t

0
e−θ(t−u)dWu,

where l, θ > 0, σ > 0 are real constants, ε0(t) is the initial value of ε(t) taken from Wu, and Wu is
the Wiener process. If outliers are allowed in the generated data, i.e., out.p > 0, then, the randomly
selected n× out.p of the data are generated in a different way from the aforementioned process. In
more detail, if out.p > 0, the regression coefficient functions (possibly different from the previously
generated coefficient functions) generated from the coefficient space with b∗ (instead of b), where
b∗ is generated from a uniform distribution between 1 and 2, are used to generate the outlying
observations. In addition, in this case, the following process is used to generate functional predictors:

X ∗(s) =
5∑
j=1

κ∗jν
∗
j (s),

where κ∗j is a vector generated from a Normal distribution with mean one and variance
√
aj−3/2 and

ν∗j (s) = 2 sin(jπs)− cos(jπs).

A graphical display of the generated dataset with five functional predictors and n = 200 observations
at 101 equally spaced point in the interval [0, 1] obtained by generate.ff.data() is presented in
Figure 2. This Figure can be produced by the following code:

library(robflreg)
library(fda.usc)
set.seed(2022)

Generate a dataset with five functional predictors and 200
observations at 101 equally spaced point in the interval [0, 1]
for each variable for the function-on-function regression model
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)

Response variable
Y <- sim.data$Y
Predictors
X <- sim.data$X
Regression coefficient functions
coeffs <- sim.data$f.coef
Plot the scalar response
out.indx <- sim.data$out.indx

Ufuk Beyaztas and Han Lin Shang 7

fY <- fdata(Y, argvals = seq(0, 1, length.out = 101))
plot(fY[-out.indx,], lty = 1, ylab = "", xlab = "Grid point",
main = "Response", mgp = c(2, 0.5, 0), ylim = range(fY))
lines(fY[out.indx,], lty = 1, col = "black") # Outlying functions
Plot the first functional predictor
fX1 <- fdata(X[[1]], argvals = seq(0, 1, length.out = 101))
plot(fX1[-out.indx,], lty = 1, ylab = "", xlab = "Grid point",
main = expression(X[1](s)), mgp = c(2, 0.5, 0), ylim = range(fX1))
lines(fX1[out.indx,], lty = 1, col = "grey") # Leverage points

0.0 0.2 0.4 0.6 0.8 1.0

−
10

0
10

20

Response

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

X1(s)

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

X2(s)

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

X3(s)

Grid point

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

X4(s)

Grid point

0.0 0.2 0.4 0.6 0.8 1.0

−
20

−
10

0
10

20

X5(s)

Grid point

Figure 2: Plots of the simulated functional response and functional predictor variables. Outlying
curves are denoted by grey lines.

Estimation
We first review the classical and robust FPCA methods. Then, we will focus on the robust estimation
of the SFLRM and FFLRM.

Functional principal component analysis (FPCA)

For a functional random variable X (s), let us denote its covariance function by C(s1, s2) =

8 Robust Functional Linear Regression Models

Cov[X (s1), X (s2)] satisfying
∫ 1

0
∫ 1

0 C(s1, s2)ds1ds2 < ∞. Then, by Mercer’s Theorem, the fol-
lowing representation holds:

C =
∞∑
k=1

κkψk(s1)ψk(s2), ∀s1, s2 ∈ [0, 1],

where {ψk(s) : k = 1, 2, . . .} are orthonormal bases of eigenfunctions in L2[0, 1] corresponding to the
non-negative eigenvalues {κk : k = 1, 2, . . .} with κk ≥ κk+1. In practice, most of the variability in
functional variables can be captured via a finite number of the first K eigenfunctions, and thus, the
covariance function of a functional variable is estimated using a pre-determined truncation constant
K. In addition, the orthonormal bases of eigenfunctions are unknown in practice, and thus, they
are approximated via a suitable basis expansion method like B-spline, which is used in the robflreg
package.
The RFPCA of Bali et al. (2011) follows a similar structure as the classical FPCA but it uses a
robust scale functional instead of variance. Now let ‖α‖2 = 〈α, α〉 denote the norm generated by
the inner product 〈·, ·〉. Also, let F [α] denote the distribution of 〈α,X〉 where F is the distribution
of X . Then, for a given M-scale functional σM (F), the orthonormal bases of eigenfunctions defined
by Bali et al. (2011) are as follows:

ψk(F) = arg max
‖α‖2=1

σM (F [α]), k = 1,

ψk(F) = arg max
‖α‖2=1,α∈Bk

σM (F [α]), k ≥ 2,

where Bk = {α ∈ L2[0, 1] : 〈α,ψk(F)〉 = 0, 1 ≤ k ≤ K − 1}. The k-th largest eigenvalue is given
by:

κk(F) = σ2
M (F [ψk]) = max

‖α‖2=1,α∈Bk

σ2
M (F [α]).

