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Abstract

This article is a (slightly) modified and shortened version of Hornik and Grün (2014b),
published in the Journal of Statistical Software.

Finite mixtures of von Mises-Fisher distributions allow to apply model-based clustering
methods to data which is of standardized length, i.e., all data points lie on the unit sphere.
The R package movMF contains functionality to draw samples from finite mixtures of von
Mises-Fisher distributions and to fit these models using the expectation-maximization al-
gorithm for maximum likelihood estimation. Special features are the possibility to use
sparse matrix representations for the input data, different variants of the expectation-
maximization algorithm, different methods for determining the concentration parameters
in the M-step and to impose constraints on the concentration parameters over the com-
ponents.

In this paper we describe the main fitting function of the package and illustrate its
application. We also discuss he resolution of several numerical issues which occur for
estimating the concentration parameters and for determining the normalizing constant of
the von Mises-Fisher distribution.

Keywords: EM algorithm, finite mixture, hypergeometric function 0F1, modified Bessel func-
tion ratio, R, von Mises-Fisher distribution.

1. Introduction

Finite mixture models allow to cluster observations by assuming that for each component a
suitable parametric distribution can be specified and that the mixture distribution is derived
by convex combination of the component distributions. McLachlan and Peel (2000) and
Frühwirth-Schnatter (2006) present overviews on the estimation of these models in a maximum
likelihood as well as a Bayesian setting together with different applications of finite mixture
models.

If the support of the data is given by the unit sphere, a natural choice for the component
distributions is the von Mises-Fisher (vMF) distribution. The special case where data is in
R

2, i.e., the observations lie on the unit circle, is referred to as von Mises distribution. The
vMF distribution has concentric contour lines similar to the multivariate normal distribution
with the variance-covariance matrix being a multiple of the identity matrix. In fact Mardia
and Jupp (1999, page 173) point out that if X follows a multivariate normal distribution
with mean parameter µ which has length one and variance-covariance matrix κ−1I, then the
conditional distribution of X given that it has length one is a vMF distribution with mean
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direction parameter µ and concentration parameter κ.

Finite mixtures of vMF distributions were introduced in Banerjee, Dhillon, Ghosh, and Sra
(2005) to cluster data on the unit sphere. They propose to use the expectation-maximization
(EM) algorithm for maximum likelihood (ML) estimation and present two variants which they
refer to as hard and soft clustering. The areas of application of the presented examples include
text mining where abstracts of scientific journals, news articles and newsgroup messages are
categorized, and bioinformatics using a yeast gene expression data set. In these applications,
available data is typically high-dimensional. The estimation methods employed need to take
this into account. For finite mixtures of vMF distributions this is particularly relevant for the
determination of the concentration parameters.

Tang, Chu, and Huang (2009) use finite mixtures of vMF distributions for speaker clustering.
The data is pre-processed by fitting a Gaussian mixture model (GMM) to the utterances and
stacking the mean vectors of the mixture components to form the GMM mean supervector
which is then used as input for the mixture model aiming at clustering the speakers. They
compare the performance of finite mixtures of Gaussian distributions with those of vMF
distributions and conclude that for this application the latter outperform finite mixtures of
multivariate normal distributions. Further possible areas of application for finite mixtures of
vMF distributions are segmentation in high angular resolution diffusion imaging (McGraw,
Vemuri, Yezierski, and Mareci 2006) and clustering treatment beam directions in external
radiation therapy (Bangert, Hennig, and Oelfke 2010).

This paper is structured as follows. Section 2 introduces the vMF distribution and shows
how to draw samples from this distribution and how to determine the ML estimates of
its parameters. The extension to finite mixture models is covered in Section 3 including
again the methods for drawing samples and determining ML estimates. The R (R Core
Team 2014) package movMF is presented in Section 4 by describing the main fitting function
movMF() in detail. The package is available from the Comprehensive R Archive Network at
https://CRAN.R-project.org/package=movMF. Numerical issues when evaluating the den-
sity or determining the ML estimates are discussed in Section 5. An illustrative application
of the package using the abstracts from the talks at “useR! 2008”, the 3rd international R

user conference, in Dortmund, Germany, is given in Section 6. The paper concludes with a
summary and an outlook on possible extensions.

2. The vMF distribution

A random unit length vector in R
d has a von Mises-Fisher (or Langevin) distribution with

parameter θ ∈ R
d if its density with respect to the uniform distribution on the unit sphere

S
d−1 = {x ∈ R

d : ‖x‖ = 1} is given by

f(x|θ) = eθ⊤x/0F1(; d/2; ‖θ‖2/4),

where

0F1(; ν; z) =
∞
∑

n=0

Γ(ν)

Γ(ν + n)

zn

n!

is the confluent hypergeometric limit function and related to the modified Bessel function of
the first kind Iν via

0F1(; ν + 1; z2/4) =
Iν(z)Γ(ν + 1)

(z/2)ν
(1)

https://CRAN.R-project.org/package=movMF
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(e.g., Mardia and Jupp 1999, page 168).

The vMF distribution is commonly parametrized as θ = κµ, where κ = ‖θ‖ and µ ∈ S
d−1

are the concentration and mean direction parameters, respectively (if θ 6= 0, µ is uniquely
determined as θ/‖θ‖).

In what follows, it will be convenient to write

Cd(κ) = 1/0F1(; d/2; κ2/4)

so that the density is given by

f(x|θ) = Cd(‖θ‖)eθ⊤x.

2.1. Simulating vMF distributions

The following algorithm provides a rejecting sampling scheme for drawing a sample from the
vMF distribution with modal direction (0, . . . , 0, 1) and concentration parameter κ ≥ 0 (see
Algorithm VM∗ in Wood 1994). The extension for simulating from the matrix Bingham vMF
distribution is described in Hoff (2009) and also available in R through package rstiefel (Hoff
2012).

Step 1. Calculate b using

b =
d − 1

2κ +
√

4κ2 + (d − 1)2
.

Note that this calculation of b is algebraically equivalent to the one proposed in Wood
(1994), but numerically more stable.

Put x0 = (1 − b)/(1 + b) and c = κx0 + (d − 1) log(1 − x2
0).

Step 2. Generate Z ∼ Beta((d − 1)/2, (d − 1)/2) and U ∼ Unif([0, 1]) and calculate

W =
1 − (1 + b)Z

1 − (1 − b)Z
.

Step 3. If

κW + (d − 1) log(1 − x0W ) − c < log(U),

go to Step 2.

