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Abstract

The marginal likelihood plays an important role in many areas of Bayesian
statistics such as parameter estimation, model comparison, and model aver-
aging. In most applications, however, the marginal likelihood is not analyt-
ically tractable and must be approximated using numerical methods. Here
we provide a tutorial on bridge sampling (Bennett, 1976; Meng & Wong,
1996), a reliable and relatively straightforward sampling method that allows
researchers to obtain the marginal likelihood for models of varying complex-
ity. First, we introduce bridge sampling and three related sampling methods
using the beta-binomial model as a running example. We then apply bridge
sampling to estimate the marginal likelihood for the Expectancy Valence
(EV) model—a popular model for reinforcement learning. Our results in-
dicate that bridge sampling provides accurate estimates for both a single
participant and a hierarchical version of the EV model. We conclude that
bridge sampling is an attractive method for mathematical psychologists who
typically aim to approximate the marginal likelihood for a limited set of

possibly high-dimensional models.
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Bayesian statistics has become increasingly popular in mathematical psychology
(Andrews & Baguley, 2013; Bayarri, Benjamin, Berger, & Sellke, 2016; Poirier, 2006; Van-
paemel, 2016; Verhagen, Levy, Millsap, & Fox, 2015; Wetzels et al., 2016). The Bayesian
approach is conceptually simple, theoretically coherent, and easily applied to relatively
complex problems. These problems include, for instance, hierarchical modeling (Matzke,
Dolan, Batchelder, & Wagenmakers, 2015; Matzke & Wagenmakers, 2009; Rouder & Lu,
2005; Rouder, Lu, Speckman, Sun, & Jiang, 2005; Rouder et al., 2007) or the compari-
son of non-nested models (Lee, 2008; Pitt, Myung, & Zhang, 2002; Shiffrin, Lee, Kim, &
Wagenmakers, 2008). Three major applications of Bayesian statistics concern parameter es-
timation, model comparison, and Bayesian model averaging. In all three areas, the marginal
likelihood —that is, the probability of the observed data given the model of interest— plays
a central role (see also Gelman & Meng, 1998).

First, in parameter estimation, we consider a single model and aim to quantify the
uncertainty for a parameter of interest 6 after having observed the data y. This is realized

by means of a posterior distribution that can be obtained using Bayes theorem:

likelihood prior
—— =
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marginal likelihood

Here, the marginal likelihood of the data p(y) ensures that the posterior distribution is a
proper probability density function (PDF) in the sense that it integrates to 1. This illus-
trates why in parameter estimation the marginal likelihood is referred to as a normalizing

constant.

Second, in model comparison, we consider m (m € N) competing models, and are
interested in the relative plausibility of a particular model M; (i € {1,2,...,m}) given the
prior model probability and the evidence from the data y (see three special issues on this
topic in the Journal of Mathematical Psychology: Mulder & Wagenmakers, 2016; Myung,
Forster, & Browne, 2000; Wagenmakers & Waldorp, 2006). This relative plausibility is
quantified by the so-called posterior model probability p(M; | y) of model M; given the
data y (Berger & Molina, 2005):

p(y | M;) p(M;)
ap(y | Mj) p(M;)’

where the denominator is the sum of the marginal likelihood times the prior model probabil-

p(M; |y) = (2)

ity of all m models. In model comparison, the marginal likelihood for a specific model is also



A TUTORIAL ON BRIDGE SAMPLING 2

referred to as the model evidence (Didelot, Everitt, Johansen, & Lawson, 2011), the inte-
grated likelihood (Kass & Raftery, 1995), the predictive likelihood of the model (Gamerman
& Lopes, 2006, chapter 7), the predictive probability of the data (Kass & Raftery, 1995),
or the prior predictive density (Ntzoufras, 2009). Note that conceptually the marginal like-
lihood of Equation 2 is the same as the marginal likelihood of Equation 1. However, for the
latter equation we droped the model index because in parameter estimation we consider
only one model.

If only two models M; and M5 are considered, Equation 2 can be used to quantify
the relative posterior model plausibility of model M7 compared to model Ms. This relative
plausibility is given by the ratio of the posterior probabilities of both models, and is referred

to as the posterior model odds:

pMi y)  pMi)  ply [ M)

= X . (3)
p(Ma|y)  p(Ma)  ply | Ma)
—— —_— Y
posterior prior Bayes
odds odds factor

Equation 3 illustrates that the posterior model odds are the product of two factors:
The first factor is the ratio of the prior probabilities of both models—the prior model odds.
The second factor is the ratio of the marginal likelihoods of both models—the so-called
Bayes factor (Etz & Wagenmakers, in press; Jeffreys, 1961; Ly, Verhagen, & Wagenmakers,
2016a, 2016b; Robert, 2016). The Bayes factor plays an important role in model comparison
and is referred to as the “standard Bayesian solution to the hypothesis testing and model
selection problems” (Lewis & Raftery, 1997, p. 648) and “the primary tool used in Bayesian
inference for hypothesis testing and model selection” (Berger, 2006, p. 378).

Third, the marginal likelihood plays an important role in Bayesian model averaging
(BMA; Hoeting, Madigan, Raftery, & Volinsky, 1999) where aspects of parameter estimation
and model comparison are combined. As in model comparison, BMA considers several mod-
els; however, it does not aim to identify a single best model. Instead it fully acknowledges
model uncertainty. Model averaged parameter inference can be obtained by combining,
across all models, the posterior distribution of the parameter of interest weighted by each
model’s posterior model probability, and as such depends on the marginal likelihood of the
models. This procedure assumes that the parameter of interest has identical interpreta-
tion across the different models. Model averaged predictions can be obtained in a similar
manner.

