
Exposing C++ functions and classes
with Rcpp modules
Dirk Eddelbuettela and Romain Françoisb

ahttp://dirk.eddelbuettel.com; bhttps://romain.rbind.io/

This version was compiled on March 16, 2019

This note discusses Rcpp modules. Rcpp modules allow programmers to
expose C++ functions and classes to R with relative ease. Rcpp modules
are inspired from the Boost.Python C++ library (Abrahams and Grosse-
Kunstleve, 2003) which provides similar features for Python.

Rcpp | modules | R | C++

1. Motivation

Exposing C++ functionality to R is greatly facilitated by the Rcpp
package and its underlying C++ library (Eddelbuettel et al., 2019;
Eddelbuettel and François, 2011). Rcpp smoothes many of the
rough edges in R and C++ integration by replacing the traditional
R Application Programming Interface (API) described in ‘Writing
R Extensions’ (R Core Team, 2018) with a consistent set of C++
classes. The ‘Rcpp-jss-2011’ vignette (Eddelbuettel et al., 2019;
Eddelbuettel and François, 2011) describes the API and provides
an introduction to using Rcpp.

These Rcpp facilities offer a lot of assistance to the programmer
wishing to interface R and C++. At the same time, these facilities
are limited as they operate on a function-by-function basis. The
programmer has to implement a .Call compatible function (to
conform to the R API) using classes of the Rcpp API as described
in the next section.

1.1. Exposing functions using Rcpp. Exposing existing C++ func-
tions to R through Rcpp usually involves several steps. One ap-
proach is to write an additional wrapper function that is responsible
for converting input objects to the appropriate types, calling the
actual worker function and converting the results back to a suitable
type that can be returned to R (SEXP). Consider the norm function
below:

double norm(double x, double y) {
return sqrt(x*x + y*y);

}

This simple function does not meet the requirements set by the
.Call convention, so it cannot be called directly by R. Exposing
the function involves writing a simple wrapper function that does
match the .Call requirements. Rcpp makes this easy.

using namespace Rcpp;
RcppExport SEXP norm_wrapper(SEXP x_, SEXP y_) {

// step 0: convert input to C++ types
double x = as<double>(x_), y = as<double>(y_);

// step 1: call the underlying C++ function
double res = norm(x, y);

// step 2: return the result as a SEXP
return wrap(res);

}

Here we use the (templated) Rcpp converter as() which can
transform from a SEXP to a number of different C++ and Rcpp
types. The Rcpp function wrap() offers the opposite functionality
and converts many known types to a SEXP.

This process is simple enough, and is used by a number of
CRAN packages. However, it requires direct involvement from the
programmer, which quickly becomes tiresome when many functions
are involved. Rcpp modules provides a much more elegant and
unintrusive way to expose C++ functions such as the norm function
shown above to R.

We should note that Rcpp now has Rcpp attributes which ex-
tends certain aspect of Rcpp modules and makes binding to simple
functions such as this one even easier. With Rcpp attribues we can
just write

include <Rcpp.h>

// [[Rcpp::export]]
double norm(double x, double y) {

return sqrt(x*x + y*y);
}

See the corresponding vignette (Allaire et al., 2018) for details,
but read on for Rcpp modules which contains to provide features
not covered by Rcpp attributes, particularly when it comes to bind-
ing entire C++ classes and more.

1.2. Exposing classes using Rcpp. Exposing C++ classes or structs
is even more of a challenge because it requires writing glue code
for each member function that is to be exposed.

Consider the simple Uniform class below:

class Uniform {
public:

Uniform(double min_, double max_) :
min(min_), max(max_) {}

NumericVector draw(int n) {
RNGScope scope;
return runif(n, min, max);

}

private:
double min, max;

};

To use this class from R, we at least need to expose the construc-
tor and the draw method. External pointers (R Core Team, 2018)
are the perfect vessel for this, and using the Rcpp:::XPtr template
from Rcpp we can expose the class with these two functions:

https://cran.r-project.org/package=Rcpp Rcpp Vignette | March 16, 2019 | 1–8

http://dirk.eddelbuettel.com
https://romain.rbind.io/
https://cran.r-project.org/package=Rcpp

using namespace Rcpp;

/// create external pointer to a Uniform object
RcppExport SEXP Uniform__new(SEXP min_,

SEXP max_) {
// convert inputs to appropriate C++ types
double min = as<double>(min_),

max = as<double>(max_);

// create pointer to an Uniform object and
// wrap it as an external pointer
Rcpp::XPtr<Uniform>
ptr(new Uniform(min, max), true);

// return the external pointer to the R side
return ptr;

}

/// invoke the draw method
RcppExport SEXP Uniform__draw(SEXP xp, SEXP n_) {

// grab the object as a XPtr (smart pointer)
// to Uniform
Rcpp::XPtr<Uniform> ptr(xp);

// convert the parameter to int
int n = as<int>(n_);

// invoke the function
NumericVector res = ptr->draw(n);

// return the result to R
return res;

}

As it is generally a bad idea to expose external pointers ‘as is’,
they usually get wrapped as a slot of an S4 class.

