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Abstract

This paper is an extension of EbayesThresh (the empirical bayesian thresholding method)
under assumption of data with homogeneous standard deviation noises described in
Johnstone and Silverman (2004)[1]. We ease this restriction, allowing heterogeneous
standard deviation of noises, and provide details in estimating the true effects with
posterior estimator, e.g. posterior mean or posterior median. The performance of the
model with heterogeneous standard deviation is compared to that of the model as-
suming homogeneous standard deviation. We also discuss the implication of threshold
constraints on estimation of non-null weight and the effect on estimation efficiency in
terms of mean squared error and mean absolute error in the article.
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1 Introduction

1.1 Background

In many practical settings, the true effect of an event is sparse in the sense that the effect on
most of the subjects are zero (or very near to zero) with observations of the event subject to
noise. A common example would be in the astronomical context with noisy observations of
the pixels of an image of which only a few are expected to be observed from true signals[1].
A simple model to depict such cases is

XZ‘:,MZ‘—’—EZ‘,Z':LQ,"',TL (1].)

in which X; is the observation of subject 7, u; is the true effect of the event, and ¢; is the
noise. If the noises are i.i.d. from a mean 0 and variance 1 distribution, estimating pu;
simply with z; will produce a mean square error of 1. However, the fact of sparsity, which
can be inferred from the observations, provides space for building a model subsuming this
extra information. One potential technique is to filter out null signals with threshold][1].
For example, given threshold ¢; for each i, any observation X; satisfying |X;| < t; would be
treated as null signal. The difficult part is to choose a proper threshold.

In Johnstone and Silverman (2004)[1], the authors discuss posterior median thresholding
on data with noises of homogeneous variance. In practice, it is common to have observations
with noises from heterogeneous sources. In this paper, we expand this thresholding method
to the heterogeneous variance case.

1.2 Empirical Bayesian Method

Assume errors are independent Gaussian white noise with heterogeneous variance

Xj|ﬂjv S5~ N(:uja S?) (12)

The true effect on each subject j is p;. The idea of many null effects is reflected in
the model from a Bayesian perspective that the true effect p; has a prior of a mixture
distribution, with a probability mass at zero. A heavy-tailed unimodal symmetric density
conditional on non-zero effect is assigned to capture potential outliers. Following Johnstone
and Silverman (2004)[1], we use Laplace distribution

py ~ (1= w)do(p15) + wyalpy;) (1.3)

in which 1
Vo) = 5@6‘“'“ (1.4)



is the Laplace density with zero mean and parameter a and 1 — w is the weight of mass at
zZero.

The objective is to compute posterior estimator of p; given information observed, X;
and s;, using its posterior distribution. Let pq(X;:s;,6) (0 = (w,a)) be the median of the
posterior distribution of ;. Given s; and w, pq(X;;s;,w) is a weakly increasing function
of X; due to the thresholding property (uq(Xj;s;,0) might be zero when z is close to zero).
Thus, there is a unique threshold ¢; = t(s;, #) for each observation j such that 114(X;; s;5,6) =
0iff X; <t,.

Let g(Xj;s;,a) be the convolution of Laplace density v,(x;) and density of X, and let
fn(Xj; pj, s5) be the density of normal distribution with mean p; and standard deviation s;.
Then,

g(X Sj,a a) = /%L(/’JJ)JCN( Jnujvsj)d,uj (1.5)

The marginal density of X; is

Xjlsj ~ (1 —w) fn(X5; 0, 55) + wg(Xys 85, a). (1.6)

Weight w and Laplace parameter a are estimated through maximizing marginal log like-
lihood:

(w,a|lX;,s5,7=4{1,2,---,n Zlog (1 —w)fn(X;;0,85) +wg(Xj,s5,a)) (1.7)

subject to the constraint on weight w that 0 < t(s;,w) < s;4/2log(n), j = 1,2,--- ,n
Weight estimate w helps to find the corresponding threshold t; = t(s;,w). The constraint
on weight is inherited from the case with noises of homogeneous variance in Johnstone and
Silverman (2004)[1], where threshold range is from 0 to y/2log(n), the universal threshold
for a sample of size n. This constraint is conservative in the sense of not over-shrinking the
estimates. The authors mentioned that in their simulation with sparsest signals, the best
results are obtained using universal threshold. However, it is far from clear why we need this
constraint on thresholds and how this constraint improves the estimation. We will discuss
the implication of this constraint in Section 3.