Step 4. Generate a uniform (d − 1)-dimensional unit vector V and return

X = (
√

1 − W 2V ⊤, W )⊤.

The uniform (d − 1)-dimensional unit vector V can be generated by simulating independent
standard normal random variables and normalizing them (see for example Ulrich 1984). To get
samples from a vMF distribution with arbitrary mean direction parameter µ, X is multiplied
from the left with a matrix where the first (d − 1) columns consist of unitary basis vectors of
the subspace orthogonal to µ and the last column is equal to µ.
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2.2. Estimating the parameters of the vMF distribution

Using the common parametrization by κ and µ, the log-likelihood of a sample x1, . . . , xn from
the vMF distribution is given by

n log(Cd(κ)) + κµ⊤r,

where r =
∑n

i=1 xi is the resultant vector (sum) of the xi. The maximum likelihood estimates
(MLEs) are obtained by solving the likelihood equations

µ̂ = r/‖r‖, −C ′
d(κ̂)

Cd(κ̂)
= ‖r‖/n.

Writing Ad(κ) = −C ′
d(κ)/Cd(κ) for the logarithmic derivative of 1/Cd(κ) and ρ = ‖r‖/n for

the average resultant length, the equation for the MLE of κ becomes

Ad(κ̂) = ρ.

Using recursions for the modified Bessel function (e.g., Watson 1995, page 71), one can es-
tablish that

Ad(κ) = −C ′
d(κ)

Cd(κ)
=

Id/2(κ)

Id/2−1(κ)
.

It can be shown (see for example Schou 1978) that Ad is a strictly increasing function which
maps the interval [0, ∞) onto the interval [0, 1) and satisfies the Riccati equation A′

d(κ) =
1 − Ad(κ)2 − d−1

κ Ad(κ). As Ad and hence its derivatives can efficiently be computed using
continued fractions (see Section 5 for details), the equation Ad(κ̂) = ρ can efficiently be solved
by standard iterative techniques provided that good starting approximations are employed.

Dhillon and Sra (2003) and subsequently Banerjee et al. (2005) suggest the approximation

κ̂ ≈ ρ(d − ρ2)

1 − ρ2
(2)

obtained by truncating the Gauss continued fraction representation of Ad and adding a cor-
rection term “determined empirically”. The former reference also suggests using this approx-
imation as the starting point of a Newton-Raphson iteration, using the above expression for
A′

d.

Tanabe, Fukumizu, Oba, Takenouchi, and Ishii (2007) show that

κ̂ =
ρ(d − c)

1 − ρ2

for some suitable 0 ≤ c ≤ 2. The approximation in Equation 2 corresponds to c ≈ ρ2. They
also suggest to determine κ̂ via the fixed point iteration

κt+1 = κtρ/Ad(κt)

with a starting value in the solution range, e.g., using c = 1 or c = ρ2.

Sra (2012) introduces a “truncated Newton approximation” based on performing exactly two
Newton iterations

κt+1 = κt − Ad(κt) − ρ

A′
d(κt)
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with κ0 determined via the c = ρ2 approximation.

Song, Liu, and Wang (2012) suggest to use a “truncated Halley approximation” based on
performing exactly two Halley iterations

κt+1 = κt − 2(Ad(κt) − ρ)A′
d(κt)

2A′
d(κt)2 − (Ad(κt) − ρ)A′′

d(κt)

with κ0 determined via the c = ρ2 approximation and using that the second derivative can
be given as a function of Ad(κt), i.e.,

A′′
d(κt) = 2Ad(κt)

3 +
3(d − 1)

κ
Ad(κt)

2 +
d2 − d − 2κ2

κ2
Ad(κt) − d − 1

κ
.

The results in Hornik and Grün (2014a) yield the substantially improved bounds

max
(

Fd/2−1,d/2+1(ρ), F(d−1)/2,
√

d2−1/4(ρ)
)

≤ κ̂ ≤ F(d−1)/2,(d+1)/2(ρ), (3)

valid for 0 ≤ ρ < 1, where

Fα,β(ρ) =
ρ

1 − ρ2

(

α +
√

ρ2α2 + (1 − ρ2)β2

)

.

The difference between the upper and lower bound is at most 3ρ/2 for all 0 ≤ ρ < 1, and the
difference between the lower bound and κ̂ tends to 0 as ρ → 1−.

Convex combinations of the lower and the upper bounds can be employed as starting values
for the above iteration schemes (which require a single starting point). In addition, as these
bounds actually give an interval known to contain the unique root κ̂ of the function κ 7→
Ad(κ)−ρ, one can use them as starting values for root finding methods which iteratively refine
intervals containing the solution, such as simple bisection (as provided by uniroot() in R),
hybrid algorithms combining derivative-based (Newton or Halley) and bisection steps (e.g.
Press, Teukolsky, Vetterling, and Flannery 2002, page 366), or the Newton-Fourier method
(e.g. Atkinson 1989, pages 62–64). One can show that Ad is concave (e.g., using Theorem 11
in Hornik and Grün 2013, which establishes that Ad = Rd/2−1 is the pointwise minimum
of concave functions, and hence concave): hence, employing the above bounds and a variant
of the Newton-Fourier method for strictly increasing concave functions yields a quadratically
convergent iterative scheme for determining κ̂.

2.3. Illustrative example: Household expenses

To illustrate the use of the vMF distribution to model data on the sphere we use the household

data set from package HSAUR3 (Everitt and Hothorn 2018). The data are part of a data
set collected from a survey on household expenditures and give the expenses of 20 single men
and 20 single women on four commodity groups. In the following we will focus only on three
of those commodity groups (housing, food and service) to have 3-dimensional data which is
easier to visualize. The data points are projected onto the sphere by normalizing them to have
length one. Thus, in the following analysis we are interested in finding groups of households
which lie in a similar direction, i.e., the angle between the observations is small and we are
not interested in differences in their total absolute expenses.



6 movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions

x

y

z

Data

x

y

z

Known group membership

x

y

z

Mixtures of vMFs with K = 2

x

y

z
Mixtures of vMFs with K = 3

Figure 1: Household expenses data with gender indicated by color after projection to the
sphere at the top left, estimated vMF distributions with confidence circles for each gender
group separately at the top right and the estimated mixtures of vMF distributions with K = 2
and K = 3 with confidence circles at the bottom.