A problem that arises in all three areas —parameter estimation, model comparison
and BMA- is that an analytical expression of the marginal likelihood can be obtained only
for certain restricted examples. This is a pressing problem in Bayesian modeling, and in

particular in mathematical psychology where models can be non-linear and equipped with a
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large number of parameters, especially when the models are implemented in a hierarchical
framework. Such a framework incorporates both commonalities and differences between
participants of one group by assuming that the model parameters of each participant are
drawn from a group-level distribution (for advantages of the Bayesian hierarchical frame-
work see Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011; Navarro, Griffiths, Steyvers, &
Lee, 2006; Rouder & Lu, 2005; Rouder et al., 2005; Rouder, Lu, Morey, Sun, & Speck-
man, 2008; Scheibehenne & Pachur, 2015; Shiffrin et al., 2008; Wetzels, Vandekerckhove,
Tuerlinckx, & Wagenmakers, 2010). For instance, consider a four-parameter Bayesian hi-
erarchical model with four group-level distributions each characterized by two parameters
and a group size of 30 participants; this then results in 30 x 4 individual-level parameters
and 2 x 4 group-level parameters for a total of 128 parameters. In sum, even simple models
quickly become complex once hierarchical aspects are introduced and this frustrates the

derivation of the marginal likelihood.

To overcome this problem, several Monte Carlo sampling methods have been proposed
to approximate the marginal likelihood. In this tutorial we focus on four such methods:
the bridge sampling estimator (Bennett, 1976, Chapter 5 of Chen, Shao, & Ibrahim, 2012,
Meng & Wong, 1996), and its three commonly used special cases—the naive Monte Carlo
estimator, the importance sampling estimator, and the generalized harmonic mean estima-
tor (for alternative methods see Gamerman & Lopes, 2006, Chapter 7; and for alternative
approximation methods relevant to model comparison and BMA see Carlin & Chib, 1995;
Green, 1995).! As we will illustrate throughout this tutorial, the bridge sampler is accu-
rate, efficient, and relatively straightforward to implement (e.g., DiCiccio, Kass, Raftery, &
Wasserman, 1997; Frithwirth-Schnatter, 2004; Meng & Wong, 1996).

The goal of this tutorial is to bring the bridge sampling estimator to the attention of
mathematical psychologists. We aim to explain this estimator and facilitate its application
by suggesting a step-by-step implementation scheme. To this end, we first show how bridge
sampling and the three special cases can be used to approximate the marginal likelihood
in a simple beta-binomial model. We begin with the naive Monte Carlo estimator and
progressively work our way up —via the importance sampling estimator and the generalized
harmonic mean estimator— to the most general case considered: the bridge sampling estima-
tor. This order was chosen such that key concepts are introduced gradually and estimators
are of increasing complexity and sophistication. The first three estimators are included
in this tutorial with the sole purpose of facilitating the reader’s understanding of bridge
sampling. In the second part of this tutorial, we outline how the bridge sampling estimator

can be used to derive the marginal likelihood for the Expectancy Valence (EV; Busemeyer

!The appendix gives a derivation showing that the first three estimators are indeed special cases of the
bridge sampler.
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& Stout, 2002) model—a popular, yet relatively complex reinforcement-learning model for
the Iowa gambling task (Bechara, Damasio, Damasio, & Anderson, 1994). We apply bridge
sampling to both an individual-level and a hierarchical implementation of the EV model.

Throughout the article, we use the software package R to implement the bridge sam-
pling estimator for the various models. The interested reader is invited to reproduce our
results by downloading the code and all relevant materials from our Open Science Frame-
work folder at osf.io/f9cq4.

Four Sampling Methods to Approximate the Marginal Likelihood

In this section we outline four standard methods to approximate the marginal like-
lihood. For more detailed explanations and derivations, we recommend Ntzoufras (2009,
Chapter 11) and Gamerman and Lopes (2006, Chapter 7); a comparative review of the
different sampling methods is presented in DiCiccio et al. (1997). The marginal likelihood
is the probability of the observed data y given a specific model of interest M, and is defined
as the integral of the likelihood over the prior:

Pl | M) = [ ply [6.M) p(0] M) do, @
—— —— ——

marginal likelihood prior

likelihood

with 6 a vector containing the model parameters. Equation 4 illustrates that the marginal
likelihood can be interpreted as a weighted average of the likelihood of the data given
a specific value for # where the weight is the a priori plausibility of that specific value.

Equation 4 can therefore be written as an expected value:

p(y | M) = Eprior(p(y | 0, M)),

where the expectation is taken with respect to the prior distribution. This idea is central

to the four sampling methods that we discuss in this tutorial.

Introduction of the Running Example: The Beta-Binomial Model

Our running example focuses on estimating the marginal likelihood for a binomial
model assuming a uniform prior on the rate parameter 6 (i.e., the beta-binomial model).
Consider a single participant who answered & = 2 out of n = 10 true/false questions
correctly. Assume that the number of correct answers follows a binomial distribution,
that is, & ~ Binomial(n, ) with 6 € (0,1), where 6 represents the latent probability for
answering any one question correctly. The probability mass function (PMF) of the binomial

distribution is given by:
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Figure 1. Prior and posterior distribution for the rate parameter 8 from the beta-binomial
model. The Beta(1l,1) prior on the rate parameter € is represented by the dotted line;
the Beta(3,9) posterior distribution is represented by the solid line and was obtained after
having observed 2 correct responses out of 10 trials.

Binomial(k | n,6) = (Z) 0 (1 — )", (5)
where k,n € Z>q, and k < n. The PMF of the binomial distribution serves as the likelihood

function in our running example.

In the Bayesian framework, we also have to specify the prior distribution of the model
parameters; the prior distribution expresses our knowledge about the parameters before the
data have been observed. In our running example, we assume that all values of 6 are equally
likely a priori. This prior belief is captured by a uniform distribution across the range of 6,
that is, # ~ Uniform(0, 1) which can equivalently be written in terms of a beta distribution
0 ~ Beta(1,1). This prior distribution is represented by the dotted line in Figure 1. It is
evident that the density of the prior distribution equals 1 for all values of 6. One advantage
of expressing the prior distribution by a beta distribution is that its two parameters (i.e.,

in its general form the shape parameters o and () can be thought of as counts of “prior
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successes” and “prior failures”, respectively. In its general form, the PDF of a Beta(a, )

distribution (a, 8 > 0) is given by:

611 —6)P~1
Bla,p)

where B(a, 3) is the beta function that is defined as: B(a, ) = fol 11 — )~ ldt =

FF(EQEL(BB))’ and I'(n) = (n — 1)! for n € N.

