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Summary

1. Discrete-time hidden Markov models (HMMs) have become an immensely popular
tool for inferring latent animal behaviors from telemetry data, largely because they are
relatively fast and easy to implement when data streams are observed without error
and at regular time intervals. While movement HMMSs typically rely solely on location
data, auxiliary biotelemetry and environmental data are powerful and readily-available
resources for incorporating much more behavioral realism and inferring ecological re-
lationships that would otherwise be difficult or impossible to infer from location data
alone. However, there is a paucity of generalized user-friendly software available for
implementing (multivariate) HMMs of animal movement. Furthermore, location mea-
surement error, temporal irregularity, and other forms of missing data are often perva-
sive in telemetry studies (particularly in marine systems).

2. Here we provide a guide to using an open-source R package, momentuHMM version
1.5.4, that addresses many of the deficiencies in existing software. Features for mul-
tivariate HMMs in momentuHMM (pronounced “momentum”) include: 1) tools for data
pre-processing and visualization; 2) user-specified probability distributions for an un-
limited number of data streams and latent behavior states, such as those based on
location (e.g., step length, turning angle) and auxiliary biotelemetry data (e.g., from
pressure, conductivity, heart rate, or motion sensors); 3) biased and correlated ran-
dom walk movement models, including “activity centers” associated with attractive or
repulsive forces; 4) user-specified design matrices and constraints for covariate mod-
elling of initial distribution, state transition probability, and probability distribution
parameters using linear model formulas familiar to most R users; 5) multiple impu-
tation methods that account for observation error attributable to measurement error
and temporally-irregular or missing data; 6) seamless integration of spatio-temporal
covariate raster data; 7) cosinor and spline regression formulas for cyclical (e.g., daily,
seasonal) and other complicated patterns; 8) discrete individual-level random effects on
state transition probabilities; 9) hierarchical hidden Markov models for data streams
and/or state switching at multiple time scales; 10) “recharge” models for an aggregated
physiological process associated with state switching in heterogeneous environments;
11) model checking and selection; and 12) data simulation capabilities for study design,
power analyses and assessing model performance, including simulation of location data

subject to movement constraints (e.g. land for marine animals), temporal irregularity,



and/or measurement error.

3. After providing a brief introduction to (multivariate) HMMs for telemetry data, we
demonstrate some of the capabilities of momentuHMM using real-world examples. This
brief tutorial includes workflows for data formatting, model specification, model fitting,
and diagnostics.

4. While many of the features of momentuHMM were motivated by animal movement
data, the package can be used for analyzing any type of data that is amenable to (mul-
tivariate) HMMs. Practitioners interested in additional features for momentuHMM are

encouraged to contact the authors.
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1 Introduction

Discrete-time hidden Markov models (HMMs) have become immensely popular for the
analysis of animal telemetry data (e.g. Morales et al. 2004; Jonsen et al. 2005; Langrock
et al. 2012; McClintock et al. 2012). In short, an HMM is a time series model composed
of a (possibly multivariate) observation process (Zy, ..., Zr), in which each data stream
is generated by N state-dependent probability distributions, and where the unobserv-
able (hidden) state sequence (S; € {1,...,N},t =1,...,T) is assumed to be a Markov
chain. The state sequence of the Markov chain is governed by (typically first-order)
state transition probabilities, ’yi(w =Pr(Sy1 =715 =i) fori,j=1,...,N, and an

initial distribution 8. The likelihood of an HMM can be succinctly expressed using

the forward algorithm:
L= 6(0)F(1)P<Z1)F(2)P(Z2)F(3) tee F(T_I)P(ZT_l)I‘(T)P(ZT>].N, (].)

where T®) = (%(]t)> is the N x N transition probability matrix, P(z;) = diag(pi(z¢), - .., pn(2t)),
ps(z;) is the conditional probability density of Z; given S; = s, and 1% is a N-vector of



ones (for a thorough introduction to HMMs see Zucchini et al. 2016).

One of the most common discrete-time animal movement HMMs for telemetry loca-
tion data is composed of two data streams, step length and turning angle (or bearing),
which are calculated for each of the T" time steps from the temporally-regular obser-
vations of an animal’s position, (x4, y;), for t = 1,...,7 4+ 1 (e.g. Morales et al. 2004;
Langrock et al. 2012; McClintock et al. 2012). Step length () is typically calculated as
the Euclidean distance between the locations (x;,y;) and (2411, y¢+1), while turning an-
gle (¢;) is calculated as the change in bearing (b, = atan2(y;+1 — ys, Tr+1 — o)) between
the intervals [t —1,¢] and [t,t+1] (e.g. ¢+ = 0if by_; = b;). For this HMM composed of
2 data streams, z; = (l;, ¢;), and, conditional on the latent state .S;, independent proba-
bility distributions are typically assumed for each stream; that is, ps(z;) = ps(l)ps(o¢).
Some common probability distributions for the step length data stream are the gamma
or Weibull distributions, while the wrapped Cauchy or von Mises distributions are of-
ten employed for turning angle or bearing. For a fitted HMM, the Viterbi algorithm is
used to compute the most likely sequence of underlying states (Zucchini et al. 2016).
In movement HMMs, the states are often considered as proxies for animal behaviour.