Using cxxfunction() from the inline package, we can build
this example on the fly. Suppose the previous example code as-
signed to a text variable unifModcode, we could then do

f1 <- cxxfunction(, "", includes = unifModCode,
plugin = "Rcpp")

getDynLib(f1) ## will display info about ’f1’

The following listing shows some manual wrapping to access
the code, we will see later how this can be automated:

setClass("Uniform",
representation(pointer = "externalptr"))

helper
Uniform_method <- function(name) {

paste("Uniform", name, sep = "__")
}

syntactic sugar to allow object$method(...)
setMethod("$", "Uniform", function(x, name) {

function(...)
.Call(Uniform_method(name) ,

x@pointer, ...)
})

syntactic sugar to allow new("Uniform", ...)
setMethod("initialize", "Uniform",

function(.Object, ...) {
.Object@pointer <-

.Call(Uniform_method("new"), ...)
.Object

})

u <- new("Uniform", 0, 10)
u$draw(10L)

Rcpp considerably simplifies the code that would be involved
for using external pointers with the traditional R API. Yet this still
involves a lot of mechanical code that quickly becomes hard to
maintain and error prone. Rcpp modules offer an elegant way to
expose the Uniform class in a way that makes both the internal
C++ code and the R code easier.

2. Rcpp modules

The design of Rcpp modules has been influenced by Python modules
which are generated by the Boost.Python library (Abrahams and
Grosse-Kunstleve, 2003). Rcpp modules provide a convenient and
easy-to-use way to expose C++ functions and classes to R, grouped
together in a single entity.

A Rcpp module is created in a cpp file using the RCPP_MODULE
macro, which then provides declarative code of what the module
exposes to R.

2.1. Exposing C++ functions using Rcpp modules. Consider the
norm function from the previous section. We can expose it to R :

using namespace Rcpp;

double norm(double x, double y) {
return sqrt(x*x + y*y);

}

RCPP_MODULE(mod) {
function("norm", &norm);

}

The code creates an Rcpp module called mod that exposes the
norm function. Rcpp automatically deduces the conversions that
are needed for input and output. This alleviates the need for a
wrapper function using either Rcpp or the R API.

On the R side, the module is retrieved by using the Module
function from Rcpp

inc <- ’
using namespace Rcpp;

double norm(double x, double y) {
return sqrt(x*x + y*y);

}

RCPP_MODULE(mod) {
function("norm", &norm);

}
’

fx <- cxxfunction(signature(),
plugin="Rcpp", include=inc)

2 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://cran.r-project.org/package=Rcpp

mod <- Module("mod", getDynLib(fx))

Note that this example assumed that the previous code segment
defining the module was returned by the cxxfunction() (from
the inline package) as callable R function fx from which we can
extract the relevant pointer using getDynLib(). In the case of
using Rcpp modules via a package (which is detailed in Section
3 below), modules are actually loaded differently and we would
have used

require(nameOfMyModulePackage)
mod <- new(mod)
mod$norm(3, 4)

where the module is loaded upon startup and we use the con-
structor directly. More details on this aspect follow below.

A module can contain any number of calls to function to reg-
ister many internal functions to R. For example, these 6 functions
:

std::string hello() {
return "hello";

}

int bar(int x) {
return x*2;

}

double foo(int x, double y) {
return x * y;

}

void bla() {
Rprintf("hello\\n");

}

void bla1(int x) {
Rprintf("hello (x = %d)\\n", x);

}

void bla2(int x, double y) {
Rprintf("hello (x = %d, y = %5.2f)\\n", x, y);

}

can be exposed with the following minimal code:

RCPP_MODULE(yada) {
using namespace Rcpp;

function("hello" , &hello);
function("bar" , &bar);
function("foo" , &foo);
function("bla" , &bla);
function("bla1" , &bla1);
function("bla2" , &bla2);