Analytical derivation of the marginal likelihood. As we will see in this section,

Beta(0; o, ) =

the beta-binomial model constitutes one of the rare examples where the marginal likelihood

is analytic. Assuming a general k and n, we obtain the marginal likelihood as:

Eq. 4

p(k | n) 7L /Olp(k|n,9)p(9)d9:/01 Z)e'fu—e)"ﬂde

1
n—+1

:<n>B(kz+1,n—k+1): : (6)

k
where we suppress the “model” in the conditioning part of the probability statements be-
cause we focus on a single model in this running example. Using k£ = 2 and n = 10 of our
example, we obtain: p(k = 2 | n = 10) = 1/11 ~ 0.0909. This value will be estimated in
the remainder of the running example using the naive Monte Carlo estimator, the impor-
tance sampling estimator, the generalized harmonic mean estimator, and finally the bridge
sampling estimator.

As we will see below, the importance sampling, generalized harmonic mean estima-
tor, and bridge sampling estimator require samples from the posterior distribution. These
samples can be obtained using computer software such as WinBUGS, JAGS or Stan, even
when the marginal likelihood that functions here as a normalizing constant is not known
(Equation 1). However, in our running example MCMC samples are not required because
we can derive an analytical expression of the posterior distribution for 6 after having ob-
served the data. Using the analytic expression of the marginal likelihood (Equation 6) and

Bayes theorem, we obtain:

p(k | n,0) p(6) (MOR(1 — )" F 1 o%(1— )"k
p(0 | k,n) = p(k|n)  (Bhk+Ln—k+1) Bk+ln—k+1)’

which we recognize as the PDF of the Beta(k + 1,n — k + 1) distribution. Thus, if we
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assume a uniform prior on 6 and observe k = 2 correct responses out of n = 10 trials, we
obtain a Beta(3,9) distribution as posterior distribution. This distribution is represented
by the solid line in Figure 1. In general, if k | n,0 ~ Binomial(n,6) and 6 ~ Beta(1,1),
then 0 | n,k ~ Beta(k+ 1,n — k +1).

Method 1: The Naive Monte Carlo Estimator of the Marginal Likelihood

The simplest method to approximate the marginal likelihood is provided by the naive
Monte Carlo estimator (Hammersley & Handscomb, 1964; Raftery & Banfield, 1991). This
method uses the standard definition of the marginal likelihood (Equation 4), and relies
on the central idea that the marginal likelihood can be written as an expected value with
respect to the prior distribution, that is, p(y) = Eprior(p(y | €)). This expected value of
the likelihood of the data with respect to the prior can be approximated by evaluating the
likelihood in N samples from the prior distribution for # and averaging the resulting values.

This yields the naive Monte Carlo estimator pi(y):

1 N - -
pi(y) = sz(y | 0:;), 0;~pO) . (7)
i=1 ———

samples from the
average likelihood prior distribution

Running example. To obtain the naive Monte Carlo estimate of the marginal
likelihood in our running example, we need N samples from the Beta(1, 1) prior distribution
for 6. For illustrative purposes, we limit the number of samples to 12 whereas in practice

one should take N to be very large. We obtain the following samples:

{61,0,,...,015} ={0.58,0.76,0.03,0.93,0.27,0.97,0.45,0.46,0.18, 0.64, 0.06,0.15},

where we use the tilde symbol to emphasize that we refer to a sampled value. All sampled
values are represented by the gray dots in Figure 2.

Following Equation 7, the next step is to calculate the likelihood (Equation 5) for
each 6;, and then to average all obtained likelihood values. This yields the naive Monte

Carlo estimate of the marginal likelihood:

1 12 B 1 12 _
Pk =2|n=10)= =3 plk=2]n=10,0) = => (,{)(@)’f(l—@»%’“
i=1

i=1
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Figure 2. Illustration of the naive Monte Carlo estimator for the beta-binomial example.
The dotted line represents the prior distribution and the solid line represents the posterior
distribution that was obtained after having observed 2 correct responses out of 10 trials.
The gray dots represent the 12 samples {51, O, ..., 512} randomly drawn from the Beta(1,1)
prior distribution.

1 10 2 8 2 8
= E<2> (0.582(1 = 0.58)% + ... + 0.15%(1 - 0.15)")

= 0.0945.

Method 2: The Importance Sampling Estimator of the Marginal Likelihood

The naive Monte Carlo estimator introduced in the last section performs well if the
prior and posterior distribution have a similar shape and strong overlap. However, the
estimator is unstable if the posterior distribution is peaked relative to the prior (Gamerman
& Lopes, 2006; Ntzoufras, 2009). In such a situation, most of the sampled values for 6
result in likelihood values close to zero and contribute only minimally to the estimate. This
means that those few samples that result in high likelihood values dominate estimates of

the marginal likelihood. Consequently, the variance of the estimator is increased (Newton
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& Raftery, 1994; Pajor, 2016).2

The importance sampling estimator, on the other hand, overcomes this shortcoming
by boosting sampled values in regions of the parameter space where the integrand of Equa-
tion 4 is large. This is realized by using samples from a so-called importance density grs(6)
instead of the prior distribution. The advantage of sampling from an importance density is
that values for # that result in high likelihood values are sampled most frequently, whereas
values for 6§ with low likelihood values are sampled only rarely.