While HMMs for animal movement based solely on location data are somewhat
limited in the number and type of biologically-meaningful movement behavior states
they are able to accurately identify, advances in biologging technology are now allowing
the collection of valuable auxiliary biotelemetry data (e.g., dive activity, accelerometer,
heart rate, stomach temperature), which, when combined with location data, allow for
multivariate HMMs that can incorporate much more behavioral realism and facilitate
inferences about complex ecological relationships that would otherwise be difficult or
impossible to infer from location data alone (e.g. McClintock et al. 2013; DeRuiter
et al. 2017; McClintock et al. 2017). Multivariate HMMs that utilize both location and
auxiliary biotelemetry data can facilitate the identification of additional states that go
beyond the N = 2 state approaches that are most frequently used by practitioners. For
example, the most widely used 2-state HMMs for animal movement include “encamped”
(or “foraging”) and “exploratory” (or “transit”) states characterized by area-restricted-
search-type movements (shorter step lengths with little to no directional persistence)
and migratory-type movements (longer step lengths with high directional persistence),
respectively (Morales et al. 2004; Jonsen et al. 2005). However, very different behav-

iors can exhibit similar horizontal trajectories. For example, for herbivores such as



North American elk (Morales et al. 2004) or central-place foragers such as harbour
seals (McClintock et al. 2013), the horizontal trajectories of “resting” and “foraging”
movements can be very difficult to distinguish. Standard 2-state HMMs based solely
on horizontal trajectory will tend to lump these behaviors together, and this could
have unintended consequences if, for example, one intends to use the estimated state
sequences to identify foraging habitat. In order to tweeze apart distinct behaviors with
similar horizontal trajectories, additional states can be informed by auxiliary informa-
tion (such as mandible accelerometer or dive data), incorporated as additional data
stream(s) in a multivariate HMM.

When data streams are observed without error and at regular time intervals, a major
advantage of HMMs is the relatively fast and efficient maximization of the likelihood
using the forward algorithm (Eq. 1). However, location measurement error is rarely
non-existent in animal-borne telemetry studies and depends on both the device and
the system under study. For example, GPS errors are typically less than 50m, but
Argos errors can exceed 10km (e.g. Costa et al. 2010). An extreme case of missing
data can arise when location data are obtained with little or no temporal regularity, as
in many marine mammal telemetry studies (e.g. Jonsen et al. 2005), such that few (if
any) observations align with the regular time steps required by discrete-time HMMs.
When explicitly accounting for uncertainty attributable to location measurement error,
temporally-irregular observations, or other forms of missing data, one must typically
fit (multivariate) HMMs using computationally-intensive (and often time-consuming)
model fitting techniques such as Markov chain Monte Carlo (Jonsen et al. 2005; Mc-
Clintock et al. 2012). However, complex analyses requiring novel statistical methods
and custom model-fitting algorithms are not practical for many practitioners.

While statisticians have been applying HMMs to telemetry data for decades, R
(R Core Team 2017) packages such as bsam (Jonsen et al. 2005), moveHMM (Michelot
et al. 2016), and swim (Whoriskey et al. 2017) have recently helped make these mod-
els of animal movement behavior more accessible to the practitioners that are actually
conducting telemetry studies. These advances represent important steps toward mak-
ing HMMs of animal movement more accessible, but the models that can currently
be implemented using existing software remain limited in many key respects. For ex-
ample, existing HMM software for animal movement is limited to two data streams

based solely on location data (e.g. step length and turning angle), and while moveHMM



allows for a user-specified number of latent behavioral states (bsam and swim are lim-
ited to N = 2 states), it is typically difficult to identify >2 biologically-meaningful
behavior states from only 2 data streams (e.g. Morales et al. 2004; Beyer et al. 2013;
McClintock et al. 2014). Both moveHMM and swim are designed for temporally-regular
(or linearly-interpolated) location data with negligible measurement error, but the re-
alities of animal-borne telemetry often yield temporally-irregular location data subject
to error (particularly in aquatic environments). Other notable deficiencies of exist-
ing software include limited abilities to incorporate spatio-temporal environmental or
individual covariates on parameters, biased (or directed) movements in response to at-
tractive or repulsive forces (e.g. McClintock et al. 2012; Langrock et al. 2014), cyclical
(e.g. daily, seasonal) and other more complicated behavioral patterns, or constraints
on parameters.

To address these deficiencies in existing software, we developed a user-friendly R
package, momentuHMM (Maximum likelihood analysis Of animal MovemENT behavior
Using multivariate Hidden Markov Models), intended for practitioners wishing to im-
plement more flexible and realistic (multivariate) HMM analyses of animal movement
while accounting for common challenges associated with telemetry data (McClintock
& Michelot 2018). Features for multivariate HMM analyses in momentuHMM include: 1)
tools for data pre-processing and visualization; 2) user-specified probability distribu-
tions for an unlimited number of data streams and latent behavior states; 3) biased
and correlated random walk movement models, including “activity centers” associated
with attractive or repulsive forces (e.g. McClintock et al. 2012); 4) user-specified de-
sign matrices and constraints for covariate modelling of state transition probability
and probability distribution parameters using linear model formulas familiar to most R
users; 5) multiple imputation methods that account for observation error attributable
to measurement error and temporally-irregular or missing data (Hooten et al. 2017;
McClintock 2017); 6) seamless integration of spatio-temporal environmental covariate
data (e.g., wind direction, forest cover, sea ice concentration) using the raster package
(Hijmans 2016b); 7) cosinor (e.g. Cornelissen 2014) and spline regression formulas for
cyclical and other complicated behavioral patterns; 8) discrete individual-level random
effects on state transition probabilities (e.g. DeRuiter et al. 2017); 9) hierarchical hidden
Markov models (e.g. Leos-Barajas et al. 2017; Adam et al. 2019) for data streams and/or