The next step would be to plug in w into the prior and estimate p; with either posterior
median, posterior mean or other estimators.



2 Implementation

2.1 Derivation

In the following analysis, ¢ represents the density of a standard normal distribution, ® the
CDF of a normal distribution, and ® =1 — .

The posterior distribution of  under the above assumption is

|z, 8 ~ (1 = Wpost )00 (1) + Wpost frost (1] T, 8, @) (2.1)

in which wp,s; is the posterior probability of having a non-zero effect and f,.s is the condi-
tional density given the effect is non-zero.

The convolution g(z;s,a) of a normal density with standard deviation s and a Laplace
density with parameter a is

g(z;s,a) = /_OO I (s s 8)va(p)d,,

2.2
1 22| .. (x—s% wa [T+ s (22)
=—ae 2 |e P + " P .
2 s s
The posterior weight can be expressed as
Wpost = P(:uj # O‘Xjﬂsj)
_ w-g(z;s,a)
(1 —w)fn(2;0,8) +w-g(z,s,a) (2.3)
_w(B(z,s)+1)
1+ wP(z,s)
in which
g9(x;s,a)
r;8,a)=———"——1
1 (I)(foQa) (i)(ersza) (24)
= 5as 1—2211 + x—i-;a - L
20 o) o()
The posterior distribution of p conditional on a non-zero effect is therefore
e—awl(b(,u_(l’_sZa)) eazl(b(ll_(x‘f‘SZa))
ost ([T, S, a) = . = T{p >0} + 5 S 1{pu <0
fp t(:u| ) e*axCI)(z_;Qa)_Feax(I)(x"';Qa) {:u } e*am@(x_ssza)—}—eaxq)(x'fza) {M }
(2.5)



- that is, a mixture of two truncated normal distributions that are symmetric with respect
to the y axis. Define TN(z;p, s,a,b) to be truncated normal distribution with location
parameter p, scale parameter s, minimum value a and maximum value b. Then,

foost(pt|z,8,a) = X - TN (p; v — s°a, 5,0, +00) + (1 — A) - TN (p;  + s*a, s, —00,0)  (2.6)

in which ,
e—ard(L=sa
— > ( = 2 2 (27)
efa;tq)(v’l?—; a) + eam(I)<x+SS a)

is the probability of positive observations.

Suppose z > 0. The mean of the conditional distribution fyes:(u|x, s) is

s0)= 20t PO 0 (o4 sta - 2
um(a:,s,a)_)\~(:c—sa—l—q)(x_TSQa)s)jL(l A) - (x+s%a (i)x+52a>s) 2.8)

= Mz — s%a) + (1 = \)(z + sa).

Thus, the posterior mean of p|x, s is Wyest - fm (23 8, ).

The posterior median pg(z; s, 0) will either have the same sign as the original value or be
zero. Suppose x > 0 and, therefore, pgy > 0. Define

(e, s) = / Foont (1l )dp
o

2

efaxi)(#—(m_s a))

S

e-0a(L=20) | canp(2tsle)

(2.9)

for > 0.

If there is a positive posterior median, pg has to satisfy wpostﬁ’d(Mx, s) = % Notice that

there is no solution to this equation when wp,s < % The solution is non-positive when
% and wyest Fy(0lz, s) < %, which has opposite sign to what we expect, and the
posterior median will be set to zero in this case. Thus, the posterior median pg4(x;s,6) is
the solution of

wpost Z

(2.10)

N | —

8 1 s
Wpost Fa(pt|z, s) = 2 if wpost Fa(0]z, 5) >
Otherwise, the posterior median is zero.

With negative observations, we can follow the same analysis as above on their additive
inverse and assign the sign of the corresponding observation to the posterior estimator.
Therefore, we only discuss cases when observations are positive in the following analysis.