To derive the importance sampling estimator, Equation 4 is used as starting point

which is then extended by the importance density grs(6):

915(0) py [ 0) p(0)
p(0) = [ ply|0)p(6) a0 = [ ply | 0)p(6) " a0 = [T gns(0)
B p(y | 0) p(6)
=Eg;500) 915(0)
This yields the importance sampling estimator po(y):
_ 1 X0 p6)
= ; g]S( ) s 6@ 915(6)- (8)

samples from the
average adjusted likelihood —importance density

A suitable importance density should (1) be easy to evaluate; (2) have the same
domain as the posterior distribution; (3) closely resemble the posterior distribution, and (4)
have fatter tails than the posterior distribution (Neal, 2001; Vandekerckhove, Matzke, &
Wagenmakers, 2015). The latter criterion ensures that values in the tails of the distribution

cannot misleadingly dominate the estimate (Neal, 2001).3

Running example. To obtain the importance sampling estimate of the marginal

likelihood in our running example, we first need to choose an importance density grs(6). An

2The interested reader is referred to Pajor (2016) for a recent improvement on the calculation of the naive
Monte Carlo estimator. The proposed improvement involves trimming the prior distribution in such a way
that regions with low likelihood values are eliminated, thereby increasing the accuracy and efficiency of the
estimator.

3To illustrate the need for an importance density with fatter tails than the posterior distribution, imagine
you sample from the tail region of an importance density with thinner tails. In this case, the numerator in
Equation 8 would be substantially larger than the denominator resulting in a very large ratio. Since this
specific ratio is only one component of the sum displayed in Equation 8, this component would dominate
the importance sampling estimate. Hence, thinner tails of the importance density run the risk of producing
unstable estimates across repeated computations. In fact, the estimator may have infinite variance (e.g.,
Tonides, 2008; Owen & Zhou, 2000).
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importance density that fulfills the four above mentioned desiderata is a mixture between
a beta density that provides the best fit to the posterior distribution and a uniform density
across the range of 6 (Vandekerckhove et al., 2015). The relative impact of the uniform
density is quantified by a mixture weight v that ranges between 0 and 1. The larger ~, the
higher the influence of the uniform density resulting in a less peaked distribution with thick
tails. If v = 1, the beta mixture density simplifies to the uniform distribution on [0, 1];*
and if v = 0, the beta mixture density simplifies to the beta density that provides the best
fit to the posterior distribution.

In our specific example, we already know that the Beta(3,9) density is the beta
density that provides the best fit to the posterior distribution because this is the analytic
expression of the posterior distribution. However, to demonstrate the general case, we show
how we can find the beta distribution with the best fit to the posterior distribution using
the method of moments. This particular method works as follows. First, we draw samples

from our Beta(3,9) posterior distribution and obtain:®

{65,605, ...,6%,) ={0.22,0.16,0.09, 0.35,0.06, 0.27, 0.26,0.41, 0.20, 0.43,0.21, 0.12}.

Note that here we use 6 to refer to the ih sample from the posterior distribution to
distinguish it from the previously used 6;—the i*" sample from a distribution other than
the posterior distribution, such as a prior distribution or an importance density. Second, we
compute the mean and variance of these posterior samples. We obtain a mean of #* = 0.232
and a variance of s3, = 0.014.

Third, knowing that, if X ~ Beta(a, ), then E(X) = «o/(a + ) and V(X) =
aff [(a +B)2%(a+ B+ 1)}, we obtain the following method of moment estimates for a and
5:

. _ g 0*(1 — 6%) ) — 003 0.232(1 — 0.232) ) g
‘- R 0.0142 ) 7

R _ [(0r(1 -6 0.232(1 — 0.232)
B=(1-6% o 1] =1-0.232) SO0l —1| = 8.865.

“In our running example, the importance sampling estimator then reduces to the naive Monte Carlo
estimator.

®Note that, when the analytical expression of the posterior distribution is not known, posterior sam-
ples can be obtained using computer software such as WinBUGS, JAGS or Stan, even when the marginal
likelihood that functions here as a normalizing constant is not known (Equation 1).
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Using a mixture weight on the uniform component of v = 0.30 —a choice that was made to
ensure that, visually, the tails of the importance density are clearly thicker than the tails of
the posterior distribution— we obtain the following importance density: v x Beta(6; 1,1) +
(1—~)xBeta(; a, /3’) = .3+.7 Beta(0; 2.673,8.865). This importance density is represented
by the dashed line in Figure 3. The figure also shows the posterior distribution (solid line).
As is evident from the figure, the beta mixture importance density resembles the posterior
distribution, but has fatter tails.

In general, it is advised to choose the mixture weight on the uniform component
~v small enough to make the estimator efficient, yet large enough to produce fat tails to
stabilize the estimator. A suitable mixture weight can be realized by gradually minimizing
the mixture weight and investigating whether stability is still guaranteed (i.e., robustness
analysis).

Drawing N = 12 samples for # from our beta mixture importance density results in:

{61,0,,...,015} ={0.11,0.07,0.33,0.25,0.41,0.39,0.25,0.13,0.64, 0.26,0.74,0.92}.

These samples are represented by the gray dots in Figure 3.
The final step is to compute the average adjusted likelihood for the 12 samples using

Equation 8. This yields the importance sampling estimate of the marginal likelihood as:

122 p(k=2]|n=10,60) p6;)
12 £ 3 + .7 Beta(f;; 2.673,8.865)

po(k=2|n=10) =

1 (%) 0.112(1 = 0.11) x 1 N (%) 0.922(1 - 0.92)% x 1

12 | .3+ .7 Beta(0.11; 2.673,8.865) ' .3+ .7 Beta(0.92; 2.673,8.865)

1 /10
= 0021 4+ ... +4.7x107°
12<2>(000 ... 4+4.7x107%)

= 0.0829.