state switching at multiple time scales; 10) “recharge” models for an aggregated physi-



ological process associated with state switching in heterogeneous environments (Hooten
et al. 2019); 11) model checking and selection; and 12) data simulation capabilities for
study design, power analyses and assessing model performance, including simulation of
location data subject to movement constraints (e.g. land for marine animals), temporal
irregularity, and/or measurement error.

In the following tutorial, we demonstrate some of the capabilities of momentuHMM
using real-world examples, including an example of periodic cycles in African elephant
movement, a 3-state (“resting”, “foraging”, “transit”) northern fur seal example in-
corporating auxiliary dive activity data (McClintock et al. 2014), a loggerhead turtle
example relating “foraging” and “transit” movements to ocean surface currents, a 5-
state grey seal example incorporating biased movements toward haul-out and foraging
locations (McClintock et al. 2012), a 4-state (“outbound”, “searching”, “foraging”, “in-
bound”) southern elephant seal example with biased movements toward and away from
a colony (Michelot et al. 2017), a 3-state (“resting”, “foraging”, “transit”) harbour
seal example using population-level constraints on movement parameters (McClintock
et al. 2013), a 6-state northern fulmar example incorporating biased movements relative
to both static (i.e. colony) and dynamic (i.e. fishing vessels) activity centers (Pirotta
et al. 2018), a 4-state long-finned pilot whale example including individual-level random
effects on state transition probabilities (Isojunno et al. 2017), and hierarchical HMMs
fitted to harbor porpoise, garter snake, Atlantic cod, and horn shark data (Leos-Barajas
et al. 2017; Adam et al. 2019), and a recharge dynamics model for African buffalo move-
ments in a heterogeneous environment (Hooten et al. 2019). Using simulated data, we
also demonstrate how the group dynamic model of Langrock et al. (2014) can be imple-
mented using momentuHMM. Finally, we demonstrate how to simulate movement subject
to barriers or other constraints (e.g. land for marine animals) using potential functions
(e.g. Brillinger et al. 2012). This brief tutorial includes workflows for data format-
ting, model specification, model fitting, and diagnostics. While many of the features
of momentuHMM were motivated by animal movement data, the package can be used
for analyzing any type of data that is amenable to (multivariate) HMMs. Additional
information, including help files, data, examples, and package usage is available by
downloading the momentuHMM package from CRAN (https://cran.r-project.org) or
GitHub (https://github.com/bmcclintock/momentulMM). We ask that users please
submit bug reports, questions, and other issues to GitHub (https://github.com/
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Table 1. Workhorse functions for the R package momentuHMDM.
Function Description
crawlMerge Merge crawlWrap output with additional data streams or covariates
crawlWrap Fit crawl models and predict temporally-regular locations
fitHMM Fit a (multivariate) HMM to the data
MIfitHMM Fit (multivariate) HMMs to multiple imputation data
MIpool Pool momentuHMM model results across multiple imputations
plot.crwData Plot crawlWrap output
plot.miSum Plot summaries of multiple imputation momentuHMM models

plot.momentuHMM
plot.momentuHMMData
plotPR

plotSat
plotSpatialCov
plotStates
plotStationary
prepData
pseudoRes
simData
simHierData
stateProbs
viterbi

Plot summaries of momentuHMM models

Plot summaries of selected data streams and covariates
Plot time series, qq-plots and sample ACF's of pseudo-residuals
Plot locations on satellite image

Plot locations on raster image

Plot the (Viterbi-)decoded states and state probabilities
Plot stationary state probabilities

Pre-process data streams and covariates

Calculate pseudo-residuals for momentuHMM models
Simulate data from a (multivariate) HMM

Simulate data from a (multivariate) hierarchical HMM
State probabilities for each time step

Most likely state sequence (using the Viterbi algorithm)

bmcclintock/momentulMM/issues). This article describes momentuHMM version 1.5.4.

2 momentuHMM overview

Before delving into some of the finer details, we will first provide an overview of the

main features and functions of momentuHMM (pronounced “momentum”). While space is

limited in this tutorial, further details on implementation can be found in the package’s

documentation and vignette.