Denote by σM (Fn[α]) the functional for σM . Let s2
n : L2[0, 1]→ R denote the function of empirical

M-scale functional such that s2(α) = σ2
M (F [α]). Then, the RFPCA estimates of the orthonormal

bases of eigenfunctions for X (s) are given by
ψ̂k(s) = arg max

‖α‖2=1
sn(α), k = 1,

ψ̂k(s) = arg max
α∈B̂k

sn(α), k ≥ 2,

where B̂k =
{
α ∈ L2[0, 1] : ‖α‖ = 1, 〈α, ψ̂k〉 = 0, ∀ 1 ≤ k ≤ K − 1

}
. The corresponding eigenval-

ues, on the other hand, are given by

κ̂k = s2
n(ψ̂k), k ≥ 1.

Main RFPCA function and its arguments

The main function to obtain the robust estimates of functional principal components and the
corresponding principal component scores is called getPCA():

Ufuk Beyaztas and Han Lin Shang 9

getPCA(data, nbasis, ncomp, gp, emodel = c("classical", "robust"))

In the getPCA() interface, the data is provided in the data argument as a matrix. nbasis denotes
the number of B-spline basis expansion functions used to approximate the robust functional principal
components. ncomp specifies the number of functional principal components to be computed. The
grid points of the functional data is provided in the gp argument as a vector. The argument emodel
denotes the method to be used for functional principal component decomposition. If emodel =
"classical", then, the classical functional principal component decomposition is performed. On
the other hand, if emodel = "robust", then, the RFPCA method of Bali et al. (2011) is used to
obtain the functional principal components and the corresponding principal component scores. In
Figure 3, the plot of five functional principal components computed from a simulated functional
data using RFPCA and nbasis = 20 B-spline basis expansion functions is presented. This Figure
can be produced by the following code:

library(robflreg)
Generate a dataset with five functional predictors and 200
observations at 101 equally spaced point in the interval [0, 1]
for each variable for the function-on-function regression model
set.seed(2022)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101)
Response variable
Y <- sim.data$Y
gpY <- seq(0, 1, length.out = 101) # grid points

Perform robust functional principal component analysis on the response variable Y
rob.fpca <- getPCA(data = Y, nbasis = 20, ncomp = 4, gp = gpY, emodel = "robust")

Principal components
PCs <- rob.fpca$PCAcoef

plot(PCs, xlab = "Grid point", ylab = "Values")

[1] "done"

Robust estimation of the SFLRM

In the robust estimation of the SFRM, we first consider the principal component decomposition of
the functional predictors as follows:

Xp(s) =
Kp∑
k=1

ξpkψpk(s),

where Kp is the truncation constant for the p-th functional predictor Xp(s), ψpk(s) is the k-th
eigenfunction obtained by the RFPCA of Bali et al. (2011), and ξpk is the corresponding principal
components score, given by:

ξpk =
∫ 1

0
Xp(s)ψpk(s)ds.

10 Robust Functional Linear Regression Models

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

Grid point

V
al

ue
s

Figure 3: Plot of the first five functional principal components of a simulated functional data using
RFPCA.

In practice, the eigenfunctions are approximated via a basis expansion function such as B-spline.
Let ϕp(s) denote the B-spline basis expansion function and Ap = (apl) being an n× L-dimensional
matrix of basis expansion coefficients for the p-th functional predictor variable. In addition, let
ϕ =

∫ 1
0 ϕp(s)ϕ>p (s)ds and ϕ1/2 denote the L× L dimensional matrix of inner products between the

basis expansion functions and its square root, respectively. Then, the infinite-dimensional RFPCA
of Xp(s) is equivalent to the multivariate principal component analysis of Apϕ1/2 and the k-th
eigenfunction is given by ψpk(s) = ϕ−1/2vpk, where vpk denotes the p-th eigenvector of the sample
covariance matrix of Apϕ1/2 (see, e.g., Ocana, Aguilera, and Escabias 2007, for more information).
If we assume that the p-th regression coefficient function βp(s) admits the similar functional principal
decomposition as the functional predictors as follows:

βp(s) =
Kp∑
k=1

bpkψpk(s),

where bpk =
∫ 1

0 βp(s)ψpk(s)ds. Then, the infinite-dimensional SFRM in (1) is approximated by the
finite-dimensional regression model of scalar response on all the functional principal components
scores as follows:

Y =
P∑
p=1

Kp∑
k=1

bpkξpk.

Ufuk Beyaztas and Han Lin Shang 11

Main functions for the robust estimation of a SFRM and their arguments
The main function to robustly estimate a SFRM is called rob.sf.reg():

rob.sf.reg(Y, X, X.scl = NULL, emodel = c("classical", "robust"),
fmodel = c("LTS", "MM", "S", "tau"), nbasis = NULL, gp = NULL, ncomp = NULL)

In the rob.sf.reg() interface, the scalar response is provided in the Y argument as an n × 1-
dimensional column vector, where n is the sample size. The functional predictors, on the other hand,
are provided in the X argument as a list object. Each element of X is an n× Lp-dimensional matrix
containing the observations of p-th functional predictor Xp(s), where Lp is the number of grid points
for Xp(s). The rob.sf.reg() interface also allows for scalar predictors which can be provided in
the X.scl as an n×R-dimensional matrix, where R denotes the number of scalar predictors. In
this case, the following SFRM is considered:

Yi =
∫ 1

0
X>i (s)β(s)ds+ X.scliγ + εi,

where γ denotes the vector of coefficients for the scalar predictors’ matrix. The method to be used
for functional principal component decomposition is provided in the emodel argument. If emodel
= "classical", then the classical functional principal component decomposition is performed to
obtain principal components and the corresponding principal components scores. The coefficient
vector of the regression problem of scalar response on the principal components scores is estimated
via the least-squares method. If emodel = "robust", then, the RFPCA of Bali et al. (2011) is
performed to obtain the principal components and the corresponding principal components scores.
In this case, the method used to estimate the coefficient vector of the regression problem constructed
by the scalar response and principal components scores is provided in the fmodel argument. Here,
one of the methods among LTS, MM, S, and tau can be chosen to estimate the parameter vector.
The number of B-spline basis expansion functions used to approximate the functional principal
components are provided in the nbasis argument as a vector with length p. If nbasis = NULL, then
min(20, Lp/4) number of B-spline basis expansion functions are used for each functional predictor.
The grid points for the functional predictors are provided in the gp argument as a list object. The
p-th element of gp is a vector containing the grid points of the p-th functional predictor Xp(s). If
gp = NULL, then Lp equally spaced time points in the interval [0, 1] are used for the p-th functional
predictor. The number of functional predictors to be computed for the functional predictors are
provided in the ncomp argument as a vector with length P . If ncomp = NULL, then, for each
functional predictor, the number whose usage results in at least 95% explained variation is used as
the number of principal components.
The interface get.sf.coeffs() can be used to obtain the estimated regression coefficient functions
from a fitted SFRM:

get.sf.coeffs(object)

In this interface, the argument object is the output object obtained using the interface rob.sf.reg().
The interface get.sf.coeffs() produces a list object whose p-th element is a vector with length
Lp containing the p-th regression coefficient function βp(s).
The plots of the estimated regression coefficient functions can be obtained using the interface
plot_sf_coeffs():

12 Robust Functional Linear Regression Models

plot_sf_coeffs(object, b)

In this interface, the argument object is the output object obtained by the interface get.sf.coeffs().
The argument b, on the other hand, is an integer value indicating which regression parameter
function to be plotted. In Figure 4, the plots of the regression coefficient functions obtained from
simulated data using RFPCA and tau estimator are presented. The following code can produce this
Figure and the results:

library(robflreg)
Generate a dataset with three functional predictors and 400
observations at 101 equally spaced point in the interval [0, 1]
for each variable for the scalar-on-function regression model
set.seed(2022)
sim.data <- generate.sf.data(n = 400, n.pred = 3, n.gp = 101)
Response variable
Y <- sim.data$Y
Predictors
X <- <- sim.data$X

gp <- rep(list(seq(0, 1, length.out = 101)), 3) # grid points of Xs

Fit a scalar-on-function regression model for the generated data
using the classical functional principal component analysis method:
model.fit <- rob.sf.reg(Y, X, emodel = "classical", gp = gp)

Estimated regression coefficient functions
coefs <- get.sf.coeffs(model.fit)
Plot the first regression coefficient function
plot_sf_coeffs(object = coefs, b = 1)

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

β̂1(s)

 Grid point (s)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2

β̂2(s)

 Grid point (s)

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

β̂3(s)

 Grid point (s)

Figure 4: A plot of the estimated regression coefficient functions obtained from a simulated data
using RFPCA and tau estimator.

Ufuk Beyaztas and Han Lin Shang 13

Robust estimation of the FFLRM

Let us consider the functional principal decompositions of both the functional response and functional
predictor variables as follows:

Y(t) =
K∑
k=1

ζkφk(t), ,Xp(s) =
Kp∑
j=1

ξpjψpj(s),

where φk(t) and ψpj(s) respectively are the k-th and j-th eigenfunctions of Y(t) and Xp(s) obtained
by the RFPCA and ζk and ξpj are the corresponding principal components scores given by

ζk =
∫ 1

0
Y(t)φk(t)dt, ξpj =

∫ 1

0
Xp(s)ψpj(s)ds.

If we assume that the p-th bivariate regression coefficient function βp(s, t) admits the principal
component decomposition with the eigenfunctions φk(t) and ψpj(s) as follows:

βp(s, t) =
K∑
k=1

Kp∑
j=1

bpkjφk(t)ψpj(s),

where bpkj =
∫ 1

0
∫ 1

0 βp(s, t)φk(t)ψpj(s)dtds. Then, the infinite-dimensional FFRM in (2) is approxi-
mated by the finite-dimensional regression model of principal component scores of the functional
response on all the functional principal components scores as follows:

ζk =
P∑
p=1

Kp∑
j=1

bpkjξpj .

Finally, the following regression model is obtained for the functional response

Y(t) =
K∑
k=1

 P∑
p=1

Kp∑
j=1

bpkjξpj

φk(t).