Method 3: The Generalized Harmonic Mean Estimator of the Marginal Likeli-
hood

Just as the importance sampling estimator, the generalized harmonic mean estima-

tor focuses on regions of the parameter space where the integrand of Equation 4 is large
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Figure 3. Illustration of the importance sampling estimator for the beta-binomial model.
The dashed line represents our beta mixture importance density and the solid gray line
represents the posterior distribution that was obtained after having observed 2 correct
responses out of 10 trials. The gray dots represent the 12 samples {51, 0, . .. ,6712} randomly
drawn from our beta mixture importance density.

by using an importance density g;5(6) (Gelfand & Dey, 1994). However, in contrast to

the importance sampling estimator, the generalized harmonic mean estimator requires an

importance density with thinner tails for an analogous reason as in importance sampling.
To derive the generalized harmonic mean estimator, also known as reciprocal impor-

tance sampling estimator (Frithwirth-Schnatter, 2004), we use the following identity:

S _ [0l _ (s
(y) /@915(0) do = /p(y [03p(0) g1s(0) do = /p(y ) p(0 | y) do

grs(0)

= ot | 20 T0) 206)

SNote that the generalized harmonic mean estimator is a more stable version of the harmonic mean
estimator (Newton & Raftery, 1994). A problem of the harmonic mean estimator is that it is dominated by
the samples that have small likelihood values.
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Rewriting results in:

-1
. g1s(0)
P | B (m) |

which is used to define the generalized harmonic mean estimator p3(y) (Gelfand & Dey,
1994) as follows:

importance density

1 (07)
grs\v;
. _ . 0F ~p(b ) 9
D3(y) N; 0y 10 o) S ~p(0]y) 9)
samples from the
likelihood  prior posterior distribution

Note that the generalized harmonic mean estimator —in contrast to the importance
sampling estimator— evaluates samples from the posterior distribution. In addition, note
that the ratio in Equation 9 is the reciprocal of the ratio in Equation 8; this explains why
the importance density for the generalized harmonic mean estimator should have thinner
tails than the posterior distribution in order to avoid inflation of the ratios that are part of
the summation displayed in Equation 9. Thus, in the case of the generalized harmonic mean
estimator, a suitable importance density should (1) have thinner tails than the posterior
distribution (Newton & Raftery, 1994; DiCiccio et al., 1997), and as in importance sampling,
it should (2) be easy to evaluate; (3) have the same domain as the posterior distribution;
and (4) closely resemble the posterior distribution.

Running example. To obtain the generalized harmonic mean estimate of the
marginal likelihood in our running example, we need to choose a suitable importance den-
sity. In our running example, an importance density that fulfills the four above mentioned
desiderata can be obtained by following four steps: First, we draw N = 12 samples from

the posterior distribution. Reusing the samples from the last section, we obtain:

{61,605, ...,6%,) ={0.22,0.16, 0.09, 0.35,0.06, 0.27, 0.26, 0.41, 0.20, 0.43,0.21,0.12},

Second, we probit-tranform all posterior samples (i.e., §§ = @‘1(9;), with j €
{1,2,...,12}).7 The result of this transformation is that the samples range across the

entire real line instead of the (0,1) interval only. We obtain:

"Other transformation are conceivable (e.g., logit transformation).
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(6,65, ={~0.77,-0.99, —1.34, —0.39, —1.55, —0.61, —0.64, —0.23, —0.84, —0.18,
—0.81,—1.17}.

These probit-transformed samples are represented by the gray dots in Figure 4.

Third, we search for the normal distribution that provides the best fit to the probit-
transformed posterior samples 7. Using the method of moments, we obtain as estimates
= —0.793 and & = 0.423. Note that the choice of a normal importance density justifies
step 2; the probit transformation (or an equivalent transformation) was required to match

the range of the posterior distribution to the one of the normal distribution.

Finally, as importance density we choose a normal distribution with mean p = —0.793
and standard deviation o = 0.423/1.5. This additional division by 1.5 is to ensure thinner
tails of the importance density than of the probit-transformed posterior distribution (for
a discussion of alternative importance densities see DiCiccio et al., 1997). We decided to
divide & by 1.5 for illustrative purposes only. Our importance density is displayed in Figure

4 (dashed line) together with the probit-transformed posterior distribution (solid line).

The generalized harmonic mean estimate can now be obtained using either the original
posterior samples 67 or the probit-transformed samples &;. Here we use the latter ones
(see also Overstall & Forster, 2010). Incorporating our specific importance density and a

correction for having used the probit-transformation, Equation 9 becomes:®

importance density

—_—~
1 (& —h
Ly 5o
A~ g 4 * —1/p* * 1
ps(v) = | w2 , & =010 and 67 ~p(0]y).  (10)
Jle <y | ® (53)) (ZS (é-]) probit-transformed samples
— from the posterior distribution
likelihood prior

For our beta-binomial model, we now obtain the generalized harmonic mean estimate

of the marginal likelihood as:

8A detailed explanation is provided in the appendix. Note that using the original posterior samples 05
would involve transforming the importance density (e.g., the normal density on ) to the (0, 1) interval.
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1.5

l \
; Importance
' ' Density

Figure 4. Ilustration of the generalized harmonic mean estimator for the beta-binomial
model. The solid line represents the probit-transformed Beta(3,9) posterior distribution
that was obtained after having observed 2 correct responses out of 10 trials, and the dashed
line represents the importance density A (&; p = —0.793,0 = 0.423/1.5). The gray dots
represent the 12 probit-transformed samples {{f,&5,...,&]5} randomly drawn from the
Beta(3,9) posterior distribution.

1 £5+0.793
salk = 2| 10) 1 J2 0a23715 @ \ 0.z
p3\r = n= =139 * *

1 1 gb —0.77+0.793 1 ¢ —1.1740.793
= 0.423/1.5 0.423/1.5 0.423/1.5 0.423/1.5

12| (902221 — 0.22)8 ¢(—0.77) T ('9)0.122(1 — 0.12)8 ¢(—1.17)
-1
11
= (1— ™ (716.81 + ... + 556.38))

= 0.092.
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Method 4: The Bridge Sampling Estimator of the Marginal Likelihood

As became evident in the last two sections, both the importance sampling estimator
and the generalized harmonic mean estimator impose strong constraints on the tail behav-
ior of the importance density relative to the posterior distribution to guarantee a stable
estimator. Such requirements can make it difficult to find a suitable importance density,
especially when a high dimensional posterior is considered. The bridge sampler, on the
other hand, alleviates such requirements (e.g., Frithwirth-Schnatter, 2004).