The data points on the sphere are visualized in Figure 1 on the top left. Using the gender
information, vMF distributions are fitted to the male and the female observations separately.
The fitted distributions are visualized together with the mean direction indicated by a cross
and with confidence circles of probability 50% (full lines) and 95% (dashed lines). Clearly the
females have a smaller dispersion as indicated by the estimated κ which is equal to 96.4, as
compared to the κ of the males which is given by 20.3.

3. Finite mixtures of vMF distributions

The mixture model with K components is given by

h(x|Θ) =
K
∑

k=1

αkf(x|θk),

where h(·|·) is the mixture density, Θ the vector with all α and θ parameters, and f(y|θk) the
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density of the vMF distribution with parameter θk. Furthermore, the component weights αk

are positive for all k and sum to one.

3.1. Simulating mixtures of vMF distributions

This is straightforwardly achieved by first sampling class ids z ∈ {1, . . . , K} with the mix-
ture class probabilities α1, . . . , αK , and then sampling the data from the respective vMF
distributions with parameter θk.

3.2. Estimating the parameters of mixtures of vMF distributions

EM algorithms for ML estimation of the parameters of mixtures of vMF distributions are given
in Dhillon and Sra (2003) and Banerjee et al. (2005). The EM algorithm exploits the fact
that the complete-data log-likelihood where the component memberships of the observations
are known is easier to maximize than the observed-data log-likelihood.

The EM algorithm for fitting mixtures of vMF distributions consists of the following steps:

1. Initialization: Either of the following two:

(a) Assign values to αk and θk for k = 1, . . . , K, where αk > 0 and
∑K

k=1 αk = 1 and
θk 6= θl for all k 6= l and k, l = 1, . . . , K.

Start the EM algorithm with an E-step.

(b) Assign (probabilities of) component memberships to each of the n observations.
E.g., the output from spherical k-means (Hornik, Feinerer, Kober, and Buchta 2012)
can be used.

Start the EM algorithm with an M-step.

2. Repeat the following steps until the maximum number of iterations is reached or the
convergence criterion is met.

E-step: Because the complete-data log-likelihood is linear in the missing data which
correspond to the component memberships, the E-step only consists of calculat-
ing the a-posteriori probabilities, the probabilities of belonging to a component
conditional on the observed values, using

p(k|xi, Θ) ∝ αkf(xi|θk).

M-step: Maximize the expected complete-data log-likelihood by determining sepa-
rately for each k:

α̂k =
1

n

n
∑

i=1

p(k|xi, Θ),

µ̂k =

∑n
i=1 p(k|xi, Θ)xi

‖∑n
i=1 p(k|xi, Θ)xi‖

, −C ′
d(κ̂k)

Cd(κ̂k)
=

‖∑n
i=1 p(k|xi, Θ)xi‖
∑n

i=1 p(k|xi, Θ)
.

κ̂k can be determined via the approximation of Equation 2, or one of the improved
methods discussed in Section 2.2.

Convergence check: Assess convergence by checking (either or both)
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(a) if the relative absolute change in the log-likelihood values is smaller than a
threshold ǫ1;

(b) if the relative absolute change in parameters is smaller than a threshold ǫ2.

If converged, stop the algorithm.

This corresponds to the soft-movMF algorithm on page 1357 in Banerjee et al. (2005). In
addition they propose the hard-movMF algorithm on page 1358. The algorithm above can be
modified to the hard-movMF algorithm by adding a hardening step between E- and M-step:

H-step: Replace the a-posteriori probabilities by assigning each observation with probability
1 to one of the components where its a-posteriori probability is maximum. Assuming
the maximum is unique, this corresponds to

p(k|xi, Θ) =

{

1, if k = argmaxh p(h|xi, Θ),
0, otherwise.

If the maximum is not unique, assignment is randomly with equal probability to one of
the k ∈ argmaxh p(h|xi, Θ), i.e., ties are broken at random.

This algorithm is also referred to as classification EM algorithm in the literature (Celeux
and Govaert 1992). A further variant of the EM algorithm also considered for example in
Celeux and Govaert (1992) would be the stochastic EM where instead of an hardening step
a stochastic step is added between E- and M-step:

S-step: Assign at random each observation to one component with probability equal to its
a-posteriori probability.

The algorithm above determines the parameter estimates if the concentration parameters are
allowed to vary freely over components. An alternative model specification could be to impose
the restriction that the concentration parameters are the same for all components. This has
the advantage that the clusters will be of comparable compactness and that spurious solutions
containing small components with very large concentration parameters are eliminated. In the
following we derive how the M-step needs to be modified if the concentration parameters are
restricted to be the same over components.

From Appendix A.2 of Banerjee et al. (2005) the optimal unconstrained κk can be obtained
by solving

Ad(κk) =
‖∑i p(k|xi, Θ)xi‖
∑

i p(k|xi, Θ)
.

If the κk are constrained to be equal (but are not given), the optimal common κ can be
obtained as follows. Using Equation A.12 in Banerjee et al. (2005), the modified Lagrangian
becomes

∑

k

(

∑

i

log(Cd(κ))p(k|xi, Θ) +
∑

i

κµ⊤
k xip(k|xi, Θ)

)

+ λk(1 − µ⊤
k µk)

= log(Cd(κ))
∑

k,i

p(k|xi, Θ) + κ
∑

k,i

µ⊤
k xip(k|xi, Θ) + λk(1 − µ⊤

k µk)

= n log(Cd(κ)) + κ
∑

k,i

µ⊤
k xip(k|xi, Θ) + λk(1 − µ⊤

k µk).
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α housing food service κ BIC

K = 2 0.47 0.95 0.13 0.27 114.70 −200.34
0.53 0.67 0.63 0.40 17.96

K = 3 0.52 0.95 0.15 0.27 83.26 −211.55
0.13 0.67 0.31 0.68 181.21
0.35 0.59 0.76 0.28 62.91

Table 1: Results of fitting mixtures of vMF distributions to the household expenses example.

Setting partials with respect to µk and λk to zero as in the reference gives (again)

µk =

∑

i xip(k|xi, Θ)

‖∑i xip(k|xi, Θ)‖

and with these µk we obtain for κ that

0 = −Ad(κ)n +
∑

k,i

µ⊤
k xip(k|xi, Θ) = −Ad(κ)n +

∑

k

∥

∥

∥

∥

∥

∑

i

xip(k|xi, Θ)

∥

∥

∥

∥

∥

,

i.e., κ needs to solve the equation

Ad(κ) =
1

n

∑

k

∥

∥

∥

∥

∥

∑

i

xip(k|xi, Θ)

∥

∥

∥

∥

∥

.