2.2 Algorithm

In this section, I revise and extend the algorithms in R package EbayesThresh to be compat-
ible with data observed with noises of heterogeneous variance. The modifications of major
R functions are listed as follows:

beta.laplace [(x;s,a) in Equation (2.4) is calculated. In R, when = > 35, ¢(z) tends to

be zero, and ®(z) tends to be 1 due to a limit of numerical accuracy R can reach. ( ) thus,

goes to infinity, which will cause a problem when maximizing the marginal log li ehhood

function. Meanwhile, (x)) produces a missing value issue. In practice, i(( ))

equal to L when z > 35 (See Silverman and Johnstone (2005)[2]). In the original code of
EbayesThresh, the missing value issue is solved by the above approximation. To avoid issues

due to infinite values, I approx1mate (3‘" by ¢(35 when x > 35.

is approximately

postmean.laplace The posterior mean wy,s: - fm(2; S, @) is calculated. i, (z; s, a) in Equa-
tion (2.8) can be written as

2@ $—820/
tm(2;5,0) = 2 — as® S ~) -1 (2.11)
q)(z—SSQa) + 62a$¢)(m+j2a)

for calculation in R.

When s or a is large, (ID(“_TS%) and @(%‘92‘1) might go to zero, which will generate missing
value of the posterior mean. To avoid issues due to missing values, I approximate ®(z) by
®(—35) when < —35 and ®(x) by ®(35) when x > 35.

postmed.laplace Posterior median in Equation (2.10) is calculated. We can derive the
posterior median from Equation (2.10) if posterior median is positive:

o Falple, ) = 5
T G (L= w)lo(2) +w- g(x:s,a)

g 2 =~ gy

emard(L=sta) | ponp(ztsla) 2wg(z; s,a) (2.12)
(U )11t (e, a)) Lo (E)
Su=1x—sa—s® (z(z,s))

in which )
2(z,8) = a (w ™ + B(a; s, a))éqﬁ(m _SS a). (2.13)

As “”_TSQG — 00, z(z,s) converges to % This approximate value of z(z,s) will be used

¢ is larger than 25 lest 3(z, s) become infinity and ¢(*=-* *a) g0 to zero. Notice that

when %



when wpest < %, z(x, s) can be larger than 1. Therefore,

pa(z, s) = max{0,z — s*a — s® ' (min{1, z(z, 5)}). (2.14)

tfromw(prior="‘laplace’) When z — s’a — s®'(2(z,s)) < 0, the posterior median will
be set to zero. Thus, there is a posterior median threshold ¢(s,w, a) such that the estimate
of p is zero whenever |z| < t(s,w,a). This threshold, ¢, satisfies

0=1t—s’a—sb'(z(t,s)) (2.15)

t — sa

S0 ) = (L, 5). (2.16)

S

Given s, w and a, the left hand side of Equation (2.16) goes to 1 and the right hand
side goes to 3 as we have discussed above when ¢ — co. Besides, z(0,s) > @(_82“) and the
equality holds iff w = 1. Thus, either there will be at least one solution approximately in the
region (0, 25s + s?a) or the threshold should be zero. The solution of Equation (2.16) can be
found by binary search in the interval [0, 25s + s?a]. In contrast to the original analysis with
homogeneous variance in Johnstone and Silverman (2004)[1], the threshold might vary by
observation j since the standard deviation of observations might be different, which means

t; is not necessarily equal to ¢; if s; # s;.

wfromt (prior=‘laplace’) The weight w can be derived in terms of ¢, s and a from the
above formula:

w(t,s,a) = (asig%;:)) — B(t; s,a)>_ : (2.17)

w is well defined in [0, 1] and monotonically declines with ¢ given s and a. Note that w
defined above might be different for different threshold and standard deviation.

wandafromx w and a will be estimated by maximizing marginal log likelihood in the empirical
bayes sense. The marginal log likelihood is as mentioned in Equation (1.7)

Ww,alXj, 85,5 ={1,2,---,n}) = Xn:log((l —w)fn(X5;0,85) + wg(Xj;s5,a))  (2.18)
i=1

which is the same as to maximize

Zlog(l + wh(xy; s4,a)). (2.19)

We can either search the optimal w and a directly by maximizing the marginal log
likelihood above or search with constraints on threshold. If searching with constraints, each



threshold ¢; is upper bounded by universal threshold, 0 < ¢; < s;4/2log(n), which does not
allow a very large probability mass at zero. Thus, w is constrained by the intersection of the
range of w(t;, s;,a) in Equation (2.17) in terms of domain of ¢;, s; and a, for j = 1,2,--- ,n

we Wia,sj,j=1{1,2, ﬂ{w tj,s5,a) 1 0 <t; <s;v/2log(n)}. (2.20)