Main functions for the robust estimation of a FFRM and their arguments

The main function to estimate the FFRM robustly is called rob.ff.reg():

rob.ff.reg(Y, X, model = c("full", "selected"), emodel = c("classical", "robust"),
fmodel = c("MCD", "MLTS", "MM", "S", "tau"), nbasisY = NULL, nbasisX = NULL,
gpY = NULL, gpX = NULL, ncompY = NULL, ncompX = NULL)

In the rob.ff.reg() interface, the functional response is provided in the Y argument as a matrix.
The functional predictors, on the other hand, are provided in the argument X as a list object.
Each element of X is a matrix containing the observations of p-th functional predictor. The model
type to be fitted can be chosen with model argument. If model = "full", then, all the functional
predictors are used in the model. On the other hand, if model = "selected", then, only the
significant functional predictor variables determined by the forward variable selection procedure of

14 Robust Functional Linear Regression Models

Beyaztas and Shang (2021) are used in the model. The method to be used for functional principal
component decomposition is provided in the emodel argument. If emodel = "classical", then, the
classical functional principal component decomposition is performed to obtain principal components
and the corresponding principal components scores and the coefficient vector of the regression
problem of principal components scores of the functional response on the principal components
scores are estimated via the least-squares method. If emodel = "robust", then, the RFPCA of
Bali et al. (2011) is performed to obtain the principal components and the corresponding principal
components scores. In this case, the method used to estimate the coefficient matrix of the regression
problem constructed by the principal components scores is provided in the fmodel argument. Here,
one of the method among MCD, MLTS, MM, S, and tau can be chosen to estimate the parameter
matrix. The number of B-spline basis expansion functions used to approximate the functional
principal components of response and predictor variables are provided in the nbasisY and nbasisX
arguments, respectively. The argument nbasisY is a numeric value while the argument nbasisX is a
vector with length P . If nbasisY = NULL and nbasisX = NULL, then, min(20, Ly) and min(20, Lp)
B-spline basis expansion functions are used to approximate the functional principal components
of functional response and p-th the functional predictor, where Ly and Lp respectively denote the
number of grid points for Y(t) and Xp(s). The grid points for the functional response and functional
predictors are provided in the gpY and gpX arguments, respectively. The argument gpY is a vector
consisting of the grid points of the functional response Y(t). On the other hand, the argument gpX
is a list object and its p-th element is a vector containing the grid points of the p-th functional
predictor Xp(s). If gpY = NULL and If gpX = NULL, then, equally spaced time points in the interval
[0, 1] are used for all the functional variables. The number of functional predictors to be computed
for the functional response and functional predictors are provided in the arguments ncompY and
ncompX, respectively. The argument ncompY is a numeric value while the argument ncompX is a
vector with length P . If ncompY = NULL and ncompX = NULL, then, the number whose usage results
in at least 95% explained variation is used as the number of principal components for each functional
variable.
The estimated bivariate regression coefficient functions from a fitted FFRM is obtained by the
get.ff.coeffs() interface:

get.ff.coeffs(object)

In this interface, the argument object is the output object obtained using the interface rob.ff.reg().
The interface get.ff.coeffs() produces a list object whose p-th element is a matrix containing
the p-th bivariate regression coefficient function βp(s, t).
The image plots of the estimated bivariate regression coefficient functions can be obtained using the
interface plot_ff_coeffs():

plot_ff_coeffs(object, b)

In this interface, the argument object is the output object obtained by the interface get.ff.coeffs().
The argument b is an integer value indicating which regression parameter function to be plotted.
In Figure 5, the image plots of the regression coefficient functions obtained from a simulated data
using RFPCA and MM estimator are presented. This Figure and the results can be produced by the
following code:

Ufuk Beyaztas and Han Lin Shang 15

library(robflreg)
Generate a dataset with three functional predictors and 200
observations at 101 equally spaced point in the interval [0, 1]
for each variable for the function-on-function regression model
set.seed(2022)
sim.data <- generate.ff.data(n.pred = 3, n.curve = 200, n.gp = 101)
Response variable
Y <- sim.data$Y
Predictors
X <- <- sim.data$X

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 3) # grid points of Xs

Fit a function-on-function regression model for the generated data
using the RFPCA and MM estimator:
model.fit <- rob.ff.reg(Y, X, model = "full", emodel = "robust",
fmodel = "MM", gpY = gpY, gpX = gpX)

Estimated bivariate regression coefficient functions
coefs <- get.ff.coeffs(model.fit)
Plot the first bivariate regression coefficient function
plot_ff_coeffs(object = coefs, b = 1)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β̂1(s, t)

t

s

−3

−2

−1

0

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β̂2(s, t)

t

s

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

β̂3(s, t)

t

s

−1.0

−0.5

0.0

0.5

Figure 5: Image plots of the estimated bivariate regression coefficient functions obtained from a
simulated data using RFPCA and MM estimator.

Outlier detection in the functional response
Detection of outliers in functional data is an important problem (see, e.g., Sun and Genton 2011;
Arribas-Gil and Romo 2014; Dai and Genton 2018). From a fitted FFRM, the robflr package
with the interface rob.out.detect() allows to detect outliers in the functional response. While
doing so, the functional depth-based outlier detection method of Febrero-Bande, Galeano, and
Gonzalez-Mantelga (2008) together with the h-modal depth proposed by Cuaves, Febrero, and
Fraiman (2007) is applied to the estimated residual functions obtained from rob.ff.reg() to

16 Robust Functional Linear Regression Models

determine the outliers in the response variable. In the outlier detection algorithm, the threshold
value used to identify outliers is determined by the smoothed bootstrap procedure proposed by
Febrero-Bande et al. (2008). The rob.out.detect() is as follows:

rob.out.detect(object, alpha = 0.01, B = 200, fplot = FALSE)