The workhorse functions of momentuHMM are listed in

Table 1. Usage of several of these functions (e.g. fitHMM, prepData, simData) is

deliberately very similar to equivalent functions in moveHMM (Michelot et al. 2016) , but

the momentuHMM arguments for these functions have been generalized and expanded to

accommodate a more flexible framework for data pre-processing, model specification,

parameterization, and simulation. R users already familiar with moveHMM will therefore

likely find it easy to immediately begin using momentuHMM.
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One of the key features of momentuHMM is the ability to include an unlimited number
of HMM data streams (e.g. step length, turning angle, dive activity, heart rate) arising
from a broad range of commonly used probability distributions (e.g. beta, categorical,
gamma, normal, multivariate normal, Poisson, von Mises, Weibull), including (multi-
variate) normal random walks (section 2.6) that can be particularly useful for modeling
positions directly (instead of step lengths and turning angles). Any of the parameters of
the probability distributions used for the observed data can be modelled as a function of
environmental and individual covariates using link functions (Tables 2 and 3). For any
given “natural scale” (or “real scale”) probability distribution parameter 6, all of the
link functions (g) in momentuHMM are of the general form ¢(0) = Xy3y, where Xy is the
T x K design matrix (composed of K covariates) and (3, is the correponding K-vector
of “working scale” (or “beta scale”) parameters for 6. For example, suppose step length
is assumed to have a gamma distribution, [; | S; = s ~ gamma(us, o). In momentuHMM,
the natural scale parameters for the gamma distribution are the (state-dependent) step
length mean (ps > 0) and standard deviation (o5 > 0). Because both of these pa-
rameters must be positive, the log link function is a natural choice for modelling these
parameters as a function of covariates, e.g., log(pn) = X8, and log(o) = X,03,.

The state transition probabilities (I'®) and initial distribution (§”)) can also be
modelled as functions of covariates, using a multinomial logit link, as described e.g. by
Michelot et al. (2016). Permissable R classes for covariates include numeric, integer,
or factor. Factors can be particularly useful for specifying models with individual-
or group-level (e.g. sex or age class) effects on state transition and probability dis-
tribution parameters. Spatio-temporal covariates can also be of classes rasterLayer,
rasterStack, or rasterBrick (Hijmans 2016b), in which case momentuHMM automati-
cally extracts the appropriate covariate values from the raster based on the time and

location of each observation (see example in section 3.3).

2.1 Data preparation and visualization

For temporally-regular location data with negligible measurement error, the prepData
function is used to create a momentuHMMData object that can be used for data visual-

ization and further analysis. The arguments for prepData include:

e data A data frame with 7'+ 1 rows including optionally a field ‘ID’ (identifiers

for different individuals), coordinates from which step length (‘step’) and turning

10



Table 2. Univariate data stream (z) probability distributions, natural parameters, and
default link functions for covariate modelling. If user-specified parameter bounds are provided,
then custom link functions are used instead of the defaults (see package documentation for
further details). If circular-circular regression is specified for the mean of angular distributions
(“vm” and “wrpcauchy”), then a link function based on Rivest et al. (2016) is used. Users
seeking additional univariate probability distributions are encouraged to contact the authors.

Distribution Support Parameters Link function!
Bernoulli (“bern”) 2 € 40,1} prob € (0,1) logit
Beta (“beta”) z € (0,1) shapel > 0 log
shape2 > 0 log
zero-mass € (0,1) logit
one-mass € (0,1) logit
Categorical (“cat”) z€{1,...,k} prob,,...,prob, , € (0,1) mlogit
Exponential (“exp”) 2z >0 rate > 0 log
zero-mass € (0,1) logit
Gamma (“gamma”) 2 >0 mean > ( log
sd >0 log
zero-mass € (0,1) logit
Log normal (“lnorm”) 2z >0 location € IR identity
scale > 0 log
zero-mass € (0,1) logit
Logistic (“logis”) z € R location € R identity
scale > ( log
Negative binomial (“negbinom”) 2z € {0,1,...} mu>0 log
size >0 log
Normal (“norm”) z € R mean € R identity
sd >0 log
Normal random walk (“rw_norm”) 2z, € R mean € R identity
sd >0 log
Poisson (“pois”) 2z €{0,1,...} lambda >0 log
Non-central t (“t”) 7z € R df >0 log
ncp € R identity
Von Mises (“vm”) 2 € (—m, 7] mean € (—m, 7] tan(mean/2)
concentration > 0 log
Von Mises (“vmConsensus”) 2 € (—m, 7] mean € (—, 7] Rivest et al.
kappa > 0 log
Weibull (“weibull”) 2 >0 shape > 0 log
scale > 0 log
zero-mass € (0,1) logit
Wrapped Cauchy (“wrpcauchy”) 2z € (—m, 7] mean € (—m, 7] tan(mean/2)
concentration € (0, 1) logit

!Link functions (g) relate natural scale parameters (6) to a T' x K design matrix (X) and K —vector
of working scale parameters (3 € RX) such that g(8) = X2.
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Table 3. Multivariate data stream (z) probability distributions, natural parameters, and
default link functions for covariate modelling. If user-specified parameter bounds are provided,
then custom link functions are used instead of the defaults (see package documentation for
further details). Users seeking additional multivariate probability distributions are encouraged

to contact the authors.

