
Using the R package kergp: Ordinal kernels

Olivier Roustant and Yves Deville

17th March, 2021

This report1 illustrates the use of ordinal kernels with kergp. For that purpose, we choose an
analytical function, coming from the beam bending problem, presented in [Roustant et al., 2020].
That function will be viewed as a black-box function, that we aim at approximating with a
Gaussian process model. For completeness, we first briefly recall the context.

The beam bending problem

A force is applied to an horizontal beam, fixed in a wall, which creates a vertical deviation,
called deflection. Under standard assumptions, the beam deflection is simply expressed as:

y(L, S, Ĩ) =
PL3

3ES2Ĩ
(1)

where:

• L is the length of the beam,

• E is the Young modulus characterizing the properties of the beam,

• P is the amplitude of the vertical loading,

• S is the area of the cross-section,

• Ĩ = I/S2 is the moment of inertia I normalized by the cross section.

Here, E,P are supposed to be constant: E = 600GPa, P = 600N. On the contrary, L, S
are viewed as continuous variables varying in the intervals [10, 20] and [1, 2] respectively. We
consider 12 kinds of beams, characterized by 4 different shapes (square, circle, I and star) and
3 filling levels (solid, medium, hollow), as shown in Figure 1. For each beam, the normalized
inertia is a fixed values, which can be computed from physics equations. They are given by:

(Ĩ1, . . . , Ĩ12) = (0.0833, 0.139, 0.380, 0.0796, 0.133, 0.363,

0.0859, 0.136, 0.360, 0.0922, 0.138, 0.369).
(2)

Here, we assume that only the order corresponding to the inertia values is given. Hence, we
consider that Ĩ is an ordinal discrete variable with 12 levels corresponding to the beams.

1Compiled with R 4.0.4 using kergp 0.5.5.

1

(a) Ĩ1 (b) Ĩ2 (c) Ĩ3 (d) Ĩ4 (e) Ĩ5 (f) Ĩ6 (g) Ĩ7 (h) Ĩ8 (i) Ĩ9 (j) Ĩ10 (k) Ĩ11 (l) Ĩ12

Figure 1: Representation of the shapes considered for the cross-sections.

Construction of a GP model

Let us now start the illustration with kergp. We first prepare the data. We provide the
12 values of inertia. Recall that they are only used to define the order of the levels. The
variable iniLevels contains the beam initial configurations, and ordLevels contains the sorted
configurations (with respect to inertia values).

myGrid <- expand.grid(Fill = c("solid", "medium", "hollow"),

Shape = c("square", "circle", "I", "star"))

iniLevels <- with(myGrid, paste(Shape, Fill, sep = "."))

inertia <- c(0.08333333, 0.13888889, 0.37962963,

0.07957747, 0.13262912, 0.36251959,

0.08588435, 0.13554232, 0.35992989,

0.09221567, 0.13832350, 0.36886267)

ordLevels <- iniLevels[sort(inertia, index = TRUE, decreasing = TRUE)$ix]

names(inertia) <- iniLevels

L <- length(inertia) # number of levels

plot(inertia[ordLevels], main = "Inertia", xlab = "Ordered levels")

2 4 6 8 10 12

0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

Inertia

Ordered levels

in
e
rt

ia
[o

rd
L
e
ve

ls
]

Figure 2: Inertia values, in function of the ordered levels.

The deflection is coded as a function of x, whose column ShapeFill contains an ordered
factor. Mind the conversion to character when computing the inertia corresponding to the level
x[["ShapeFill"]] (a conversion to integer would give a wrong result here). We have rescale
the output by a factor of 1e5, in order to avoid too small numbers.