}

which can then be used from R:

require(Rcpp)

yd <- Module("yada", getDynLib(fx))
yd$bar(2L)
yd$foo(2L, 10.0)

yd$hello()
yd$bla()
yd$bla1(2L)
yd$bla2(2L, 5.0)

In the case of a package (as for example the one created by
Rcpp.package.skeleton() with argument module=TRUE; more
on that below), we can use

require(myModulePackage) ## if another name

bar(2L)
foo(2L, 10.0)
hello()
bla()
bla1(2L)
bla2(2L, 5.0)

The requirements for a function to be exposed to R via Rcpp
modules are:

• The function takes between 0 and 65 parameters.
• The type of each input parameter must be manageable by the

Rcpp::as template.
• The return type of the function must be either void or any

type that can be managed by the Rcpp::wrap template.
• The function name itself has to be unique in the module.

In other words, no two functions with the same name but
different signatures are allowed. C++ allows overloading
functions. This might be added in future versions of modules.

2.1.1. Documentation for exposed functions using Rcpp modules. In ad-
dition to the name of the function and the function pointer, it is
possible to pass a short description of the function as the third
parameter of function.

using namespace Rcpp;

double norm(double x, double y) {
return sqrt(x*x + y*y);

}

RCPP_MODULE(mod) {
function("norm", &norm,

"Provides a simple vector norm");
}

The description is used when displaying the function to the R
prompt:

mod <- Module("mod", getDynLib(fx))
show(mod$norm)

2.1.2. Formal arguments specification. function also gives the pos-
sibility to specify the formal arguments of the R function that
encapsulates the C++ function, by passing a Rcpp::List after the
function pointer.

using namespace Rcpp;

double norm(double x, double y) {
return sqrt(x*x + y*y);

}

Eddelbuettel and François Rcpp Vignette | March 16, 2019 | 3

RCPP_MODULE(mod_formals) {
function("norm",

&norm,
List::create(_["x"] = 0.0,

_["y"] = 0.0),
"Provides a simple vector norm");

}

A simple usage example is provided below:

norm <- mod$norm
norm()
norm(y = 2)
norm(x = 2, y = 3)
args(norm)

To set formal arguments without default values, simply omit
the rhs.

using namespace Rcpp;

double norm(double x, double y) {
return sqrt(x*x + y*y);

}

RCPP_MODULE(mod_formals2) {
function("norm", &norm,

List::create(_["x"], _["y"] = 0.0),
"Provides a simple vector norm");

}

This can be used as follows:

norm <- mod$norm
args(norm)

The ellipsis (...) can be used to denote that additional argu-
ments are optional; it does not take a default value.

using namespace Rcpp;

double norm(double x, double y) {
return sqrt(x*x + y*y);

}

RCPP_MODULE(mod_formals3) {
function("norm", &norm,

List::create(_["x"], _["..."]),
"documentation for norm");

}

and from the R side:

norm <- mod$norm
args(norm)

2.2. Exposing C++ classes using Rcpp modules. Rcpp modules
also provide a mechanism for exposing C++ classes, based on the
reference classes introduced in R 2.12.0.

2.2.1. Initial example. A class is exposed using the class_ keyword.
The Uniform class may be exposed to R as follows:

using namespace Rcpp;
class Uniform {
public:

Uniform(double min_, double max_) :
min(min_), max(max_) {}

NumericVector draw(int n) const {
RNGScope scope;
return runif(n, min, max);

}

double min, max;
};

double uniformRange(Uniform* w) {
return w->max - w->min;

}

RCPP_MODULE(unif_module) {

class_<Uniform>("Uniform")

.constructor<double,double>()

.field("min", &Uniform::min)

.field("max", &Uniform::max)

.method("draw", &Uniform::draw)

.method("range", &uniformRange)
;

}

assumes fx_unif <- cxxfunction(...) ran
unif_module <- Module("unif_module",

getDynLib(fx_unif))
Uniform <- unif_module$Uniform
u <- new(Uniform, 0, 10)
u$draw(10L)
u$range()
u$max <- 1
u$range()
u$draw(10)

class_ is templated by the C++ class or struct that is to be
exposed to R. The parameter of the class_<Uniform> constructor
is the name we will use on the R side. It usually makes sense to
use the same name as the class name. While this is not enforced, it
might be useful when exposing a class generated from a template.

Then constructors, fields and methods are exposed.