Herein, the argument object is an output object obtained from rob.ff.reg(). alpha, whose
default value is 0.01, denotes the percentile of the distribution of the functional depth. B denotes
the number of bootstrap samples (the default value is B = 200). fplot is a logical argument, if
fplot = TRUE, then, the outlying points flagged by the method is plotted along with the values of
functional response Y(t).
To show how the interface rob.ff.reg() works, we simulate an outlier-contaminated dataset for
the FFRM. Then, we apply the outlier detection algorithm with the classical FPCA - least squares
estimator and the RFPCA - MM estimator. The plots of the functional response and detected
outlying observations are presented in Figure 6. The results show that the classical method fails
to flag 13 outlying curves, while the robust procedure fails to flags only two outlying curves. The
following code can produce the results and Figure 6:

library(robflreg)
Generate a dataset with five functional predictors and 200
observations at 101 equally spaced point in the interval [0, 1]
for each variable for the function-on-function regression model
set.seed(202)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)
out.indx <- sim.data$out.indx
Response variable
Y <- sim.data$Y
Predictors
X <- sim.data$X

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

Perform classical function-on-function regression using least-squares
model.classical <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "classical",

gpY = gpY, gpX = gpX)

Perform robust function-on-function regression using MM-estimator
model.MM <- rob.ff.reg(Y = Y, X = X, model = "full", emodel = "robust", fmodel = "MM",

gpY = gpY, gpX = gpX)

Detect outliers using rob.out.detect function
rob.out.detect(object = model.classical, fplot = TRUE)
outlying functions are: 16 56 69 70 71 80 92 96 117 138 140 173 188
rob.out.detect(object = model.MM, fplot = TRUE)
outlying functions are: 2 16 56 69 70 71 80 82 92 96 117 134 138 140
173 188 197 199

Compare with the original outliers

Ufuk Beyaztas and Han Lin Shang 17

sort(out.indx)
[1] 2 16 47 56 69 70 71 80 82 92 96 117 134 138 140 162 173 188 197 199

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

10

Grid point (t)

R
es

po
ns

e

Normal
Outlier

0.0 0.2 0.4 0.6 0.8 1.0
−

5
0

5
10

Grid point (t)

R
es

po
ns

e

Normal
Outlier

Figure 6: Plots of the functional response and detected outlier. Classical method (left panel) vs.
Robust method (right panel).

Prediction
We review the prediction problem for a new set of functional predictors based on a fitted SFLRM
and FFLRM.

Prediction for the SFRM

When robustly predicting the unknown values of the scalar response variable for a given new set of
functional predictors (X ∗(s)), the principal component scores of the new set of functional predictors
(ξ∗) are obtained as follows:

ξ∗pk =
∫ 1

0
X ∗pk(s)ψ̂pk(s)ds,

where ψ̂pk(s) is the k-th eigenfunction of the p-the functional predictor obtained by the RFPCA.
Then, the predictions corresponding to the new set of functional predictors are obtained as follows:

Ŷ ∗ =
P∑
p=1

Kp∑
k=1

b̂pkξ
∗
pk,

where b̂pk is the estimated parameter vector obtained from the fitted model rob.sf.reg().

18 Robust Functional Linear Regression Models

Main function for the robust prediction of a SFRM and its arguments

The main function for the robust prediction of a SFRM is called predict_sf_regression():

predict_sf_regression(object, Xnew, Xnew.scl = NULL)

In the interface predict_sf_regression(), the argument object is an output object obtained
from rob.sf.reg. The new set of functional predictors is provided in the Xnew argument as a list
object whose p-th element is a matrix denoting the new observations of Xp(s). Xnew must have the
same length and the same structure as the input X of rob.sf.reg. If scalar predictors are used
in the SFRM, then, in the prediction process, the new set of scalar predictors is provided in the
Xnew.scl argument as a matrix. The argument Xnew.scl must have the same length and the same
structure as the input X.scl of rob.sf.reg.
To evaluate the prediction performance of classical and robust methods, we simulate a dataset with
size n = 400 for the SFRM. Then, the simulated dataset is divided into a training sample with a
size of 280 and a test sample with a size of 120. Random outliers contaminate the training sample,
and both the classical and robust methods with tau estimator are applied to the training sample
to predict the values of the response variable in the test sample. To compare both methods, we
compute the mean squared prediction error (MSPE):

MSPE = 1
200

200∑
i=1

(Y ∗i − Ŷ ∗i)2,

where Y ∗i and Ŷ ∗i denote the observed and predicted values of the scalar response in the test sample.
Our results indicate that the robust method considerably outperforms the classical method. The
MSPE computed from the classical method is 20.9388, while the MSPE obtained from the robust
method is 1.868. The reproducible code to obtain those results is as follows:

library(robflreg)
Generate a dataset with five functional predictors and 400
observations at 101 equally spaced point in the interval [0, 1]
for each variable for the scalar-on-function regression model
set.seed(2022)
sim.data <- generate.sf.data(n = 400, n.pred = 5, n.gp = 101, out.p = 0.1)
out.indx <- sim.data$out.indx
Response variable
Y <- sim.data$Y
Predictors
X <- <- sim.data$X