Originally, bridge sampling was developed to directly estimate the Bayes factor, that
is, the ratio of the marginal likelihoods of two models M; and My (e.g., Jeffreys, 1961; Kass
& Raftery, 1995). However, in this tutorial, we use a version of bridge sampling that allows
us to approximate the marginal likelihood of a single model (for an earlier application see

for example Overstall & Forster, 2010). This version is based on the following identity:

- [p(y | 0) p(8) h(6) g(0) db -
~ [p(y]0) p(0) h(6) g(0) Ao’

where ¢(f) is the so-called proposal distribution and h(f) the so-called bridge function.
Multiplying both sides of Equation 11 by the marginal likelihood p(y) results in:

proposal
distribution
PNy
Sy = P10 POV NO) 90 40 Ty 10)p0) h0) 50 a6
p(y | 0) p(0) Jh(0)g(0) p(0|y) do
/ ( ) h(a) 9(9) do posterior
Py distribution
~ Eg)(p(y | 0) p(6) h(0))
Epost (h(0) 9(0))
The marginal likelihood can now be approximated using:
) = EELPWLOROING) g g0l a2
XM ) g0 T —— L
samples from the samples from the

proposal distribution  posterior distribution

Equation 12 illustrates that we need samples from both the proposal distribution

and the posterior distribution to obtain the bridge sampling estimate for the marginal like-
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lihood. However, before we can apply Equation 12 to our running example, we have to
discuss how we can obtain a suitable proposal distribution and bridge function. Concep-
tually, the proposal distribution is similar to an importance density, should resemble the
posterior distribution, and should have sufficient overlap with the posterior distribution.
According to Overstall and Forster (2010), a convenient proposal distribution is often a
normal distribution with its first two moments chosen to match those of the posterior dis-
tribution. In our experience, this choice for the proposal distribution works well for a wide
range of scenarios. However, this proposal distribution might produce unstable estimates
in case of high-dimensional posterior distributions that clearly do not follow a multivariate
normal distribution. In such a situation, it might be advisable to consider more sophisti-
cated versions of bridge sampling (e.g., Frithwirth-Schnatter, 2004; Meng & Schilling, 2002;
Wang & Meng, 2016).

Choosing the optimal bridge function. In this tutorial we use the bridge func-
tion defined as (Meng & Wong, 1996):

1

h(f) = C - , 13
O = w080 + e 19)
where s1 = ﬁ, So = NQJYFQNN and C' a constant; its particular value is not required

because h(f) is part of both the numerator and the denominator of Equation 12, and
therefore the constant C' cancels. This particular bridge function is referred to as the
“optimal bridge function” because Meng and Wong (1996, p. 837) proved that it minimizes

the relative mean-squared error (Equation 16).

Equation 13 shows that the optimal bridge function depends on the marginal likeli-
hood p(y) which is the very entity we want to approximate. We can resolve this issue by
applying an iterative scheme that updates an initial guess of the marginal likelihood until
the estimate of the marginal likelihood has converged according to a predefined tolerance
level. To do so, we insert the expression for the optimal bridge function (Equation 13) in
Equation 12 (Meng & Wong, 1996). The formula to approximate the marginal likelihood

on iteration ¢ 4 1 is then specified as follows:
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(14)

O;~g@) , 0;~p@ly) ,
———

samples from the samples from the
proposal distribution  posterior distribution

where p(y)® denotes the estimate of the marginal likelihood on iteration ¢ of the iterative
scheme. Note that Equation 14 illustrates why bridge sampling is robust to the tail behavior
of the proposal distribution relative to the posterior distribution; the difference to the
importance sampling and generalized harmonic mean estimator is that, in the case of the
bridge sampling estimator, samples from the tail region cannot inflate individual summation
terms and thus dominate the estimate. This is because both sums displayed in Equation 14
involve a ratio that has a sum in the denominator. Nevertheless it should be noted that the
posterior distribution and the proposal distribution need to have sufficient overlap. In the
extreme scenario of no overlap the bridge sampling estimate is not defined because both

sums of Equation 14 would be zero.

1/9(6;
Extending the numerator of the right side of Equation 14 with 1;g§9~ ;, and the
g\v;
1/g(6 07)p(6;
denominator with /9 i), and subsequently defining [; ; = w and ly; =
1/9(9j) g(ej)

ply | 6:)p(6;) . L : :

T, we obtain the formula for the iterative scheme of the bridge sampling es-
g\v;

timator py(y)**+Y at iteration t + 1 (Meng & Wong, 1996, p. 837).



A TUTORIAL ON BRIDGE SAMPLING 19

if p(y | :)p(6;) 1/9(6:)
pa(y) D) = 2 s10(y | 0)p(6:) + s2pa(y) Vg (i) 1/9(6:)
[ o0) 1/9(0;)
N s1p(y | 05)p(07) + s2pa(y) D g(0F) 1/9(07)
(15)
1 e lo;
Ei, s1la; + sopa(y)® ~ «
== ;o Oi~g0) 0 05 ~p(0]y)
121 1 — _——
- — o) samples from the samples from the
Nlj:l Slll,j + 32p4(y) proposal distribution  posterior distribution

Equation 15 suggests that, in order to obtain the bridge sampling estimate of the
marginal likelihood, a number of requirements need to be fulfilled. First, we need Ns
samples from the proposal distribution g(#) and N; samples from the posterior distribution
p(fly). Second, for all Ny samples from the proposal distribution, we have to evaluate
l;. This involves obtaining the value of the unnormalized posterior (i.e., the product of
the likelihood times the prior) and of the proposal distribution for all samples. Third,
we evaluate [y ; for all N7 samples from the posterior distribution. This is analogous to
evaluating ls ;. Fourth, we have to determine the constants s; and sy that only depend on
Ny and Ns. Fifth, we need an initial guess of the marginal likelihood p4(y). Since some
of these five requirements can be obtained easier than others, we will point out possible

challenges.