Distribution Support Parameters Link function!
Bivariate normal (“mvnorm2”) z; € R> mean.x € R identity
mean.y € R identity
sigma.x >0 log
sigma.xy € IR identity
sigma.y >0 log
Bivariate normal random walk (“rw_mvnorm2”) z, € IR* mean.x € IR identity
mean.y € R identity
sigma.x >0 log
sigma.xy € IR identity
sigma.y >0 log
Trivariate normal (“mvnorm3”) z; €IR® mean.x € R identity
mean.y € R identity
mean.z € R identity
sigma.x >0 log
sigma.xy € IR identity
sigma.xz € IR identity
sigma.y >0 log
sigma.yz € IR identity
sigma.z >0 log
Trivariate normal random walk (“rw_mvnorm3”) z, € R® mean.x € R identity
mean.y € R identity
mean.z € R identity
sigma.x >0 log
sigma.xy € IR identity
sigma.xz € IR identity
sigma.y >0 log
sigma.yz € IR identity
sigma.z > 0 log

Link functions (g) relate natural scale parameters (6) to a T' x K design matrix (X) and K —vector

of working scale parameters (3 € RX) such that g(8) = X2.

12



angle (‘angle’) data streams are to be calculated, any additional data streams,
and any covariates identified in the covNames and angleCovs arguments. Alter-

vatively, data can be a crwData object returned by crawlWrap.
type Coordinate type; ‘UTM’ if easting-northing or ‘LL’ if longitude-latitude.

coordNames Names of the two coordinate columns in data. If coordNames=NULL
then step lengths, turning angles, and any location-based covariates (i.e., those
specified by spatialCovs, centers, centroids, and angleCovs) are not calcu-

lated.

covNames Character vector indicating the names of any covariates in data. Any
variables in data (other than “ID”) that are not identified in covNames or angleCovs

are assumed to be data streams.

spatialCovs List of Raster-class objects (Hijmans 2016b) containing spatio-
temporally referenced covariates. Covariates specified by spatialCovs are ex-
tracted from the raster layer(s) based on the location data. Raster stacks may
also be included, in which case the appropriate z values (e.g. time, date) must

also be included in data.

centers 2-column matrix providing the coordinates for any activity centers (e.g.,
potential centers of attraction or repulsion) from which distance and angle covari-
ates will be calculated based on the location data and returned in the momentuHMMData

object.

centroids List where each element is a data frame containing the x-coordinates
(’x’), y-coordinates ('y’), and times for a centroid (i.e., a dynamic activity center
for which the coordinates can change over time) from which distance and an-
gle covariates will be calculated based on the location data and returned in the

momentuHMMData object.

angleCovs Character vector indicating the names of any circular-circular regres-
sion angular covariates in data or spatialCovs that need conversion from stan-
dard direction (in radians relative to the x-axis) to turning angle (relative to

previous movement direction).

13



Summary plots of the momentuHMMData object returned by prepData can be created
for any data stream or covariate using the generic plot function.

If location data are temporally-irregular or subject to measurement error, then they
are not suitable for prepData. In this case, momentuHMM can be used to perform a
2-stage multiple imputation approach (McClintock 2017). We discuss this pragmatic
approach to incorporating uncertainty attributable to observation error and temporal

irreglarity into multivariate HMM analyses in section 2.8.

2.2 HMM specification and fitting

Once a momentuHMMData object has been created using prepData, then the data are
ready to be passed to the generalized multivariate HMM-fitting function £itHMM. There
are many different options for specifying HMMs using fitHMM, so here we will only
focus on several of the most important and useful features (further details of all £itHMM
arguments are in the package documentation). The bare essentials of fitHMM include

the arguments:
e data A momentuHMMData object
e nbStates Number of latent states (V)
e dist A named list indicating the probability distributions of the data streams.

e estAngleMean An optional named list indicating whether or not to estimate the
angle mean for data streams with angular distributions (e.g. turning angle). If

not estimated (the default), the angle mean is fixed to 0.
e formula Regression formula for the transition probability covariates

e stationary Logical indicating whether or not the initial distribution is considered
equal to the stationary distribution (must be FALSE if formula includes time-

varying covariates)

e Par0 A named list containing vectors of starting values for the state-dependent

probability distribution parameters of each data stream

These seven arguments are all that are needed in order to fit the HMMs currently

supported in moveHMM (Michelot et al. 2016). For example, here is how the analysis of

14



15 “wild haggis” tracks described in Michelot et al. (2016) would be implemented using

momentuHMM:

library (momentuHMM)
rawHaggis<-read.csv("rawHaggises.csv")

processedHaggis<-prepData(data=rawHaggis,covNames=c("slope","temp"))

stepPar0 <- ¢(1,5,0.5,3)

anglePar0O <- ¢(0,0,1,8)
fitHaggis <- fitHMM(data

processedHaggis, nbStates = 2,

dist = list(step = "gamma", angle = "vm"),
Par0 = list(step = stepPar0, angle = anglePar0),
formula = ~ slope + I(slope~2),

estAngleMean = list(angle=TRUE))

Note that many of the arguments in fitHMM are lists, with each element of the
list corresponding to a data stream. The list names provided in dist, Par0O, and
estAngleMean (e.g. ‘step’ and ‘angle’) must therefore have a corresponding column in
data with the same name. Additional data streams can be included in a multivariate
HMM by simply adding the additional elements to these list arguments (see examples
in sections 3.2, 3.8, and 3.9). State-dependent probability distributions with positive
support (e.g. gamma, Weibull; see Table 2) can be zero-inflated (with additional zero-
mass parameters), while the beta distribution can be zero- and/or one-inflated (with
additional one-mass parameters).