Thus, the optimization problem is

maxz log(1 + wpB(x;; si,a))

(2.21)
st.we Wla,s;,j={1,2, ﬂ{w tj,sj,a):0<t; <sjy/2log(n)}.
Wia,s;,j=1{1,2,--- ,n}) can be simplified in terms of the monotonically negative rela-
tionship between w and t given s and a. Since ¢; lies in the interval [0, s;1/2log(n)],
W(a78j7j = {17 27 T 7”}) = [ max U)( 2109( ) 8j7a)7 1] (222)

7=1,2,-

wfromx If value of a is provided, a general method to find the optimal w would be to find
the root of S(w) = 0 (Silverman and Johnstone (2005)[2]) with

S(w Z Blai; 5i, (2.23)

1 + w/B SC’L? SZ7 a)

in the searching region [max;—i .., w(sjy/2log(n),s;,a),1] as discussed above. S(w) is a
decreasing function of w so the root can be found through a binary search. If there is no
root within the region, a boundary solution will be taken|[2].



3 Experiment

3.1 Accuracy of Parameter Estimation

We first test the efficiency of EbayesThresh by estimating Laplace parameter a and non-null
weight w under the actual model. Consider a data sequence of which each effect is drawn

from

o~ (L= w)do(p) + wya(p) (3.1)
as in Equation (1.3). The true effect u; of subject i is observed with noise from a normal
distribution N (0, s?), with s? ~ x}. The goal is to see if estimates of w and a will be close
to the true values.

The authors mentioned a reasonable range for a would be between 0.04 and 3[2]. From
Figure 1, we can find that when a is small the variation is too large to provide effective
estimation; when a is large, the variation is very small so that the effect perhaps should be
treated as null. We will consider a to be between 0.04 and 3 here as well.

Figure 1: Laplace density with mean zero and different scale parameters
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We estimate w and a from a data sequence of size 10,000 sampled through the above
process. Estimation results w and a of different true values of w and a are shown in Figure 2.
Panel (a) - (b) show estimation with constraint on weight as in Equation (2.22) and Panel
(c) - (d) show estimation without constraint, in which case w € [0, 1]. The result shows that
estimates of w and a tends to be larger than the true values. The two results with/without
constraints are very close to each other, ceteris paribus, when weight is large. However, both



the weight and Laplace parameter are overestimated when the true value of weight is small
due to the constraint.

Figure 2: Estimation of weight w and Laplace parameter a in the actual model

Estimates of weight are plotted over true weight given different Laplace parameters a and estimates of a
are plotted over true parameters given different weight. Panel (a) - (b) shows estimation with constraint on
weight while Panel (c) - (d) shows estimation without constraint on weight. The black line is y = .

(a) Weight estimates w/ constraint (b) Laplace parameter estimates w/ constraint
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(c) Weight estimates w/o constraint (d) Laplace parameter estimates w/o constraint
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3.2 Performance

Next, we discuss the performance of EbayesThresh with heterogeneous variance and con-
straint on weight when dealing with data with noises from heterogeneous variance. Consider
a data sequence of 2,000 observations with m null effects and 2,000 — m effects drawn from
N(0,1). Each true effect y; is observed with noise drawn from a normal distribution N (0, s7),
with s? ~ x2. In this case, the expected mean squared error is 1 if using naive estimator -

10



the observations, X -

Here we consider the number of null effects m = 0,5, 10, 20, 40, 80, 160, 320, 640, 1280,
and 2000 in the following analysis.

The performance of posterior median p,; and posterior mean pu, as estimators of true
effects with noises of heterogeneous variance is shown in Figure 3. Observations with larger
standard deviation tend to have posterior estimates closer to zero. It is intuitively reasonable
since larger standard deviation means more uncertainty and less information and, thus,
posterior estimates will be closer to the prior, which is symmetric by y axis. It can also be
observed through the increasing gap between threshold and standard deviation with standard
deviation shown in Figure 4. When the proportion of null effects is large, the threshold tends
to be much larger than the standard deviation and, thus, observations with larger standard
deviation given large proportion of null effects tend to have posterior median of zero.