3.3. Illustrative example: Household expenses

In the following the gender information is not used and it is investigated if finite mixtures allow
to unravel a distinction between male and female respondents in their household expenses.
Assuming that it is known that there are two underlying unobserved groups, a mixture with
two components is fitted. The results are visualized in Figure 1 at the bottom left. The colors
are according to assignments to components using the maximum a-posteriori probabilities.
These assignments lead to one misclassification, i.e., one female is assigned to the component
with the higher dispersion. The estimated parameters and the BIC value of the model are
given in Table 1.

If the number of components is assumed to be unknown, the Bayesian information criterion
(BIC) can be used to select a suitable number of components (see for example McLachlan
and Peel 2000, Chapter 6). In this case the minimum BIC is obtained for three components
if models in the range of K = 1, . . . , 5 are considered. The results of the mixture with K = 3
components are visualized in Figure 1 at the bottom right and the estimated parameters and
the BIC value are given in Table 1. In this case the male respondents are split into two groups
with less dispersion each and different mean directions. The R code for reproducing these
results is provided in Section 4.3 after introducing package movMF.



10 movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions

4. Software

4.1. Main fitting function movMF()

The main function in package movMF for fitting mixtures of vMF distributions is movMF(),
with synopsis

R> movMF(x, k, control = list(), ...)

The arguments for this function are as follows.

x: A numeric data matrix, with rows corresponding to observations. If necessary the data
is standardized to unit row lengths. Furthermore, the matrix can be either stored as
a dense matrix, a simple triplet matrix (defined in package slam), or a general sparse
triplet matrix of class ‘dgtMatrix’ (from package Matrix).

k: An integer indicating the number of components.

control: A list of control parameters consisting of

E: Specifies the variant of the EM algorithm used with possible values "softmax" (de-
fault), "hardmax" (classification EM), and "stochmax" (stochastic EM).

kappa: This argument allows to specify how to determine the concentration parameters.

• If numbers are given, the concentration parameters are assumed to be fixed
and are not estimated in the EM algorithm.

• The method for solving for the concentration parameters can be specified
by one of "Banerjee_et_al_2005", "Tanabe_et_al_2007", "Sra_2012",
"Song_et_al_2012", "uniroot", "Newton", "Halley", "hybrid" and
"Newton_Fourier" (default). For more details on these methods see Sec-
tion 2.2.

• For common concentration parameters a list with elements common = TRUE

and a character string giving the estimation method needs to be provided.

converge: Logical indicating if convergence of the algorithm should be checked and
if in this case the algorithm should be stopped before the maximum number of
iterations is reached. For E equal to "softmax" this argument is set by default to
FALSE. Note that only condition (a) of the convergence check (see Section 3.2) is
assessed, i.e., the relative change in the log-likelihood values.

maxiter: Integer indicating the maximum number of iterations of the EM algorithm.
(Default: 100.)

reltol: If the relative change in the log-likelihood falls below this threshold the EM al-
gorithm is stopped if converge is TRUE. (Default: sqrt(.Machine$double.eps).)

verbose: Logical indicating if information on the progress of the fitting process shall
be printed during the estimation.

ids: Indicates either the class memberships of the observations or if equal to TRUE

the class memberships are obtained from the attributes of the data. In this way
the class memberships are for example stored if data is generated using function
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rmovMF(). If this argument is specified, the EM algorithm is stopped after one
iteration, i.e., the parameter estimates are determined conditional on the known
true class memberships.

start: Allows to specify the starting values used for initializing the EM algorithm
which then starts with an M-step. It can either be a list of matrices where each
matrix contains the a-posteriori probabilities of the observations or a list of vectors
containing component assignments for the observations. Alternatively it can be a
character vector with entries "i", "p", "S" or "s". The length of the vector speci-
fies how many different initializations are made. "i" indicates to randomly assign
component memberships to the observations. The latter three draw observations
as prototypes and determine a-posteriori probabilities by taking the implied cosine
dissimilarities between observations and prototypes. "p" randomly picks obser-
vations as prototypes, "S" takes the first prototype to minimize the total cosine
dissimilarity to the observations, and then successively picks observations farthest
away from the already picked prototypes. For "s" one takes a randomly chosen
observation as the first prototype, and then proceeds as for "S". For more details
on these initialization methods see package skmeans (Hornik et al. 2012) which
uses the same initialization schemes.

nruns: An integer indicating the number of repeated runs of the EM algorithm with
random initialization. This argument is ignored if either ids or start are specified.

minalpha: Components with size below the threshold indicated by minalpha are omit-
ted during the estimation with the EM algorithm. This avoids estimation problems
in the M-step if only very few observations are assigned to one component. The
disadvantage is that the initial number of components is not necessarily equal to
the number of components of the returned model.

4.2. Additional functionality in movMF

The object returned by movMF() has an S3 class called ‘movMF’ with methods print(), coef(),
logLik() and predict() (yields either the component assignments or the matrix of a-
posteriori probabilities). Additional functionality available in the package includes rmovMF()

for drawing from a mixture of vMF distributions and dmovMF() for evaluating the mixture
density.

4.3. Illustrative example: Household expenses

In the following the code for reproducing the results presented in Section 3.3 is provided.
After loading the dataset the three columns of interest are selected from the expenses and
stored in variable x. Then the classification variable gender is also extracted. First movMF()

is used to fit a single vMF distribution to the two separate sub-samples and then mixtures
are fitted with number of components varying from 1 to 5. To avoid reporting sub-optimal
solutions where the EM algorithm was trapped in a local optimum, the best result from 20
random initializations is returned.

R> data("household", package = "HSAUR3")

R> x <- as.matrix(household[, c(1:2, 4)])
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R> gender <- household$gender

R> theta <- rbind(female = movMF(x[gender == "female", ], k = 1)$theta,

+ male = movMF(x[gender == "male", ], k = 1)$theta)

R> set.seed(2008)

R> vMFs <- lapply(1:5, function(K)

+ movMF(x, k = K, control= list(nruns = 20)))

The BIC values for the different mixtures can be compared using

R> sapply(vMFs, BIC)

[1] -169.4291 -200.3364 -211.5490 -206.9498 -198.5651

5. Numerical issues

In what follows it will be convenient to write

Hν(κ) = 0F1(; ν + 1; κ2/4) =
Γ(ν + 1)

(κ/2)ν
Iν(κ).