A first challenge is that using a suitable proposal distribution may involve transform-
ing the posterior samples. Consequently, we have to determine how the transformation
affects the definition of the bridge sampling estimator for the marginal likelihood (Equa-
tion 15).

A second challenge is how to use the N; samples from the posterior distribution. One
option is to use all N1 samples for both fitting the proposal distribution and for computing
the bridge sampling estimate. However, Overstall and Forster (2010) showed that such a
procedure may result in an underestimation of the marginal likelihood. To obtain more
reliable estimates they propose to divide the posterior samples in two parts; the first part is
used to obtain the best-fitting proposal distribution, and the second part is used to compute
the bridge sampling estimate. Throughout this tutorial, we use two equally large parts. In
the remainder we therefore state that we draw 2/N; samples from the posterior distribution.

Out of these 2N posterior samples, we use samples with even index numbers for the first
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part; posterior samples with odd index numbers constitute the second part.

To summarize, the discussion of the requirements and challenges encountered in bridge
sampling illustrated that the bridge sampling estimator imposes less strict requirements on
the proposal distribution than the importance sampling and generalized harmonic mean
estimator and allows for an almost automatic application due to the default choice of the

bridge function.

First batch of N1 samples | 1. Draw 2N samples from Second batch of N1 samples
l posterior distribution

2. Choose proposal distribution

:

4 N\ A 4
3. If necessar ( )
Y . 7. If necessary,

transform posterior samples

\. J transform posterior samples
l \. J/
4 )\
. N - N
4 ngﬁ);ﬂl(ﬂ)i};?ssilrjlslgslbmlon to 8. Calculate 1, ; for all N1 samples
P l P y from the posterior distribution
\. J/

4 N\
5. Draw N2 samples from fitted
proposal distribution

;

4 \
6. Calculate 1, ; for all N2 samples

. from the proposal distribution 14>[ 9. Run iterative scheme (Eq. 15) ]

Figure 5. Schematic illustration of the steps involved in obtaining the bridge sampling

estimate of the marginal likelihood.

v

Running example. To obtain the bridge sampling estimate of the marginal likeli-

hood in the beta-binomial example, we follow the eight steps illustrated in Figure 5:

1. We draw 2Ny = 24 samples from the Beta(3,9) posterior distribution for 6.

We obtain the following sample of 24 values:

{65,605, ...,65,) ={0.22,0.16,0.09, 0.35,0.06,0.27,0.26,0.41,0.20,0.43,0.21,0.12,
0.15,0.21,0.24,0.18,0.12,0.22,0.15,0.22,0.23,0.26, 0.29, 0.28},

Note that the first 12 samples equal the ones used in the last section, whereas the last
12 samples were obtained from drawing again 12 values from the Beta(3,9) posterior

distribution for 6.

2. We choose a proposal distribution.
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Here we opt for an approach that can be easily generalized to models with multiple

parameters and select a normal distribution as the proposal distribution g(#).?

3. We transform the first batch of N1 posterior samples.
Since we use a normal proposal distribution, we have to transform the posterior sam-
ples from the rate scale to the real line so that the range of the posterior distribution
matches the range of the proposal distribution. This can be achieved by probit-
transforming the posterior samples, that is, £ = @‘1(9;) with j € {2,4,...,24}. We

obtain:

{&,65,...,6,) ={~0.99,-0.39, —0.61, —0.23, —0.18, —1.17, —0.81, —0.92, —0.77, —0.77,
—0.64, —0.58}.

4. We fit the proposal distribution to the first batch of N1 probit-transformed posterior
samples.
We use the method of moment estimates i = —0.672 and & = 0.298 from the first

batch of N probit-transformed posterior samples to obtain our proposal distribution

5. We draw Ny samples from the proposal distribution.
We obtain:

{€1,&, ..., &2} ={—0.90,—0.55, —1.16, —0.53, —0.45, —0.60, —0.63, —0.48, —0.69,
—1.20,—-0.65, —0.79}.

6. We calculate la; for all Ny samples from the proposal distribution.
This step involves assessing the value of the unnormalized posterior and the proposal
distribution for all N samples from the proposal distribution. As in the running
example for the generalized harmonic mean estimator, we obtain the unnormalized
posterior as: p (k =2|n=10,¢ (é,)) ¢ (é), where ¢ (é) comes from using the
change-of-variable method (see running example for the generalized harmonic mean
estimator and the appendix for details). Thus, as in the case of the generalized

harmonic mean estimator, the uniform prior on 6 translates to a standard normal
9There exist several candidates for the proposal distribution. Alternative proposal distributions are, for

example, the importance density that we used for the importance sampling estimator or for the generalized
harmonic mean estimator, or the analytically derived Beta(3,9) posterior distribution.
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prior on £. The values of the proposal distribution can easily be obtained (for example

using the R software).

7. We transform the second batch of the N1 posterior samples.

As in step 2, we use the probit transformation and obtain:

{&r,€5,... &5} ={—0.77,—1.34, —1.55, —0.64, —0.84, —0.81, —1.04, —0.71, —1.17, —1.04,
—0.74,—0.55}.

8. We calculate 11 ; for the second batch of N1 probit-transformed samples from the pos-
terior distribution.

This is analogous to step 6.