Figure 4: Threshold versus standard deviation

Estimated threshold is plotted versus standard deviation for different proportion of null effects. Panel (b)
zooms in those curves of small proportion of null effects. The dashed line in panel (a) shows y = z.

(a) For all groups of proportion of nulls (b) For groups with small proportion of nulls
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To see how easing the restriction of homogeneous standard deviation improves the estima-
tion, we compare mean squared error (MSE) and mean absolute error (MAE) over different
proportion of null effects with different restrictions on standard deviation. Three different
standard deviations are passed to the model: i) homogeneous standard deviation measured
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Figure 3: Posterior estimates of true effects

The posterior mean and median are compared with true effects across different proportion of null effects.
Non-zero effects are initially drawn from N(0,1). True effects are observed with noise from N (0, s?),

52 ~ x2. The black line shows y = . The estimation results of m = 0, 10, 80, 640, and 2000 (corresponding
to proportion 0,0.005,0.04,0.32 and 1) are plotted every 10 data points to make the trend clearer. For
example, the sequence of the 10t",20%" ... of the observations are chosen. Mean squared error(MSE) and
mean absolute error(MAE) are shown in each panel.
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by median absolute deviation (MAD) of the observations, ii) homogeneous standard devi-
ation measured by mean of the true standard deviations, and iii) the true heterogeneous
standard deviations. For each proportion of null effects and each standard deviation, we
calculate MSE and MAE 100 times and then take the average. Figure 5 shows results for
both posterior mean and posterior median as posterior estimator.

Figure 5: Comparison of models with/without restriction on homogeneous standard devia-
tion in terms of MSE/MAE

MAE and MSE of posterior mean and median under different model assumptions are plotted over
proportion of null effects. For example, the top-left panel plots the MAESs using posterior mean as posterior
estimator of three models with/without restriction on homogeneous standard deviation.

Posterior Mean Posterior Median
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0.0- === Heterogeneous
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Mean
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Prop. of Nulls

The expected value of mean squared error of naive estimator is 1 (Equation (3.2)) and
we can see all methods provide a MSE smaller than 1 using posterior mean as estimator at
the bottom-left panel in Figure 5. The model with heterogeneous standard deviation excels
at controlling error measured in terms of MSE. The MSE of estimates under heterogeneous
standard deviation are much smaller than those with restriction of a homogeneous standard
deviation assumption. Using mean of the true standard deviations as the standard deviation
under homogeneity assumption provides more information than none so the corresponding
MSE is lower than that using MAD of the observations as the standard deviation. We also
calculate MSE based on posterior median and MAE based on posterior mean and median,
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and the corresponding plots are shown in Figure 5. We can find similarly posterior median
provides much smaller MAE under the model with heterogeneous standard deviation.

Another thing of interest is whether posterior mean would be more robust than posterior
median in terms of MSE and posterior median performs better than posterior mean in terms
of MAE. Figure 6 compares the MAE and MSE of posterior mean and median under model
with heterogeneous standard deviation. Posterior median performs much better than poste-
rior mean in terms of MAE when the proportion of null effects is large. Meanwhile, posterior
mean outperforms posterior median using error measure of MSE when the proportion of null
effects is small.

Figure 6: Comparison of performance of posterior mean/median under models with hetero-
geneous variance in terms of MSE(MAE)

MAE and MSE of posterior mean and median under model with heterogeneous standard deviation are
plotted over proportion of null effects. For example, the left panel plots the MAEs of the two posterior
estimators under models without restriction on homogeneous standard deviation.
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We now consider a more extreme case to see if the method is still effective when there
are more observations with poor measurement precision (standard deviation of noises). We
simulate 200 data points with true effects from

11~ 0.580() + 0.5N (1: 0, 1). (3.3)

The first half of the observations have precise measurement (standard error s; = 1) and the
second half are observed with large noises (standard error s; = 10).

In this example, little information is provided by data points with poor precision and we
would expect an effective method to provide a same result as if there are no poor observa-
tions. Repeat the above simulation for 100 times. Figure 7 compares estimation of Laplace
parameter a, weight w and MSE of combined data with both good and poor precision versus
data with good precision only. The estimates of Laplace parameter a tend to be larger when

14



we have both precise and poor data points. However, the estimations of weight and MSE
are very similar in both cases, which shows the effectiveness of the method.