As shown in Section 2, computing log-likelihoods for (mixtures of) vMF distributions on R
d

requires the computation of log(Hd/2−1), and ML estimation of concentration parameters
amounts to solving equations of the form Ad(κ) = ρ, where

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
=

κ

d

Hd/2(κ)

Hd/2−1(κ)

is the logarithmic derivative of Hd/2−1.

As Hν(κ) → ∞ as κ → ∞ (in fact, quite rapidly, see below), it clearly is a bad idea to try to
compute log(H) as the logarithm of H, or A as the ratio of H functions. Similar considerations
apply for using logarithms or ratios of incomplete modified Bessel functions I. One might
wonder whether one could successfully take advantage of the fact that the Bessel functions
provided by R are based on the SPECFUN package of Cody (1993) and hence also provide
the exponentially scaled modified Bessel function e−κIν(κ) (the scaling is motivated by the
asymptotic expansion Iν(κ) ∼ eκ(2πκ)−1/2∑

m am(ν)/κm for κ → ∞). However, exponential
scaling does not help in situations where 1 ≪ κ ≪ ν: e.g., for κ = 6000 and ν = 10000, H
overflows whereas I underflows (even though R gives Inf and 0 for the cases without and
with exponential scaling, respectively).

5.1. Computing Ad

One can use the Gauss continued fraction

Iν(z)

Iν−1(z)
=

1

2ν/z +

1

2(ν + 1)/z +

1

2(ν + 2)/z +
· · ·

for the ratio of modified Bessel functions (https://dlmf.nist.gov/10.33.E1) to compute
A as

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
=

1

d/κ +

1

(d + 2)/κ +

1

(d + 4)/κ +
· · ·

https://dlmf.nist.gov/10.33.E1
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(Equation 4.3 in Banerjee et al. 2005), using, e.g., Steed’s method (e.g., https://dlmf.nist.

gov/3.10) for evaluation. However, as pointed out by Gautschi and Slavik (1978) and Tretter
and Walster (1980) (and, quite recently, re-iterated by Song et al. 2012), the Perron continued
fraction

Iν(z)

Iν−1(z)
=

z

2ν + z −
(2ν + 1)z

2ν + 1 + 2z −
(2ν + 3)z

2ν + 2 + 2z −
(2ν + 5)z

2ν + 3 + 2z − · · ·

is numerically more stable (as computing it by forward recursion only accumulates positive
terms, whereas for the Gauss continued fraction the terms alternate in sign), and converges
substantially faster for positive z ≫ ν. Hence, by default we compute A via the Perron
continued fraction (with implementation based on Equation 3.3′ in Gautschi and Slavik 1978),
and additionally provide computation via the Gauss continued fraction (with implementation
based on Equation 3.2′ in Gautschi and Slavik 1978) and using exponentiation of log(H)
differences as alternatives.

For κ close to zero it is better (and necessary for κ = 0) to use the approximation

Ad(κ) =
1

d
κ − 1

d2(d + 2)
κ3 + O(κ5), κ → 0

(Schou 1978, Equation 5). The O(κ5) can be made more precise by using the series represen-
tation Iν(z) =

∑∞
n=0(z/2)2n+ν/(n!Γ(n + ν + 1)) so that for κ → 0,

Ad(κ) =

(κ/2)d/2

(

1

Γ(d/2 + 1)
+

κ2/4

Γ(d/2 + 2)
+

κ4/32

Γ(d/2 + 3)
+ O(κ6)

)

(κ/2)d/2−1

(

1

Γ(d/2)
+

κ2/4

Γ(d/2 + 1)
+

κ2/32

Γ(d/2 + 2)
+ O(κ6)

)

=
κ

2

2
d + κ2

d(d+2) + κ4

4d(d+2)(d+4) + O(κ6)

1 +
κ2

2d
+

κ4

8d(d + 2)
+ O(κ6)

from which the coefficient of κ5 can straightforwardly be determined as

1

2

(

1

4d(d + 2)(d + 4)
− 1

2d2(d + 2)
− 2

8d2(d + 2)
+

2

4d3

)

=
2

d3(d + 2)(d + 4)

so that

Ad(κ) =
1

d
κ − 1

d2(d + 2)
κ3 +

2

d3(d + 2)(d + 4)
κ5 + O(κ7), κ → 0.

From this approximations for A′ and A′′ can be obtained by term-wise differentiation and
also used for κ close to 0.

5.2. Computing log(Hν)

Write

Rν(κ) =
Iν+1(κ)

Iν(κ)

for the Bessel function ratio (so that Ad = Rd/2−1) and

Gα,β(κ) =
κ

α +
√

κ2 + β2
.

https://dlmf.nist.gov/3.10
https://dlmf.nist.gov/3.10
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Amos (1974, Equations 11 and 16) shows that for all non-negative κ and ν, Gν+1/2,ν+3/2(κ) ≤
Rν(κ) ≤ Gν,ν+2(κ). With βSS(ν) =

√

(ν + 1/2)(ν + 3/2), Theorem 2 of Simpson and Spector
(1984) implies the upper bound Rν(κ) ≤ Gν+1/2,βSS(ν)(κ) for all non-negative κ and ν. We
thus have

Gν+1/2,ν+3/2(κ) ≤ Rν(κ) ≤ min
(

Gν,ν+2(κ), Gν+1/2,βSS(ν)(κ)
)

(4)

(from which the bounds of Equation 3 are obtained by inversion). In addition, using results
in Schou (1978, Equations 5 and 6), one can show that Gν,ν+2 and Gν+1/2,βSS(ν) are second
order exact approximations for κ → 0 and κ → ∞, respectively (Hornik and Grün 2013).

As log(Hν)′ = Rν (and Hν(0) = 1), integration gives

log(Hν(κ)) =

∫ κ

0
Rν(t) dt.

Thus, the bounds for the Bessel function ratio Rν can be used to obtain bounds for Hν .
Writing

Sα,β(κ) =
√

κ2 + β2 − α log(α +
√

κ2 + β2) − β + α log(α + β),

it is easily verified that S′
α,β = Gα,β and Sα,β(0) = 0. Using the Amos-type bounds from

Equation 4, we thus obtain that for ν ≥ 0 and κ ≥ 0,

Sν+1/2,ν+3/2(κ) ≤ log(Hν(κ)) ≤ min
(

Sν,ν+2(κ), Sν+1/2,βSS(ν)(κ)
)

. (5)

Where a single approximating value is sought, we prefer to use the upper bound which is
based on the combination of upper Amos-type bounds which are second order exact at zero
and infinity. Again, the bounds in Equation 5 are surprisingly tight.