As seen above, the formula argument can include many of the functions and op-
erators commonly used to construct terms in R linear model formulas (e.g. a*b, a:b,
cos(a)). The formulaDelta argument can be similarly used to specify covariate models
for the initial distribution. The formula argument can also be used to specify transition
probability matrix models that incorporate cyclical patterns (using the cosinor spe-
cial function; see example in section 3.1), splines for explaining other more complicated
patterns (e.g., bs and ns functions in the R base package splines), and factor variables

(e.g., formula="1ID for individual-level effects). By default the formula argument ap-
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plies to all state transition probabilities, but the special functions state, toState, and
betaCol allow for state- and parameter-specific formulas to be specified (see examples
in sections 3.4 and 3.8). While betaCol allows a formula to be specified for a specific
transition (e.g. state 3 — 1), state and toState allow a formula to be specified for all
transitions from (e.g. 3 — 1, 3 — 2) and to (e.g. state 1 — 3, 2 — 3) specific states,
respectively. The betaCons argument allows for equality constraints among any of the
transition probability parameters (e.g. 7?2) = qé?; see example in section 3.8). Specific
state transition probabilities can also be fixed to zero (or any other value) using the
fixPar argument, which can be useful for incorporating more behavioral realism. For
example, fixPar can be used to prohibit or enforce switching from one particular state
to another (possibly as a function of spatio-temporal covariates).

Similar to the formula argument for state transition probability modelling, it is
through the DM argument of fitHMM that models are specified for the state-dependent
probability distribution parameters for each data stream. DM is a list argument contain-
ing an element for each data stream, but each element itself is also a list specifying the
design matrix formulas for each parameter. For example, the following fits the exact
same wild haggis model as above, but employs a user-specified (intercept-only) design

matrix for the step length data stream:

stepDM <- list(mean = "1, sd = ~1)

fitHaggisDM <- fitHMM(data = processedHaggis, nbStates = 2,
dist = list(step = "gamma", angle = "vm"),
DM = list(step = stepDM),
Par0 = list(step = log(stepPar0), angle = anglePar0),
formula = ~ slope + I(slope~2),
estAngleMean = list(angle=TRUE))

Note that when DM is specified for a data stream, the initial parameter values (Par0)
for that data stream now correspond to columns of the resulting design matrix and must
be on the working scale instead of the natural scale. In this case, because the log link is
used for the natural parameters of the gamma distribution, Par0O$step was specified on
the log scale. The functions getPar, getPar0, checkPar0, and getParDM are designed
to assist users in the specification of design matrices and corresponding initial values on

the working scale for any given model (see package documentation for further details).

16



DM formulas are just as flexible as the formula argument and, in addition to common
linear model formula functions and operators, can also include cyclical cosinor models
(see section 3.1), splines, factor variables, and state-specific probability distribution
parameter formulas (see examples in sections 3.3 and 3.4). As with the state transition
probabilities, working parameters for probability distributions can also be fixed to user-
specified values using the fixPar argument.

Specification of design matrices using DM is not limited to formulas. Alternatively,
“pseudo-design” matrices can be specified, using an R matrix with rows corresponding
to the natural parameters and columns corresponding to the working parameters. The
elements in the matrix may be numeric or character strings containing model formula
terms (see examples in sections 3.4, 3.7, and 3.8). Using a pseudo-design matrix for
step length, the following is yet another way to implement the exact same wild haggis

model:

stepDMp <- matrix(c(1,0,0,0,
0,1,0,0,
0,0,1,0,
0,0,0,1),4,4,byrow=TRUE)
rownames (stepDMp) <- c("mean_1","mean_2","sd_1","sd_2")
colnames(stepDMp) <- c("mean_1:(Intercept)","mean_2:(Intercept)",
"sd_1:(Intercept)","sd_2:(Intercept)")

fitHaggisDMp <- fitHMM(data = processedHaggis, nbStates = 2,
dist = list(step = "gamma", angle = "vm"),
DM = list(step = stepDMp),
Par0 = list(step = log(stepPar0), angle = anglePar0),
formula = ~ slope + I(slope~2),
estAngleMean = list(angle=TRUE))

(note that column and row names for pseudo-design matrices are not required but can be
useful). Pseudo-design matrices allow for the sharing of common working parameters
(such as intercept terms) among natural scale parameters, and this can be used to
constrain natural scale parameters (e.g., p; < p2) when used in tandem with the
workBounds argument (see sections 3.2, 3.7, and 3.8). This is particularly useful for
preventing state label switching when repeatedly fitting the same HMM using multiple

imputation methods (see section 2.8).
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2.3 Circular-circular regression model for the angle mean

