
Animation with the gridSVG package

Paul Murrell

December 14, 2011

Introduction

The grid.animate() function in the gridSVG package allows various features of
a grid grob to be animated. Calls to this function can be quite straightforward.
For example, the following code animates a circle so that it travels from left
to right across the screen (the result of this code is the file "animCircle.svg",
which can be viewed in a web browser).

> library(gridSVG)

> grid.circle(.1, .5, r=.1, gp=gpar(fill="black"),

+ name="circle")

> grid.animate("circle", x=c(.1, .9))

> gridToSVG("animCircle.svg")

Things can get more complicated though. For example, in order to animate a
polyline grob, it is necessary to specify a vector of x and/or y locations for
each time point and it may even be necessary to specify multiple vectors at
each time point if the polyline grob specifies more than one polyline (via its
id argument).

To give a concrete example, consider the result of the following grid code, which
draws two polylines from a single call to grid.polyline() (see Figure 1).

> grid.rect()

> grid.polyline(c(.2, .3, .4, .6, .7, .8),

+ c(.7, .5, .7, .3, .5, .3),

+ id=rep(1:2, each=3),

+ gp=gpar(lwd=5),

+ name="polyline")

The task is to animate the two polylines so that they appear to “flap” (the left
will transition to look like the right one and the right one will transition to look
like the left one, and repeat).

The y-values for the animation look something like this (the x-values are not
animated):

1

Figure 1: Two polylines drawn from a single call to grid.polyline.

2

$id1
$id1$t1
[1] 0.7npc 0.5npc 0.7npc

$id1$t2
[1] 0.3npc 0.5npc 0.3npc

$id1$t3
[1] 0.7npc 0.5npc 0.7npc

$id2
$id2$t1
[1] 0.3npc 0.5npc 0.3npc

$id2$t2
[1] 0.7npc 0.5npc 0.7npc

$id2$t3
[1] 0.3npc 0.5npc 0.3npc

For the first polyline (id1), at the first time point (t1), the y-values are just the
original y-values, c(.7, .5, .7). At the second time point, the y-values for
the first polyline are c(.3, .5, .3), and at the third time point the y-values
are back to the original c(.7, .5, .7). The y-values for the second polyline
are the reverse of the y-values for the first polyline.

Specifying this set of animation values is more complex and can get pretty
confusing, but at the same time, we still want to be able to specify the simple
animation values (like in the first example) in a simple manner. The gridSVG
package provides a consistent, but flexible system for specifying animation values
that is based on a single, coherent data structure, but which allows the user to
use simpler specifications where possible.

The animUnit class

An animUnit object has three components: a vector of values (as a unit
object), a timeid vector (default NULL), and an id vector (default NULL).

The animUnit() function is used to create an animUnit, with only the values
as a required argument. The following code generates a single value at four
different time points.

> animUnit(unit(1:4, "cm"))

$t1
[1] 1cm

3

$t2
[1] 2cm

$t3
[1] 3cm

$t4
[1] 4cm

As this example shows, the default interpretation of a NULL timeid is that each
value belongs to a separate time period (and the default interpretation of a
NULL id is that there is only one shape to be animated). This example also
demonstrates the print method for animUnit objects, which is useful for seeing
which animation values belong to different time periods.

This simple sort of animUnit is sufficient for specifying something like the x-
location of a single data symbol (where there is exactly one x-value required per
time point).

For the slightly more difficult situation of animating multiple data symbols
(where we need several x-values per time period, one for each different data
symbol), the id argument can be explicitly specified. The following code gener-
ate values for two shapes (id1 and id2) with values at two time points (t1 and
t2) for each shape.

> animUnit(unit(1:4, "cm"), id=rep(1:2, 2))

$id1
$id1$t1
[1] 1cm

$id1$t2
[1] 3cm

$id2
$id2$t1
[1] 2cm

$id2$t2
[1] 4cm

In the case where we have a single shape, but that shape is described by multiple
x-values (e.g., a single polygon), we need multiple x-values per time point for
each shape, the timeid argument can be used to associate multiple x-values
with a single time point. The following code generates six values at each of two
time points (t1 and t2) for a single shape.

> animUnit(unit(1:12, "cm"), timeid=rep(1:2, 6))

4

$t1
[1] 1cm 3cm 5cm 7cm 9cm 11cm

$t2
[1] 2cm 4cm 6cm 8cm 10cm 12cm

And in the worst case, we have multiple shapes, each requiring multiple x-values
per time period (e.g., multiple polygons from a single polygon grob), so we need
to specify both id and timeid. The following code generates three values at two
different time points for two different shapes.