Result. Let

s(ν) = (ν + 3/2) − βSS(ν) − (ν + 1/2) log
2(ν + 1)

ν + 1/2 + βSS(ν)
,

with ν ≥ 0.

Then s is non-increasing on [0, ∞) with s(0) = (3 −
√

3 + log((1 +
√

3)/4))/2 = 0.4433537
and limν→∞ s(ν) = 1/4. For ν0 ≥ 0,

sup
κ≥0,ν≥ν0

(Sν+1/2,βSS(ν)(κ) − Sν+1/2,ν+3/2(κ)) = s(ν0).

For βSS(ν) ≤ β ≤ ν + 3/2,

sup
κ≥0

| log(Hν(κ)) − Sν+1/2,β(κ)| ≤ s(ν).

Proof. For simplicity, write α = ν + 1/2, βL = ν + 3/2 and βU = βSS(ν), omitting the
dependence on ν. We have βU ≤ βL and Gα,βU

≥ Gα,βL
. Hence,

Sα,βU
(κ) − Sα,βL

(κ) =

∫ κ

0
(Gα,βU

(t) − Gα,βL
(t)) dt
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is non-decreasing in κ, and attains its supremum for κ → ∞. Now,

Sα,βU
(κ) − Sα,βL

(κ)

=
√

κ2 + β2
U −

√

κ2 + β2
L − α log





α +
√

κ2 + β2
U

α +
√

κ2 + β2
L



+ (βL − βU ) − α log
α + βL

α + βU
.

As
√

κ2 + β2
U −

√

κ2 + β2
L =

(κ2 + β2
U ) − (κ2 + β2

L)
√

κ2 + β2
U +

√

κ2 + β2
L

=
β2

U − β2
L

√

κ2 + β2
U +

√

κ2 + β2
L

,

we have

lim
κ→∞

(Sα,βU
(κ) − Sα,βL

(κ)) = (βL − βU ) − α log
α + βL

α + βU
= s(ν).

The value of s(0) is obtained by insertion, and limν→∞ s(ν) can be obtained as follows. We
have

βL − βU =
√

α + 1(
√

α + 1 −
√

α) =

√
α + 1√

α + 1 +
√

α
→ 1/2

as ν → ∞, and

α + βU

α + βL
=

α +
√

α(α + 1)

2α + 1

=
(1 +

√

1 + 1/α)/2

1 + 1/(2α)

=
1

2

(

1 + 1 +
1

2α
+ O(α−2)

)(

1 − 1

2α
+ O(α−2)

)

= 1 − 1

4α
+ O(α−2)

so that

α log
α + βU

α + βL
= α

(

− 1

4α
+ O(α−2)

)

= −1

4
+ O(α−1) → −1/4

as ν → ∞. Hence, limν→∞ s(ν) = 1/4.

To show that s is non-increasing, note that we have

α + βL = 2α + 1,
dα

dν
=

dβL

dν
= 1,

dβU

dν
=

2α + 1

2βU

and hence

ds

dν
= 1 − 2α + 1

2βU
− log

2α + 1

α + βU
− α

(

2

2α + 1
− 1

α + βU

(

1 +
2α + 1

2βU

))

.

For non-negative t and τ ,

log
t + τ

t
=

∫ τ

0

1

t + s
ds ≥ 1

t + τ

∫ τ

0
ds =

τ

t + τ
.

Hence, with t = α + βU and τ = βL − βU ,

log
2α + 1

α + βU
≥ βL − βU

2α + 1
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and

ds

dν
≤ 1 − 2α + 1

2βU
+

βU − βL

2α + 1
+

α

α + βU

(

1 +
2α + 1

2βU

)

− 2α

2α + 1

=
2α + 1

2βU

(

α

α + βU
− 1

)

+
α

α + βU
+

2α + 1 + βU − βL − 2α

2α + 1

= − 2α + 1

2(α + βU )
+

α

α + βU
+

βU − α

2α + 1

= − 1

2(α + βU )
+

βU − α

2α + 1

=
−(2α + 1) + 2(β2

U − α2)

2(α + βU )(2α + 1)

=
−1

2(α + βU )(2α + 1)

≤ 0,

establishing that s is non-increasing.

Finally, for βSS(ν) ≤ β ≤ ν + 3/2, both log(Hν) and Sν+1/2,β are bounded below by
Sν+1/2,ν+3/2 and above by Sν+1/2,βSS(ν), so that | log(Hν) − Sν+1/2,β | ≤ (Sν+1/2,βSS(ν) −
Sν+1/2,ν+3/2) ≤ s(ν), completing the proof.

These results can be used to derive the following approach to computing log(Hν). Choose a
threshold θ such that eθ does not overflow and e−θ does not underflow. Using IEEE 754 double
precision floating point computations, we can take θ = 700. Choose an approximation Lν for
log(Hν) for which Sν+1/2,ν+3/2 ≤ Lν ≤ Sν+1/2,βSS(ν) for all κ ≥ 0. By the above, this has
approximation error at most s(0) < 1/2. Possible choices for Lν are convex combinations of
the lower and upper bounds in Equation 5 (e.g., simply take the upper bound) or Sν+1/2,β(κ)
with some βSS(ν) ≤ β ≤ ν + 3/2 (e.g, β = ν + 1); in the package we use

Lν(κ) =

∫ κ

0
min(Gν,ν+2(t), Gν+1/2,βSS(ν)(t)) dt

= Sν+1/2,βSS(ν)(κ) + (Sν,ν+2(min(κ, κν)) − Sν+1/2,βSS(ν)(min(κ, κν))),

where κν =
√

(3ν + 11/2)(ν + 3/2) is the positive root of the equation Gν,ν+2(κ) =
Gν+1/2,βSS(ν)(κ). Then if Lν(κ) ≤ θ − 1/2 (so that log(Hν(κ)) ≤ θ), compute Hν(κ) by
its series expansion, and take the logarithm of this. If θ − 1/2 < Lν(κ) ≤ 2θ − 1 so that

| log(Hν(κ)) − Lν(κ)/2| ≤ | log(Hν(κ)) − Lν(κ)| + Lν(κ)/2 ≤ θ,

and hence e−Lν(κ)/2Hν(κ) does not over- or underflow, write

Hν(κ) = eLν(κ)/2e−Lν(κ)/2Hν(κ) = eLν(κ)/2
∞
∑

m=0

e−Lν(κ)/2Γ(ν + 1)

Γ(ν + 1 + m)