Another noteworthy fitHMM argument, circularAngleMean, is a list argument that
enables users to specify circular-circular regression models for the mean (u) parameter
of angular distributions, such as the wrapped Cauchy and von Mises, instead of circular-
linear models based on the tangent link function (Table 2). When circularAngleMean
is specified as TRUE for any given angular data stream (e.g. turning angle), then a

special link function based on Rivest et al. (2016) is used:
i = atan2(sin(X,)8,, 1 + cos(X,)8,), )

where X, is a T' X K matrix composed of the turning angles between K angular covari-
ates (e.g., wind direction, sea surface current direction) and the bearing of movement

during the previous time step; that is, each element
T = atan2(sin(ry g — be—1), cos(rer — br—1)) (3)

for angular covariate r, and k = 1,..., K (note that prepData and MIfitHMM calcu-
late X, based on the angleCovs, centers, or centroids arguments so users need not
bother). Because this link function is designed for turning angles, a turning angle of 0
is provided as the reference angle (hence the “14+” preceeding the cosine term in Eq.
2). Thus as a trade-off between biased and correlated movements, the working param-
eters (3,) for the expected turning angle at time ¢ weight the attractive (or repulsive)
strengths of the angular covariates relative to directional persistence. When all 8, = 0,
the model reduces to a correlated random walk, but an increasingly biased random walk
results as 3, gets larger (or smaller). Alternatively, circularAngleMean can be speci-
fied as a numeric scalar, where the value specifies the coefficient for the reference angle
(i.e., directional persistence) term in Eq. 2. For example, setting circularAngleMean
to 0 specifies a circular-circular regression model with no directional persistence term
(thus specifying a biased random walk instead of a biased correlated random walk; see
examples in sections 3.4, 3.5.2, and 3.6). Setting circularAngleMean to 1 is equivalent
to setting it to TRUE, i.e., a circular-circular regression model with a coefficient of 1 for
the directional persistence reference angle. Many interesting hypotheses about animal
movmement can be addressed using circular-circular regression on movement direction,

including the effects of wind, sea surface currents (see example in section 3.3), centers of
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attraction or repulsion (see examples in sections 3.4, 3.5, and 3.8), group dynamic mod-
els (see example in section 3.6), and dynamic activity centers (see example in section
3.8.

The special function angleFormula can be included in DM formulas or pseudo-design
matrices in order to model the circular-circular regression angle mean as a function of

the relative strength (or importance) of angular covariates (Rivest et al. 2016):

p = atan2((Z, osin(X,,))B,, 1 + (Z, o cos(X,,))B,,), (4)

where Z, is a T' x K matrix of positive real covariates (e.g. wind speed, sea surface
current speed) and o is the Hadamard (i.e. element-wise) product. The special function
angleFormula can also be used to specify group- or individual-level effects on the
circular-circular regression angle mean coefficients (3,,).

Also based on Rivest et al. (2016), the von Mises consensus distribution is a special
von Mises circular-circular regression model where the concentration parameter (p)
depends on the level of agreement among short-term directional persistence (i.e. moving

forward) and the angular covariates:

2

p= K\/[(ZH o sin(Xu))Bu]2 + [14 (2, 0 cos(X,,))B,]" (5)

Note that the von Mises consensus distribution is parameterized in terms of p and &
(see Table 2), but momentuHMM returns and plots real parameter estimates in terms of
p and p. When all 3, are non-negative, then the minimum and maximum values for
p are k|1 —min(Z,8,)| and [1 + maX(Z#BM)], respectively. In the consensus model,
k can be interpreted as the concentration towards a turning angle of zero (i.e. moving
forward) when the angular covariate components perfectly cancel out. See section 3.3
for example code using angleFormula and the von Mises consensus (“vmConsensus”)

distribution.

2.4 Individual-level random effects

HMM applications often assume the initial distribution and state transition probabil-
ity matrix is the same for all individuals (i.e. “complete pooling” of the individuals’
time series). But in reality, individuals often do not exhibit the same state-switching

dynamics and there is individual-level variation. Individual heterogeneity can often be
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well explained by covariates (e.g., sex, age class) and included in formula, but it is not
always possible to identify (and/or measure) all of the important covariates that drive
this variation. One option is to include separate state-switching dynamics for each indi-
vidual (i.e. “no pooling”) by specifying formulaDelta = ~ID and formula = ~ID, but
this “fixed” effect approach can result in many additional parameters to estimate (it
also doesn’t explain very much about potential factors driving individual heterogene-
ity). Alternatively, generic individual heterogeneity in state-switching dynamics can be
modeled as a “random” effect (e.g. McClintock 2021).

2.4.1 Discrete-valued random effects

While continuous-valued individual-level random effects can be computationally de-
manding, discrete-valued random effects are more computationally feasible and can be
effective in “mopping up” individual heterogeneity in the initial distribution and state
transition probabilities that is not explained by measurable covariates. Discrete-valued
random effects have recently been used in HMMs of animal movement (e.g. McKellar
et al. 2014; Towner et al. 2016; DeRuiter et al. 2017; Isojunno et al. 2017), and these
“mixed” HMMs can be fitted with fitHMM (or MIfitHMM) through the mixtures and
formulaPi arguments. The mixtures argument specifies the number of mixtures (K)
in the model, where each mixture represents a possible initial distribution and tran-
sition probability matrix, and each individual time series is assumed to be driven by
exactly one of these mixtures. For K mixtures, the mixture weight (my;k =1,..., K)
is the probability that the kth mixture underlies the state-switching dynamics for a
given individual, and a model formula for 7w can be specified using the formulaPi ar-
gument. For example, Towner et al. (2016) found support for K = 3 mixtures and
a sex covariate on 7 in their HMM for white shark movement, indicating that each
of the three possible state-switching dynamics were exhibited differently for males and
females; the random effects component of their model would be specified in £itHMM (or
MIfitHMM) by simply setting mixtures = 3 and formulaPi = “sex. Note that because
Zszl m, = 1, momentuHMM uses a multinomial logit link function for 7« when covariates
are included in formulaPi. We demonstrate how to fit discrete-valued individual-level
random effects on the initial distribution and state transition probabilities using the

long-finned pilot whale example from Isojunno et al. (2017) in section 3.9.
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2.4.2 Continuous-valued random effects