Split the data into training and test samples.
indx.test <- sample(c(1:400)[-out.indx], 120)
indx.train <- c(1:400)[-indx.test]

Y.train <- Y[indx.train,]
Y.test <- Y[indx.test,]
X.train <- X.test <- list()
for(i in 1:5){

Ufuk Beyaztas and Han Lin Shang 19

X.train[[i]] <- X[[i]][indx.train,]
X.test[[i]] <- X[[i]][indx.test,]

}

gp <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

Perform classical scalar-on-function
regression model using training samples
model.classical <- rob.sf.reg(Y.train, X.train, emodel = "classical", gp = gp)
Perform robust scalar-on-function
regression using training samples and tau-estimator
model.tau <- rob.sf.reg(Y.train, X.train, emodel = "robust", fmodel = "tau", gp = gp)
Predict the observations in Y.test using model.classical
pred.classical <- predict_sf_regression(object = model.classical, Xnew = X.test)
Predict the observations in Y.test using model.tau
pred.tau <- predict_sf_regression(object = model.tau, Xnew = X.test)
Compute mean squared errors for the test sample
round(mean((Y.test - pred.classical)^2), 4) # 20.9388 (classical method)
round(mean((Y.test - pred.tau)^2), 4) # 1.868 (tau method)

Prediction for the FFRM

In the robust prediction of the FFRM for a given new set of functional predictors, as in the scalar-
on-function regression case, the principal component scores of the new set of functional predictors
are first obtained:

ξ∗pk =
∫ 1

0
X ∗pk(s)ψ̂pk(s)ds,

where ψ̂pk(s) is the k-th eigenfunction of the p-the functional predictor obtained by the RFPCA.
Then, the predictions of functional response (Ŷ(t)) corresponding to the new set of functional
predictors are obtained as follows:

Ŷ∗(t) =
K∑
k=1

 P∑
p=1

Kp∑
j=1

b̂pkjξ
∗
pj

 φ̂k(t),

where φ̂k(t) is the k-th eigenfunction of the functional response obtained by RFPCA and b̂pkj is the
estimated parameter matrix obtained from the fitted model rob.ff.reg()

Main function for the robust prediction of a FFRM and its arguments

The main function for the robust prediction of a FFRM is called predict_ff_regression():

predict_ff_regression(object, Xnew)

Here, the argument object is an output object obtained from rob.ff.reg. The new set of functional
predictors is provided in the Xnew argument as a list object whose p-th element is a matrix denoting
the new observations of Xp(s). Xnew must have the same length and the same structure as the input
X of rob.ff.reg.

20 Robust Functional Linear Regression Models

We simulate a dataset with size n = 200 for the FFRM to investigate and compare the prediction
performance of the classical and robust methods. The simulated dataset is divided into a training
sample with a size of 140 and a test sample with a size of 60. Random outliers contaminate the
training sample, and both the classical and robust methods with MM estimator are applied to the
training sample to predict the values of the response variable in the test sample. To compare both
methods, we compute the following MSPE:

MSPE = 1
100

200∑
i=1
‖Y∗i (t)− Ŷ∗i (t))‖2L2 ,

where Y∗i (t) and Ŷ∗i (t)) denote the observed and predicted values of the functional response in the
test sample. Our results show that the robust method produces a significantly smaller MSPE value
than the classical method. The MSPE computed from the classical method is 3.3213, while the
MSPE obtained from the robust method is 0.5925. The reproducible code to obtain those results is
as follows:

library(robflreg)
Generate a dataset with five functional predictors and 200
observations at 101 equally spaced point in the interval [0, 1]
for each variable for the function-on-function regression model
set.seed(2022)
sim.data <- generate.ff.data(n.pred = 5, n.curve = 200, n.gp = 101, out.p = 0.1)
out.indx <- sim.data$out.indx
Response variable
Y <- sim.data$Y
Predictor variables
X <- sim.data$X
Split the data into training and test samples.
indx.test <- sample(c(1:200)[-out.indx], 60)
indx.train <- c(1:200)[-indx.test]
Y.train <- Y[indx.train,]
Y.test <- Y[indx.test,]
X.train <- X.test <- list()
for(i in 1:5){

X.train[[i]] <- X[[i]][indx.train,]
X.test[[i]] <- X[[i]][indx.test,]

}

gpY = seq(0, 1, length.out = 101) # grid points of Y
gpX <- rep(list(seq(0, 1, length.out = 101)), 5) # grid points of Xs

Perform classical function-on-function
regression model using training samples
model.classical <- rob.ff.reg(Y = Y.train, X = X.train, model = "full",

emodel = "classical", gpY = gpY, gpX = gpX)
Perform robust function-on-function
regression using training samples and MM-estimator
model.MM <- rob.ff.reg(Y = Y.train, X = X.train, model = "full", emodel = "robust",

fmodel = "MM", gpY = gpY, gpX = gpX)

Ufuk Beyaztas and Han Lin Shang 21

Predict the functions in Y.test using model.classical
pred.classical <- predict_ff_regression(object = model.classical, Xnew = X.test)
Predict the functions in Y.test using model.MM
pred.MM <- predict_ff_regression(object = model.MM, Xnew = X.test)
Compute mean squared errors for the test sample
round(mean((Y.test - pred.classical)^2), 4) # 3.3213 (classical method)
round(mean((Y.test - pred.MM)^2), 4) # 0.5925 (MM method)

Conclusion
The R package robflreg provides an implementation of several robust procedures to fit and predict
SFLRM and FFLRM. These methods are centered on the RFPCA of Bali et al. (2011), which is
a popular robust dimension reduction technique in functional data and several robust regression
parameter estimators. In addition, the package robflreg allows to fit and predict SFLRM and
FFLRM via the classical FPCA and least-squares estimator. Several simulation examples show
that the robust procedures provide better inference for the functional linear regression models when
outliers are presented in the response and predictor variables.