(κ2/4)m

m!
,

and compute log(Hν(κ)) as Lν(κ)/2 plus the logarithm of the sum of the scaled series. Other-
wise, use the approximation Lν(κ) (note that with θ = 700, this has a relative approximation
error of about at most 1/2 · 1/1400 ≤ 0.0004). This is the approach for computing log(Hν)
currently implemented in package movMF.
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Alternatively, one can use the bounds to obtain refined strategies of computing log(Hν) using
available codes for modified Bessel functions. We have

log(Hν(κ)) = log(Iν(κ)) − ν log(κ/2) + log(Γ(ν + 1))

and hence, using Stirling’s approximation log(Γ(z)) ≈ (z − 1/2) log(z) − z + log(2π)/2 and
Lν = Sν+1/2,ν+1 for notational convenience, gives

log(Iν(κ))

= log(Hν(κ)) + ν log(κ/2) − log(Γ(ν + 1))

≈ Lν(κ) + ν log(κ/2) − (ν + 1/2) log(ν + 1) + (ν + 1) − log(2π)

2

=
√

κ2 + (ν + 1)2 + (ν + 1/2) log
κ

ν + 1/2 +
√

κ2 + (ν + 1)2

− log(κ/2)

2
+ (ν + 1/2) log

2ν + 3/2

2(ν + 1)
− log(2π)

2
.

This implies

log(Iν(κ)) =
√

κ2 + (ν + 1)2 + (ν + 1/2) log
κ

ν + 1/2 +
√

κ2 + (ν + 1)2
− log(κ)

2
+ O(1),

where the O(1) can be made more precise, giving a first-order variant of the large ν uniform
asymptotic approximation for Iν given by Olver (1954). (For ν → ∞, the error in the
approximation for log(Γ) tends to zero, and as (ν +1/2) log((2ν +3/2)/(2ν +2)) → −1/4, the
O(1) becomes − log(π)/2 − 1/4 + o(1) (modulo the error in the approximation of log(Hν(κ))
by Lν(κ) which is at most 1/4 + o(1)).

From the above, we can see that when κ ≫ ν, Iν(κ) overflows quite rapidly; on the other hand,
for κ = o(ν) and ν → ∞, Iν(κ) underflows quite rapidly. For computing logarithms, overflow
can be avoided by employing the exponentially scaled modified Bessel function e−κIν(κ) (as
commonly available in codes for computing Bessel functions, such as the SPECFUN package
Cody 1993, used by R) and computing log(Iν(κ)) = κ + log(e−κIν(κ)). However, this clearly
does not help avoiding underflow.

This motivates the following strategy for computing log(Iν(κ)) for a wide range of val-
ues. Start by computing a quick approximation Tν(κ) to log(Iν), either using the above
Lν(κ) + ν log(κ/2) − log(Γ(ν + 1)) or the leading term of the large ν uniform asymptotic ap-
proximation (in R, the latter is available via function besselI.nuAsym() in package Bessel;
Maechler 2012). If this is “sufficiently small” in absolute value (so that Iν(κ) will neither
over- nor underflow), compute log(Iν(κ)) directly as the logarithm of Iν(κ). Otherwise, if the
approximation is “too large”, but Tν(κ)−κ is sufficiently small in absolute value so that the ex-
ponentially scaled e−κIν(κ) can be computed without over- or underflow, compute log(Iν(κ))
as κ + log(e−κIν(κ)). Otherwise, use the quick approximation, or the large ν uniform asymp-
totic approximation with additional terms (package Bessel allows up to 4 additional terms).
This strategy can readily be translated into a strategy for computing log(Hν).
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6. Application: useR! 2008 abstracts

In 2008 the “useR! 2008”, the 3rd international R user conference, took place in Dortmund,
Germany. In total 177 abstracts were submitted and accepted for presentation at the confer-
ence. The abstracts with additional information such as title, author, session, and keywords
are available in the R data package corpus.useR.2008.abstracts available from the repository
at https://datacube.wu.ac.at/.

The following code checks if the package is installed and if necessary installs it. Furthermore,
the data contained in the package is loaded.

R> if(!nzchar(system.file(package = "corpus.useR.2008.abstracts"))) {

+ templib <- tempfile(); dir.create(templib)

+ install.packages("corpus.useR.2008.abstracts", lib = templib,

+ repos = "https://datacube.wu.ac.at/",

+ type = "source")

+ data("useR_2008_abstracts", package = "corpus.useR.2008.abstracts",

+ lib.loc = templib)

+ } else {

+ data("useR_2008_abstracts", package = "corpus.useR.2008.abstracts")

+ }

Using the tm package (Feinerer, Hornik, and Meyer 2008; Feinerer 2012) the data can be
pre-processed by (1) generating a corpus from the vector of abstracts and (2) building a
document-term matrix from the corpus. For constructing the document-term matrix each
abstract needs to be tokenized (i.e., split into words, e.g., by using white space characters as
separators) and transformed to lower case. Punctuation as well as numbers can be removed
and the words can be stemmed (i.e., inflected words are reduced to a base form). In addition a
minimum length can be imposed on the words as well as a minimum and maximum frequency
within an abstract required.

The vector of abstracts is transformed to an object which has an extended class of
‘Source’ using VectorSource(). This object is used as input for Corpus() to generate
the corpus. The map from the corpus to the document-term matrix is performed using
DocumentTermMatrix(). The control argument of DocumentTermMatrix() specifies which
pre-processing steps are applied to determine the frequency vectors of term occurrences in
each abstract. We use the titles and the abstracts together to construct the document-term
matrix.

R> library("tm")

R> abstracts_titles <-

+ apply(useR_2008_abstracts[,c("Title", "Abstract")],

+ 1, paste, collapse = " ")

R> useR_2008_abstracts_corpus <- VCorpus(VectorSource(abstracts_titles))

R> useR_2008_abstracts_DTM <-

+ DocumentTermMatrix(useR_2008_abstracts_corpus,

+ control = list(

+ tokenize = "MC",

+ stopwords = TRUE,

https://datacube.wu.ac.at/
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+ stemming = TRUE,

+ wordLengths = c(3, Inf)))

Method "MC" was used for tokenizing. This method aims at producing the same results as
the MC toolkit for creating vector models from text documents (Dhillon and Modha 2001;
Dhillon, Fan, and Guan 2001). In addition the words are stemmed, a set of stop words are
removed and all words are kept which have a length of at least 3.

The resulting document-term matrix has 177 rows and 3853 columns. The ten most frequent
terms (occurring in different abstracts) are the following.