For continuous individual-level random effects on state transition probabilities, the
randomEffects function can be used to implement the approximate approach of Burn-
ham & White (2002). In essence, this is a 2-stage approach where in the first stage the
fixed effects model is fitted with £itHMM (i.e. with formula=~0+ID) and in the second
stage the random effects model is fitted with randomEffects based on the output of
the fixed effects model. See ?randomEffects and McClintock (2021) for further details.

2.5 Hierarchical hidden Markov models

Hierarchical hidden Markov models (HHMMs; see Leos-Barajas et al. 2017; Adam et al.
2019) can also be fitted in momentuHMM. HMMs with hierarchical structures allow for
data streams and/or state transitions to occur at multiple regular time scales. For ex-
ample, biotelemetry data are often collected at different time scales (e.g. 1-hr intervals
for one data stream and 1-min intervals for another data stream) or state transitions
can be governed by both larger- and finer-scale behavioral processes. HHMMs are inte-
grated into the workhorse functions of momentuHMM and are specified via hierarchically-
structured arguments for the data stream probability distributions (hierDist), be-
havioral states (hierStates), state transition probabilities (hierFormula, hierBeta),
and initial distributions (hierFormulaDelta, hierDelta) using the data.tree pack-
age (Glur 2018). We demonstrate how the HHMM harbor porpoise and garter snake
examples from Leos-Barajas et al. (2017) and the Atlantic cod and horn shark examples

from Adam et al. (2019) can be fitted using momentuHMM in section 3.10.

2.6 Random walk probability distributions

momentuHMM includes several normal random walk probability distributions that can
be specified in the dist argument (see Tables 2 and 3), including univariate (e.g. for
modeling depths), bivariate (e.g. for modeling 2-D positions), and trivariate (e.g. for
modeling 3-D positions) normal random walks. These can be particularly useful for
modeling movement on positions directly instead of steps and turns. A random walk
model assumes position at time t is a function of the position at time ¢t — 1; in its
simplest form without any covariates, we have x; ~ N(x;_1,0?) for the univariate case.

Multivariate normal distributions require some additonal book-keeping when prepar-
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ing the data; the altCoordNames argument in prepData and MIfitHMM and the mvnCoords
argument in fitHMM and MIfitHMM are designed to help properly format and identify
multivariate coordinate data streams. For example, if a bivariate normal data stream
name is “loc” (e.g. dist=list(loc="mvnorm2")), then the data must include columns
“loc.x” and "loc.y” for the x- and y- coordinates, respectively. When using a multi-
variate normal random walk distribution, the previous position can be referenced in DM
formulas or pseudo-design matrices. For example, for a bivariate normal random walk
data stream named “mu” (e.g. dist=list(mu="rw_mvnorm2")), the previous position
can be refereced in DM as “mu.x_tm1” and “mu.y_tm1”. This allows for persistence in
velocity to be included via the special formula function crw(x_tml,lag), where argu-
ment x_tml is the previous position (e.g. “mu.x_tml” or “mu.y_tml”) and argument
lag specifies the time lag for the persistence.

We demonstrate use of the bivariate normal random walk model for loggerhead turtle
movements relative to ocean surface currents in section 3.3 and for African buffalo
recharge dynamics in section 3.11. We also demonstrate how to simulate movement
subject to barriers or other constraints (e.g. land for marine animals) using a bivariate

normal random walk in section 3.12.

2.7 Recharge dynamics

Hooten et al. (2019) describe a novel way of modeling animal movement behavior based
on an aggregated physiological process associated with decision making and movement
in heterogeneous environments. In essence, their “recharge” model allows state switch-
ing to be a function of this process (i.e. the recharge function). For example, we
can think of the recharge function as the gas tank of our car. When the gas tank
is full, we are more-or-less free to drive wherever we want. However, when the tank
gets low, we must eventually return to the same gas station (or find a new one) to
refill our tank. In its simplest form, the recharge model associates “good” habitat
with recharging (i.e. filling the tank) and less-suitable habitat with discharging (i.e.
emptying the tank). The recharge function thus increases and decreases over time de-
pending on the decision-making process of the individual, the resulting behavior, and
the habitat conditions it encounters. By simply imbedding a recharge function into state
transition probabilities, we can therefore begin to investigate models with an explicit,

mechanistic connection to physiological dynamics! Hooten et al. (2019) formulated
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their recharge model in continuous time, but its discrete-time analogue can be imple-
mented in momentuHMM. This is accomplished by including the recharge (g0, theta)
special function in the transition probability matri