References

Ahn MK, Tucker JD, Wu W, Srivastava A (2020). “Regression models using shapes of functions as
predictors.” Computational Statistics and Data Analysis, 151, 107017.

Arribas-Gil A, Romo J (2014). “Shape outlier detection and visualization for functional data: the
outliergram.” Biostatistics, 15(4), 603–619.

Bali JL, Boente G, Tyler DE, Wang JL (2008). “The multivariate least-trimmed squares estimator.”
Journal of Multivariate Analysis, 99(3), 311–338.

Bali JL, Boente G, Tyler DE, Wang JL (2011). “Robust functional principal components: A
projection-pursuit approach.” The Annals of Statistics, 39(6), 2852–2882.

Ben MG, Martinez E, Yohai VJ (2006). “Robust estimation for the multivariate linear model based
on a τ scale.” Journal of Multivariate Analysis, 97(7), 1600–1622.

Beyaztas U, Shang HL (2020). “On function-on-function regression: Partial least squares approach.”
Environmental and Ecological Statistics, 27(1), 95–114.

Beyaztas U, Shang HL (2021). “A partial least squares approach for function-on-function interaction
regression.” Computational Statistics, 36(2), 911–939.

Beyaztas U, Shang HL (2022). “A robust functional partial least squares for scalar-on-multiple-
function regression.” Journal of Chemometrics, 36(4), e3394.

Bilodeau M, Duchesne P (2000). “Robust estimation of the SUR model.” The Canadian Journal of
Statistics, 28(2), 277–288.

22 Robust Functional Linear Regression Models

Boente G, Salibian-Barrera M, Vena P (2020). “Robust estimation for semi-functional linear
regression models.” Computational Statistics & Data Analysis, 152, 107041.

Cardot H, Ferraty F, Sarda P (1991). “Functional linear model.” Statistics and Probability Letters,
45, 11–22.

Cardot H, Ferraty F, Sarda P (2003). “Spline estimators for the functional linearmodel.” Statistica
Sinica, 13(3), 571–591.

Chen D, Hall P, Müller HG (2011). “Single and multiple index functional regression models with
nonparametric link.” The Annals of Statistics, 39(3), 1720–1747.

Chiou JM, Yang YF, Chen YT (2016). “Multivariate functional linear regression and prediction.”
Journal of Multivariate Analysis, 146, 301–312.

Croux C, Ruiz-Gazen A (1996). “High breakdown estimators for principal components: the
projection-pursuit approach revisited.” Journal of Multivariate Analysis, 95(1), 206–226.

Şentürk D, Müller HG (2008). “Generalized varying coefficient models for longitudinal data.”
Biometrika, 95(3), 653–666.

Cuaves A, Febrero M, Fraiman R (2007). “Robust estimation and classification for functional data
via projection-based depth notions.” Computational Statistics, 22(3), 481–496.

Cuevas A (2014). “A partial overview of the theory of statistics with functional data.” Journal of
Statistical Planning and Inference, 147, 1–23.

Dai W, Genton MG (2018). “Multivariate functional data visualization and outlier detection.”
Journal of Computational and Graphical Statistics, 27(4), 923–934.

Dou WW, Pollard D, Zhou HH (2012). “Estimation in functional regression for general exponential
families.” The Annals of Statistics, 40(5), 2421–2451.

Dryden IL, Mardia KV (2016). Statistical Shape Analysis, with Applications in R. Wiley Series in
Probability and Statistics, New York.

Febrero-Bande M, Galeano P, Gonzalez-Mantelga W (2008). “Outlier detection in functional data
by depth measures, with application to identify abnormal NOx levels.” Environmetrics, 19(4),
331–345.

Ferraty F, Vieu P (2006). Nonparametric Functional Data Analysis. Springer, New York.

Goldsmith J, Bobb J, Crainiceanu CM, Caffo B, Reich D (2011). “Penalized functional regression.”
Journal of Computational and Graphical Statistics, 20(4), 830–851.

Goldsmith J, Scheipl F, Huang L, Wrobel J, Di C, Gellar J, Harezlak J, McLean MW, Swihart B,
Xiao L, Crainiceanu C, Reiss PT (2022). refund: Regression with Functional Data. R package
version 0.1-28, URL https://CRAN.R-project.org/package=refund.

Harezlak J, Coull BA, Laird NM, Magari SR, Christiani DC (2007). “Penalized solutions to
functional regression problems.” Computational Statistics and Data Analysiss, 51(10), 4911–4925.

https://CRAN.R-project.org/package=refund

Ufuk Beyaztas and Han Lin Shang 23

Horváth L, Kokoszka P (2012). Inference for Functional Data with Applications. Springer, New
York.