9. We run the iterative scheme (Equation 15) until our predefined tolerance criterion is
reached.
As tolerance criterion we choose |[py(k=2|n=10)"*D —p(k=2|n=10)"|/
pa(k =2 | n=10)*1D < 10710, This requires an initial guess for the marginal likeli-
hood py(k =2 | n =10)® which we set to 0.1

The simplicity of the beta-binomial model allows us to calculate the bridge sampling
estimate by hand. To determine ﬁ4(y)(t+1) according to Equation 15, we need to calculate
the constants s; and sy. Since N7 = Ny = 12, we obtain: s; = sg = Na/(N2 + Ny) = 0.5.
In addition, we need to calculate lp; (¢ € {1,2,...,12}) for all samples from the proposal
distribution, and l; ; (j € {1,3,...,23}) for the second batch of the probit-transformed
samples from the posterior distribution. Here we show how to calculate I and [y ; using

the first sample from the proposal distribution and the posterior distribution, respectively:

plk | n, @EN)6E) [ ()0.182(1—0.8)% - 0.27

lag = = = = 0.080,
9(&1) 5255 9 (70'%(.);9%672)
* * 10
L plkImeEeE)  (¥)022a 02030
1,1 = " = — = 0.070.
9(&1) 5258 9 ( 0'57;9%672)

10A better initial guess can be obtained from the generalized harmonic mean estimator explained in the
previous section. In our experience, however, the exact choice of the initial value does not seem to influence
the convergence of the bridge sampler much.
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For py(k =2 | n = 10)t1) | we then get:

L& la,
E — 51l + sap(y)®
pa(k =2 | n =100 = = s1l2i + s2p(y)
1 M 1

E; s1l1,2j-1 + sop(k =2 | n = 10)®

1 0.080 0.071
121 0.5-0.080 + 0.5 - p4(k = 2 | n = 10)®) et

"7 0.5-0.085 + 0.5 pu(k =2 | n = 10)®

1 1 1
12 (0.5 0.070 + 0.5 py(k =2 | n = 10)®) Tt 05 0068 +0.5-pa(k =2 | n=10)®

Using p(y)® = 0, we obtain as updated estimate of the marginal likelihood p4(k =
2| n= 10)(1) = 0.091. This iterative procedure has to be repeated until our predefined
tolerance criterion is reached. For our running example, this criterion is reached after
six iterations. We now obtain the bridge sampling estimate of the marginal likelihood as
pa(k=2|n=10)0 =0.0894.

Interim Summary

So far we used the beta-binomial model to illustrate the computation of four different
estimators of the marginal likelihood. These four estimators were discussed in order of in-
creasing sophistication, such that the first three estimators provided the proper context for
understanding the fourth, most general estimator—the bridge sampler. This estimator is
the focus in the remainder of this tutorial. The goal of the next sections is to demonstrate
that bridge sampling is particularly suitable to estimate the marginal likelihood of popular
models in mathematical psychology. Importantly, bridge sampling may be used to obtain
accurate estimates of the marginal likelihood of hierarchical models (for a detailed compar-
ison of bridge sampling versus its special cases see Frithwirth-Schnatter, 2004; Sinharay &
Stern, 2005).

Assessing the Accuracy of the Bridge Sampling Estimate

In this section we show how to quantify the accuracy of the bridge sampling estimate.
A straightforward approach would be to apply the bridge sampling procedure multiple times
and investigate the variability of the marginal likelihood estimate. In practice, however, this

solution is often impractical due to the substantial computational burden of obtaining the

)
|
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posterior samples and evaluating the relevant quantities in the bridge sampling procedure.

Frihwirth-Schnatter (2004) proposed an alternative approach that approximates the

estimator’s expected relative mean-squared error:

E [(ﬁ4(y) - p(y)ﬂ

2 _
b= p(y)

(16)

The derivation of this approximate relative mean-squared error by Frithwirth-Schnatter
takes into account that the samples from the proposal distribution g(6) are independent,
whereas the MCMC samples from the posterior distribution p(f]y) may be autocorrelated.

The approximate relative mean-squared error is given by:

L Va0 (0) (o) Voos (£2(0)

TN, () T M ELL(R0)

; (17)

0 0
where £i0) = il RO = Galtaer Vol(h®) =
2
f(fl(H)—E[fl(H)D g(0)df denotes the variance of f1(f) with respect to the pro-
posal distribution g(f) (the variance Vi (o) ( fg(@)) is defined analogously), and py,(0)

corresponds to the normalized spectral density of the autocorrelated process f2(6) at the
frequency 0.

In practice, we approximate the unknown variances and expected values by the cor-
responding sample variances and means. Hence, for evaluating the variance and expected
value with respect to ¢g(#), we use the Ny samples for 0, from the proposal distribution. To
evaluate the variance and expected value with respect to the posterior distribution, we use
the second batch of N7 samples 6?;5 from the posterior distribution which we also use in the
iterative scheme for computing the marginal likelihood. Because the posterior samples are
obtained via an MCMC procedure and are hence autocorrelated, the second term in Equa-
tion 17 is adjusted by the normalized spectral density (for details see Frithwirth-Schnatter,
2004).11 To evaluate the normalized posterior density which appears in the numerator of
f1(0) and the denominator of both f1(6) and f2(#), we use the bridge sampling estimate as
normalizing constant.

Note that, under the assumption that the bridge sampling estimator p4(y) is an
unbiased estimator of the marginal likelihood p(y), the square root of the expected relative
mean-squared error (Equation 16) can be interpreted as the coefficient of variation (i.e.,

the ratio of the standard deviation and the mean; Brown, 1998). In the remainder of this

1UVWe estimate the spectral density at frequency zero by fitting an autoregressive model using the
spectrumO.ar () function as implemented in the coda R package (Plummer, Best, Cowles, & Vines, 2006).
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article, we report the coefficient of variation to quantify the accuracy of the bridge sampling

estimate.

Case Study: Bridge Sampling for Reinforcement Learning Models

In this section, we illustrate the computation of the marginal likelihood using bridge
sampling in the context of a published data set (Busemeyer & Stout, 2002) featuring the
Expectancy Valence (EV) model—a popular reinforcement learning (RL) model for the Iowa
gambling task (IGT; Bechara et al., 1994). We first introduce the task and the model, and
then use bridge sampling to estimate the marginal likelihood of the EV model implemented
in both an individual-level and a hierarchical Bayesian framework. For the individual-level
framework, we compare estimates obtained from bridge sampling to importance sampling
estimates published in Steingroever, Wetzels, and Wagenmakers (2016). For the hierarchical
framework, we compare our results to estimates from the Savage-Dickey density ratio test
(Dickey, 1971; Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010; Wetzels, Grasman, & Wagenmakers, 2010).

The Iowa Gambling Task

In this section we describe the IGT (see also Steingroever, Pa