R> library("slam")

R> ColSums <- col_sums(useR_2008_abstracts_DTM > 0)

R> sort(ColSums, decreasing = TRUE)[1:10]

use packag data can model base develop

150 127 121 112 103 91 91

analysi method function

88 85 82

To reduce the dimension of the problem and omit terms which occur too frequently or too
infrequently in the corpus to be of use when clustering the abstracts, we omit all terms which
occur in less than 5 abstracts and more than 90 abstracts.

R> useR_2008_abstracts_DTM <-

+ useR_2008_abstracts_DTM[, ColSums >= 5 & ColSums <= 90]

R> useR_2008_abstracts_DTM

<<DocumentTermMatrix (documents: 177, terms: 860)>>

Non-/sparse entries: 12384/139836

Sparsity : 92%

Maximal term length: 15

Weighting : term frequency (tf)

The data is transformed using TF-IDF weighting.

R> useR_2008_abstracts_DTM <- weightTfIdf(useR_2008_abstracts_DTM)

In the following different mixtures of vMF distributions are fitted to training data using 10-
fold cross-validation and are compared based on the predictive log-likelihoods on the hold-out
data to select a suitable model. The numbers of components are varied and the mixtures are
fitted with concentration parameters constrained to be the same over components as well as
where the concentration parameters are allowed to freely vary over components. For each
training data set the EM algorithm is repeated 20 times with different random initializations.

R> set.seed(2008)

R> library("movMF")

R> Ks <- c(1:5, 10, 20)
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Figure 2: Predictive log-likelihoods for different and common concentration parameters κ for
the fitted mixtures of vMF distributions to the “useR! 2008” abstracts.

R> splits <- sample(rep(1:10, length.out = nrow(useR_2008_abstracts_DTM)))

R> useR_2008_movMF <-

+ lapply(Ks, function(k)

+ sapply(1:10, function(s) {

+ m <- movMF(useR_2008_abstracts_DTM[splits != s,],

+ k = k, nruns = 20)

+ logLik(m, useR_2008_abstracts_DTM[splits == s,])

+ }))

R> useR_2008_movMF_common <-

+ lapply(Ks, function(k)

+ sapply(1:10, function(s) {

+ m <- movMF(useR_2008_abstracts_DTM[splits != s,],

+ k = k, nruns = 20,

+ kappa = list(common = TRUE))

+ logLik(m, useR_2008_abstracts_DTM[splits == s,])

+ }))

In Figure 2 the fitted models are compared using the cross-validated predictive log-likelihoods.
The results for the models with free concentration parameters are on the left, for the models
with common concentration parameters on the right. The predictive log-likelihoods on the
hold-out data indicate that the best solutions have between 1 and 5 components and that the
models with more components have rather bad predictive log-likelihoods.

Following the conclusions of the comparison of the predictive log-likelihoods values we further
investigate the model where the concentration parameters are constrained to be equal over
components and the number of components is equal to 2.

R> set.seed(2008)
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R> best_model <- movMF(useR_2008_abstracts_DTM, k = 2, nruns = 20,

+ kappa = list(common = TRUE))

In the following we look at the 10 most important words of each fitted component:

R> apply(coef(best_model)$theta, 1, function(x)

+ colnames(coef(best_model)$theta)[order(x, decreasing = TRUE)[1:10]])

1 2

[1,] "user" "estim"

[2,] "interfac" "variabl"

[3,] "project" "method"

[4,] "gui" "spatial"

[5,] "statist" "regress"

[6,] "system" "function"

[7,] "softwar" "bayesian"

[8,] "analysi" "test"

[9,] "graphic" "robust"

[10,] "report" "paramet"

Clearly one component deals with issues related to infrastructure or implementation, while
the other component is focusing more on statistical modeling.

The clustering obtained from the a-posteriori probabilities is analyzed by comparing the clus-
ter membership with the keywords assigned to an abstract. Because each abstract might have
several keywords assigned, the abstracts and their cluster assignments are suitably repeated.

R> clustering <- predict(best_model)

R> keywords <- useR_2008_abstracts[, "Keywords"]

R> keywords <- sapply(keywords,

+ function(x) sapply(strsplit(x, ", ")[[1]], function(y)

+ strsplit(y, "-")[[1]][1]))

R> tab <- table(Keyword = unlist(keywords),

+ Component = rep(clustering, sapply(keywords, length)))

In the following only keywords are shown which have more than 8 abstracts assigned to them.

R> (tab <- tab[rowSums(tab) > 8, ])

Component

Keyword 1 2

bioinformatics 3 8

biostatistics 1 11

connectivity 11 0

environmetrics 4 7

high performance computing 13 0

modeling 1 13

user interfaces 15 0



22 movMF: An R Package for Fitting Mixtures of von Mises-Fisher Distributions

−2.6

−2.0

 0.0

 2.0

 2.7

Pearson
residuals:

p−value =
3.6884e−11

Component

Keyword

user interfaces

modeling

high performance computing

environmetrics

connectivity

biostatistics

bioinformatics

1 2

Figure 3: Cross-tabulation of the keywords in each session and the cluster assignment for
keywords which were assigned to more than 8 abstracts.

The table is also visualized in Figure 3. Abstracts where the keywords assigned relate to
infrastructure or implementational issues such as connectivity, high performance computing
and user interfaces are associated with one component, whereas abstracts which are related to
statistical modeling issues such as bioinformatics, biostatistics and modeling are more likely
to be assigned to the other component.

7. Summary

An R package for fitting finite mixtures of vMF distributions is presented. Special focus has
been given on numerical issues when evaluating the log-likelihood as well as on methods for
ML estimation of the concentration parameter.

A possible extension for package movMF would be to allow for more flexible distributions
in the components which also have as support the unit sphere. The vMF distribution is the
analogue of the isotropic multivariate normal distribution, i.e., where the variance-covariance
matrix is a multiple of the identity matrix. In R

3 the generalization of the vMF distribution
which is the analogue to the general multivariate normal distribution on the two-dimensional
unit sphere is the Fisher-Bingham (or Kent) distribution (Kent 1982). Finite mixtures of
Fisher-Bingham distributions were used in Peel, Whiten, and McLachlan (2001) to identify
joint sets present in rock mass. They also allowed for an additional component which followed
the uniform distribution on the unit sphere. However, no generalization for higher dimensions
are available and Dortet-Bernadet and Wicker (2008) propose to use inverse stereographic
projections of multivariate normal distributions to cluster gene expression profiles.
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