Hsing T, Eubank R (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction
to Linear Operators. John Wiley & Sons, Chennai, India.

Hullait H, Leslie DS, Pavlidis NG, King S (2021). “Robust function-on-function regression.” Tech-
nometrics, 63(3), 396–409.

Ivanescu AE, Staicu AM, Scheipl F, Greven S (2015). “Penalized function-on-function regression.”
Computational Statistics, 30(2), 539–568.

James GM (2002). “Generalized linear models with functional predictors.” Journal of Royal
Statistical Society, Series B, 64(3), 411–432.

Jiang C, Wang JL (2011). “Functional single index models for longitudinal data.” The Annals of
Statistics, 39(1), 362–388.

Kalogridis I, Aelst SV (2019). “Robust functional regression based on principal components.” Journal
of Multivariate Analysis, 173, 393–415.

Kokoszka P, Reimherr M (2017). Introduction to Functional Data Analysis. CRC Press, Boca Raton.

Koller M, Stahel WA (2011). “Sharpening Wald-type inference in robust regression for small samples.”
Computational Statistics & Data Analysis, 55(8), 2504–2515.

Kudraszow NL, Moronna RA (2011). “Estimates of MM type for the multivariate linear model.”
Journal of Multivariate Analysis, 102(9), 1280–1292.

Maronna RA, Yohai VJ (2013). “Robust functional linear regression based on splines.” Computational
Statistics and Data Analysis, 65, 46–55.

Marron JS, Ramsay JO, Sangalli LM, Srivastava A (2015). “Functional data analysis of amplitude
and phase variation.” Statistical Science, 30(4), 468–484.

Matsui H, Kawano S, Konishi S (2009). “Regularized functional regression modeling for functional
response and predictors.” Journal of Math-for-Industry, 1(A3), 17–25.

Ocana FA, Aguilera AM, Escabias M (2007). “Computational considerations in functional principal
component analysis.” Computational Statistics, 22(3), 449–465.

Raña P, Aneiros G, Vilar JM (2015). “Detection of outliers in functional time series.” Environmetrics,
26(3), 178–191.

Ramsay JO, Dalzell CJ (1991). “Some tools for functional data analysis.” Journal of the Royal
Statistical Society, Series B, 53(3), 539–572.

Ramsay JO, Graves S, Hooker G (2022). fda: Functional Data Analysis. R package version 6.0.5,
URL https://CRAN.R-project.org/package=fda.

Ramsay JO, Silverman BW (2002). Applied Functional Data Analysis. Springer, New York.

https://CRAN.R-project.org/package=fda

24 Robust Functional Linear Regression Models

Ramsay JO, Silverman BW (2006). Functional Data Analysis. Springer, New York.

Reiss PT, Ogden TR (2007). “Functional principal component regression and functional partial
least squares.” Journal of the American Statistical Association: Theory and Methods, 102(479),
984–996.

Rousseeuw PJ (1984). “Least median of squares regression.” Journal of the American Statistical
Association: Theory and Methods, 79(388), 871–881.

Rousseeuw PJ, Driessen KV, Aelst SV, Agullo J (1984). “Robust multivariate regression.” Techno-
metrics, 46(3), 293–305.

Salibian-Barrera M, Willems G, Zamar R (2008). “The fast-tau estimator for regression.” Journal
of Computational and Graphical Statistics, 17(3), 659–682.

Scheipl F, Staicu AM, Greven S (2015). “Functional additive mixed models.” Journal of Computa-
tional and Graphical Statistics, 24(2), 477–501.

Shin H, Lee S (2016). “An RKHS approach to robust functional linear regression.” Statistica Sinica,
26, 255–272.

Srivastava A, Klassen EP (2016). Functional and Shape Data Analysis. Springer, New York.

Sun Y, Genton MG (2011). “Functional boxplots.” Journal of Computational and Graphical
Statistics, 20(2), 316–334.

Tucker JD, Lewis JR, Srivastava A (2019). “Elastic functional principal component regression.”
Statistical Analysis and Data Mining, 12(2), 101–115.

Yao F, Müller HG, Wang JL (2005). “Functional linear regression analysis for longitudinal data.”
The Annals of Statistics, 33(6), 2873–2903.

Yohai VJ (1987). “High breakdown-point and high efficiency estimates for regression.” The Annals
of Statistics, 15(2), 642–665.

Zhu H, Brown PJ, Morris JS (2011). “Robust, adaptive functional regression in functional mixed
model framework.” Journal of the American Statistical Association, 106(1), 1167–1179.

Affiliation:
Ufuk Beyaztas
Marmara University
Department of Statistics
Goztepe Campus, 34722, Kadikoy, Istanbul, Turkey
E-mail: ufuk.beyaztas@marmara.edu.tr

Han Lin Shang
Macquarie University

mailto:ufuk.beyaztas@marmara.edu.tr

Ufuk Beyaztas and Han Lin Shang 25

Department of Actuarial Studies and Business Analytics
Level 7, 4 Eastern Road
Sydney, NSW 2109, Australia
E-mail: hanlin.shang@mq.edu.au

mailto:hanlin.shang@mq.edu.au