> animUnit(unit(1:12, "cm"),

+ timeid=rep(1:2, 6), id=rep(1:2, each=6))

$id1
$id1$t1
[1] 1cm 3cm 5cm

$id1$t2
[1] 2cm 4cm 6cm

$id2
$id2$t1
[1] 7cm 9cm 11cm

$id2$t2
[1] 8cm 10cm 12cm

The following code uses the animUnit() function to produce the flapping poly-
lines example from the previous section. It produces a file called "animPoly-
line.svg" that can be viewed in a browser.

> grid.newpage()

> grid.rect()

> grid.polyline(c(.2, .3, .4, .6, .7, .8),

+ c(.7, .5, .7, .3, .5, .3),

+ id=rep(1:2, each=3),

+ gp=gpar(lwd=5),

+ name="polyline")

> polylineY <- animUnit(unit(c(.7, .5, .7, .3, .5, .3,

+ .3, .5, .3, .7, .5, .7,

+ .7, .5, .7, .3, .5, .3),

+ unit="npc"),

+ timeid=rep(1:3, each=6),

+ id=rep(rep(1:2, each=3), 3))

> grid.animate("polyline", y=polylineY, rep=TRUE)

> gridToSVG("animPolyline.svg")

5

The as.animUnit() function

The animUnit class gives us the range of possible specifications that we require,
but it is overkill for simple cases, and may be less convenient even for more
complex cases.

There is an as.animUnit() function that can convert vectors, matrices, and
lists to animUnits so that we can use those simpler data structures to provide
animation values. For example, a single value per time period can be specified
with just a vector, as follows.

> as.animUnit(1:4, unit="cm")

$t1
[1] 1cm

$t2
[1] 2cm

$t3
[1] 3cm

$t4
[1] 4cm

Even better, the grid.animate() function makes use of this coercion function
and fills in the unit based on the units of the feature that is being animated.
This means that the call to grid.animate() can just specify a vector, like the
following (taken from the first example at the beginning of this document).

> grid.animate("circle", x=c(.1, .9))

When we need to specify values for multiple shapes it can be convenient to use
a matrix, where each column provides the values for a different shape. The
following code shows an example (again, in a call to grid.animate() we can
leave out the unit).

> m <- matrix(1:6, ncol=2)

> m

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

> as.animUnit(m, unit="cm")

6

$id1
$id1$t1
[1] 1cm

$id1$t2
[1] 2cm

$id1$t3
[1] 3cm

$id2
$id2$t1
[1] 4cm

$id2$t2
[1] 5cm

$id2$t3
[1] 6cm

If we have multiple values per time point (e.g., a polygon), we can get as.animUnit()
to treat columns as different time points rather than as different shapes by spec-
ifying the multVal argument, as shown below.

> as.animUnit(m, unit="cm", multVal=TRUE)

$t1
[1] 1cm 2cm 3cm

$t2
[1] 4cm 5cm 6cm

The grid.animate() function guesses how it should use the columns of a ma-
trix, depending on the shape that is being animated, so for relatively straight-
forward cases we should be abe to simply pass a matrix to grid.animate().

Finally, we can specify animation values as a list of units (if that is more conve-
nient than calling animUnit()). The following code shows an example, which
shows that the default behaviour is to treat each component of the list as ani-
mation values for a separate shape.

> l <- list(unit(1:3, "cm"), unit(4:6, "cm"))

> l

[[1]]
[1] 1cm 2cm 3cm

7

[[2]]
[1] 4cm 5cm 6cm

> as.animUnit(l)

$id1
$id1$t1
[1] 1cm

$id1$t2
[1] 2cm

$id1$t3
[1] 3cm

$id2
$id2$t1
[1] 4cm

$id2$t2
[1] 5cm

$id2$t3
[1] 6cm

Again, we can specify that the components of the list correspond to separate
time points rather than separate shapes (by calling as.animUnit() directly and
supplying the multVal argument).

> as.animUnit(l, multVal=TRUE)

$t1
[1] 1cm 2cm 3cm

$t2
[1] 4cm 5cm 6cm

The animValue class

Some features of a shape, such as visibility, are not numeric locations or
dimensions, so they do not need to be specified as unit values. For these cases,
there is an animValue() function to create the various specifications that we
might need, plus an as.animValue() function, which grid.animate() makes
use of to allow convenient variations.

8

Summary

For relatively simple animations, all we need to do is specify a numeric vector,
or possibly a matrix, in the call to grid.animate(). For more complex ani-
mations, how we specify the animation values depends on what we find most
convenient. Specifying a matrix or a list of units may suffice, although this may
rely on grid.animate() correctly guessing our intention. It may be necessary to
directly call as.animUnit() on a matrix or a list of units to get the behaviour
that we want. Alternatively, a direct call to animUnit() should allow us to
specify any set of animation values that we need and the print() method for
the animUnit objects that are created by that function should help us to check
that we are generating values in the right format.

9