Figure 7: Robustness of varying precision

Panel (a) - (c) shows the estimates of Laplace parameter a, weight w and MSE from combined data and
good-precision data only.
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To better understand the overestimation of Laplace parameter a in Figure 7, we repeat
the above analysis without the constraint on weight. In this case, the estimates of Laplace
parameter, weight and MSE are nearly the same using combined data or good-precision data
only (Figure 8). One thing worth mentioning is the potential positive relation between the
estimates of weight and Laplace parameter. For example, suppose the weight is overesti-
mated. In order to compensate for the bias due to underestimation of the quantity of null
effects, the estimated variance of Laplace distribution is expected to be smaller so that it
is more likely to observe effects close to zero from the Laplace distribution. Therefore, a is
expected to be larger as the variance of Laplace distribution defined in Equation (1.4) is a%
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The scattering estimated weights in [0, 1] might be a result of multiple optimal solutions of
a combination of a¢ and w when maximizing the marginal likelihood, due to the potential
positive relation between a and w.

When adding lower bound on the weight, the weight estimates might take the lower
boundary value when the corresponding estimates without constraint are small. However,
the different shapes of the marginal log likelihood functions of combined data and good-
precision data given a same weight might cause the Laplace parameter estimates to be larger
for combined data. This in some respects explains the similarity of weight estimates and the
difference of Laplace parameter estimates in Figure 7 when estimating with constraint on
weight.

Figure 8: Robustness of varying precision w/o constraint on weight

Panel (a) - (c) shows the estimates of Laplace parameter a, weight w and MSE from combined data and
good-precision data only.
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3.3 Discussion of Constraint on Weight

One question would be how the constraint on weight (Equation (2.22)) influences the weight
estimation, and indirectly the MSE. Due to the constraints on threshold, we would expect
the estimated weight not to be smaller than the true weight. We have already shown the
potential influence on weight and Laplace parameter estimation in Figure 2. Since the
constraint does not allow a too small weight, it reduces accuracy by overestimating weight of
non-zero effects when the proportion of null effects is large. Figure 9 shows that the weight
estimation is hardly biased when the non-zero weight is large but deviates from the true
weight otherwise.

Figure 9: Comparison of estimated weight with/without constraints on weight
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However, when the proportion of null effects is large, the MSE is rather small and the
increase in error due to a biased weight estimator is negligible (see the bottom-left panel in
Figure 10). The same result is observed for MAE with posterior median at the top-right
panel in Figure 10. We have shown in Figure 4 that the threshold tends to be larger than
standard deviation when the proportion of null effects is large. Thus, even if the weight is
poorly estimated, the shrinkage might still works efficiently. The MSE calculated based on
posterior median and the MAE based on posterior mean are also shown in Figure 10.

Figure 11 shows the proportion of MSE(MAE) with constraint on weight to that without
constraint. We can find MSE(MAE) is hundreds of times larger with constraint on weight
when the proportion of nulls is large, though the absolute value of MSE(MAE) doesn’t differ
much with or without constraint.
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Figure 10: Comparison of MSE(MAE) with/without constraint on weight

MSE(MAE) of posterior mean and median are calculated under model with/without constraint on weight.
For example, the top-left panel shows the MAE using posterior mean as posterior estimator under model
with/without constraint on weight.
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Figure 11: Proportion of MSE(MAE) with constraint on weight to that without constraint
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4 Conclusions

We expand the model under assumption of noises of homogeneous variance in Johnstone
and Silverman (2004)[2] into a heterogeneous case. The model with heterogeneous standard
deviation gives estimates close to the true values when the non-null weight is large under the
actual model. This ease of restriction on standard deviation improves the model estimation
in terms of MSE and MAE. The MSE tends to be smaller for data with larger proportion
of null effects. Posterior mean is more robust than posterior median in terms of MSE and
posterior median outperforms posterior mean in terms of MAE.

We also discuss the potential bias due to the constraint on weight in the setting of
EbayesThresh. The range of the threshold is assumed to be [0, /2log(n)] in the original ho-
mogeneous case and is extended to [0, s;4/2log(n)] for each threshold ¢; given heterogeneous
standard deviation. This constraint is shown to largely overestimate weight of non-zero ef-
fects when the proportion of null effects is large because the upper bound on threshold does
not allow a too small weight. However, this constraint does not influence MSE and MAE
much in terms of absolute value.
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