2

deflection <- function(x) {
I <- inertia[as.character(x[["ShapeFill"]])]

caution: as.character must be used

1e5 * x[["Length"]]^3 / (3e9 * x[["Section"]]^2 * I)

}

We now create a design of experiments (learning set), from a maximin Latin hypercube
design in three dimensions, corresponding to the three input variables. The levels of ShapeFill
are obtained by converting the continuous values to an ordered factor. We proceed to a first
check, by drawing the output value Y versus ShapeFill, which should be roughly increasing.

library(DiceDesign)

seed <- 0

m <- 3 # number of design points per level

X0 <- lhsDesign(n = m * L, dimension = 3, seed = seed)$design

set.seed(seed)

X <- maximinSA_LHS(X0)$design

df <- data.frame(Length = (X[, 1] + 1) * 10,

Section = X[, 2] + 1,

ShapeFill = as.integer(floor(X[, 3] * L) + 1))

df <- within(df, ShapeFill <- ordered(ordLevels[ShapeFill],

levels = ordLevels))

df <- data.frame(df, Y = deflection(df))

plot(Y ~ ShapeFill, data = df)

square.hollow I.hollow star.medium star.solid circle.solid

0
.0

0
.5

1
.0

1
.5

2
.0

ShapeFill

Y

Figure 3: Y versus ShapeFill, showing a roughly monotonic pattern.

Similarly, a test set is constructed.

nNew <- 1000

XNew <- lhsDesign(nNew, 2, seed = seed)$design

dfNew <- data.frame(Length = (XNew[, 1] + 1) * 10,

Section = XNew[, 2] + 1,

ShapeFill = sample(L, nNew, replace = TRUE))

dfNew <- within(dfNew, ShapeFill <- ordered(ordLevels[ShapeFill],

levels = ordLevels))

dfNew <- data.frame(dfNew, Y = deflection(dfNew))

3

Then we consider a Gaussian process for modelling Y. The kernel is built as a product of
a Matérn 5/2 kernel for each of the continuous variables Length and Section, and an ordinal
kernel for the ordinal variable ShapeFill. The latter is built with a warping function F as:

k(x, x′) = k0(F (x), F (x′)).

Hereafter, we choose the default value for k0, i.e. a Matérn 5/2 kernel, and a spline of degree 2
for F . The help page of covOrd describes the available modelling options, both for setting F
(e.g. Normal, spline) or k0 (e.g. Matérn, cos).

library(kergp)

kCont1 <- covRadial(k1Fun1 = k1Fun1Matern5_2,

d = 1, cov = "homo", input = "Length")

coefUpper(kCont1) <- c(10, 10)

kCont2 <- covRadial(k1Fun1 = k1Fun1Matern5_2,

d = 1, cov = "corr", input = "Section")

coefUpper(kCont2) <- 10

u <- ordered(iniLevels, labels = ordLevels)

kOrd <- covOrd(ordered = u, warpFun = "spline2", inputs = "ShapeFill")

kMix <- covComp(formula = ~ kCont1() * kCont2() * kOrd())

We now fit the model with kergp. A minimal number of multistart is recommended.

library(doFuture)

registerDoFuture()

plan(multisession, workers = max(parallel::detectCores() - 1, 1))

multistart <- 50

fit <- gp(formula = Y ~ 1 ,

cov = kMix, data = df,

multistart = multistart)

We can plot the estimated warping. It shows here 2 jumps, delimiting 3 groups of levels,
corresponding to the filling degree of the shape (solid, medium, hollow).

plot(as.list(fit$covariance)$kOrd, type = "warp")

Finally, we compute the predictions and assess the prediction accuracy with Q2 criterion
(R2 on a test set).

pred <- predict(fit, newdata = dfNew)

Q2 <- function(obs, pred){
1 - sum((pred - obs)^2) / sum((mean(obs) - obs)^2)

}
print(Q2(obs = dfNew$Y, pred = pred$mean))

[1] 0.974

4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ShapeFill

square.hollow circle.hollow I.hollow star.medium circle.medium I.solid square.solid

Figure 4: Estimated warping for ShapeFill.

References

[Roustant et al., 2020] Roustant, O., Padonou, E., Deville, Y., Clément, A., Perrin, G., Giorla,
J., and Wynn, H. (2020). Group kernels for Gaussian process metamodels with categorical
inputs. SIAM/ASA Journal on Uncertainty Quantification, 8(2):775–806.

5

