
Bayesian Multiple Imputation for Categorical Data

via Latent Class Models

Quanli Wang, Daniel Manrique-Vallier, Jerome P. Reiter, Jingchen Hu

1 Introduction

Many data sets comprise large numbers of exclusively categorical variables subject to item
nonresponse. Faced with such item nonresponse, one approach is multiple imputation (Ru-
bin 1987), in which the missing items are filled in by sampling repeatedly from predictive
distributions. This creates M > 1 completed datasets that can be analyzed or disseminated
to others.

This package implements a fully Bayesian, joint modeling approach to multiple impu-
tation for categorical data based on latent class models. The idea is to model the implied
contingency table of the categorical variables as a mixture of independent multinomial dis-
tributions, estimating the mixture distributions with truncated Dirichlet process prior dis-
tributions. Mixtures of multinomials can describe arbitrarily complex dependencies and are
computationally expedient, so that they are effective general purpose multiple imputation
engines. In contrast to other approaches based on loglinear models or chained equations, the
mixture models avoid the need to specify (potentially many) models, which can be a time
consuming task with no guarantee of a theoretically coherent set of models. The package also
allows for structural zeros, i.e., certain combinations of variables are not possible a priori.
For example, in the United States it is impossible for children to be married. The package
is based on the models described in Si and Reiter (2013) and Manrique-Vallier and Reiter
(2014). We note that the package assumes that data are missing at random.

The package includes imputation routines for two settings. The first routine is for data
without any structural zeros, i.e., impossible combinations of variables known to have prob-
ability zero (Si and Reiter 2013). The second routine is for data with structural zeros
(Manrique-Vallier and Reiter 2014). The second routine is computationally more intensive
than the first routine. Hence, we advise analysts to use the first routine when possible.

The input is a dataset including only categorical variables with missing values, as well
as an optional set of structural zeros. The output includes M multiply-imputed versions of
the completed dataset, where the user selects M . Other aspects of the model fitting also are
available, as described in the accompanying R help files.
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2 The Imputation Model

Suppose that we have a sample of n individuals measured on J categorical variables. Each
individual has an associated response vector xi = (xi1, xi2, ..., xiJ), whose components take
values from a set of Lj levels. For convenience, we label these levels using consecutive

numbers, xij ∈ {1, ..., Lj}, so that xi ∈ C =
∏J

j=1
{1, ..., Lj}. Note that C includes all

combinations of the J variables, including structural zeros, and that each combination x

can be viewed as a cell in the contingency table formed by C. Let xi = (xobs
i ,xmis

i ), where
xobs

i includes the variables with observed values and xmis
i includes the variables with missing

values. Finally, let S = {s1, . . . , sC}, where sc ∈ C and c = 1, . . . , C < |S|, be the set of
structural zero cells, i.e., Pr(xi ∈ S) = 0.

2.1 Latent Class Model: No Structural Zeros

As an initial step, we describe the Bayesian latent class model without any concerns for
structural zeros and without any missing data, i.e., xi = xobs

i . This model is a finite mixture
of product-multinomial distributions,

p(x | λ,π) = fLCM(x|λ,π) =
K∑

k=1

πk

J∏

j=1

λjk[xj], (1)

where λ = (λjk[l]), with all λjk[l] > 0 and
∑Lj

l=1
λjk[l] = 1. Here, π = (π1, . . . , πK) with∑K

k=1
πk = 1. This model corresponds to the generative process,

xij | zi

indep
∼ Discrete1:Lj

(λjzi
[1], . . . , λjzi

[Lj]) for all i and j (2)

zi | π
iid
∼Discrete1:K(π1, . . . , πK) for all i. (3)

As notation, let (X ,Z) be a sample of n variates obtained from this process, with X =
(x1, . . . ,xn) and Z = (z1, . . . , zn). For K large enough, (1) can represent arbitrary joint
distributions for x. And, using the conditional independence representation in (2) and (3),
the model can be estimated and simulated from efficiently even for large J .

For prior distributions on π, we use

λjk[·]
indep
∼ Dirichlet(1Lj

) (4)

πk = Vk

∏

h<k

(1 − Vh) (5)

Vk
iid
∼Beta(1, α) for k = 1, . . . , K − 1; VK = 1 (6)

α ∼ Gamma(.25, .25) (7)

The prior distributions in (4) are equivalent to uniform distributions over the support of the
J×K multinomial conditional probabilities and hence represent vague prior knowledge. The
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prior distribution for π in (5) – (7) is an example of a finite-dimensional stick-breaking prior
distribution. It typically allocates Z to fewer than K classes, thereby reducing computation
and avoiding over-fitting.

Accounting for missing data is straightforward in the MCMC. Conditional on draws of the
parameters and latent class indicators, each value in xmis

i is independent of xobs
i . Thus, one

can impute any missing xij from the corresponding multinomial distribution in (2). Given a
completed dataset, one then updates the parameters and latent class indicators from their
full conditional distributions. For details, see Si and Reiter (2013).

To obtain M completed datasets for use in multiple imputation, analysts select M of the
sampled xmis after convergence of the Gibbs sampler. These datasets are spaced sufficiently
so as to be approximately independent (given xobs). This involves thinning the MCMC
samples so that the autocorrelations among parameters are close to zero.

2.2 Truncated Latent Class Model: Some Structural Zeros

The latent class model in (1) does not naturally specify cells with structural zeros a pri-

ori, because it assumes a positive probability for each cell. Thus, to represent tables with
structural zeros, we need to truncate the model so that

fTLCM(x | λ,π, S) ∝ 1{x /∈ S}

K∑

k=1

πk

J∏

j=1

λjk[xj]. (8)

Obtaining samples from the posterior distribution of parameters (λ,π), conditional on a
sample X 1 = (x1, ...,xn), can be greatly facilitated by adopting a sample augmentation
strategy. We consider X 1 to be the portion of variates that did not fall into the set S from
a larger sample, X , generated directly from (1). Let n0, X

0, and Z0 be the the (unknown)
sample size, response vectors, and latent class labels for the portion of X that did fall into S.
If p(N) ∝ 1/N , where N = n0 + n, the posterior distribution of (λ,π) under the truncated
model can be obtained by integrating the posterior distribution under the augmented sample
model over (n0,X

0,Z0,Z1).
This package converts the model into a multiple imputation engine when some items are

missing at random. The basic strategy uses a Gibbs sampler. Given a completed dataset
(xobs,xmis), we take a draw of the parameters using the algorithm from Manrique-Vallier
(2014). Given a draw of the parameters, we take a draw of xmis, trimming the support of
the full conditional distribution of xij from {1, ..., Lj} to only values that avoid xi ∈ S, given
current values of {xij′ : all j′ 6= j}.

To obtain M completed datasets for use in multiple imputation, analysts select M of the
sampled xmis after convergence of the Gibbs sampler. These datasets are spaced sufficiently
so as to be approximately independent (given xobs). This involves thinning the MCMC
samples so that the autocorrelations among parameters are close to zero.
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