2.2.2. Exposing constructors using Rcpp modules. Public constructors
that take from 0 and 6 parameters can be exposed to the R level
using the .constuctor template method of .class_.

Optionally, .constructor can take a description as the first
argument.

.constructor<double,double>("sets the min and "
"max value of the distribution")

Also, the second argument can be a function pointer (called
validator) matching the following type :

4 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://cran.r-project.org/package=Rcpp

typedef bool (*ValidConstructor)(SEXP*,int);

The validator can be used to implement dispatch to the appro-
priate constructor, when multiple constructors taking the same
number of arguments are exposed. The default validator always
accepts the constructor as valid if it is passed the appropriate num-
ber of arguments. For example, with the call above, the default
validator accepts any call from R with two double arguments (or
arguments that can be cast to double).

TODO: include validator example here

2.2.3. Exposing fields and properties. class_ has three ways to expose
fields and properties, as illustrated in the example below :

using namespace Rcpp;
class Foo {
public:

Foo(double x_, double y_, double z_):
x(x_), y(y_), z(z_) {}

double x;
double y;

double get_z() { return z; }
void set_z(double z_) { z = z_; }

private:
double z;

};

RCPP_MODULE(mod_foo) {
class_<Foo>("Foo")

.constructor<double,double,double>()

.field("x", &Foo::x)

.field_readonly("y", &Foo::y)

.property("z", &Foo::get_z, &Foo::set_z)
;

}

The .field method exposes a public field with read/write
access from R. field accepts an extra parameter to give a short
description of the field:

.field("x", &Foo::x, "documentation for x")

The .field_readonly exposes a public field with read-only
access from R. It also accepts the description of the field.

.field_readonly("y", &Foo::y,
"documentation for y")

The .property method allows indirect access to fields through
a getter and a setter. The setter is optional, and the property is
considered read-only if the setter is not supplied. A description of
the property is also allowed:

// with getter and setter
.property("z", &Foo::get_z,

&Foo::set_z, "Documentation for z")

// with only getter
.property("z",

&Foo::get_z, "Documentation for z")

The type of the field (T) is deduced from the return type of the
getter, and if a setter is given its unique parameter should be of the
same type.

Getters can be member functions taking no parameter and re-
turning a T (for example get_z above), or a free function taking a
pointer to the exposed class and returning a T, for example:

double z_get(Foo* foo) { return foo->get_z(); }

Setters can be either a member function taking a T and returning
void, such as set_z above, or a free function taking a pointer to
the target class and a T :

void z_set(Foo* foo, double z) { foo->set_z(z); }

Using properties gives more flexibility in case field access has
to be tracked or has impact on other fields. For example, this class
keeps track of how many times the x field is read and written.

class Bar {
public:

Bar(double x_) : x(x_), nread(0), nwrite(0) {}

double get_x() {
nread++;
return x;

}

void set_x(double x_) {
nwrite++;
x = x_;

}

IntegerVector stats() const {
return
IntegerVector::create(_["read"] = nread,

_["write"] = nwrite);
}

private:
double x;
int nread, nwrite;

};

RCPP_MODULE(mod_bar) {
class_<Bar>("Bar")

.constructor<double>()

.property("x", &Bar::get_x, &Bar::set_x)

.method("stats", &Bar::stats)
;

}

Here is a simple usage example:

Eddelbuettel and François Rcpp Vignette | March 16, 2019 | 5

Bar <- mod_bar$Bar
b <- new(Bar, 10)
b$x + b$x
b$stats()
b$x <- 10
b$stats()

2.2.4. Exposing methods using Rcpp modules. class_ has several
overloaded and templated .method functions allowing the pro-
grammer to expose a method associated with the class.

A legitimate method to be exposed by .method can be:

• A public member function of the class, either const or non
const, that returns void or any type that can be handled by
Rcpp::wrap, and that takes between 0 and 65 parameters
whose types can be handled by Rcpp::as.

• A free function that takes a pointer to the target class as its
first parameter, followed by 0 or more (up to 65) parameters
that can be handled by Rcpp::as and returning a type that
can be handled by Rcpp::wrap or void.

2.2.5. Documenting methods. .method can also include a short doc-
umentation of the method, after the method (or free function)
pointer.

.method("stats", &Bar::stats,
"vector indicating the number of "
"times x has been read and written")

TODO: mention overloading, need good example.

2.2.6. Const and non-const member functions. method is able to expose
both const and non const member functions of a class. There
are however situations where a class defines two versions of the
same method, differing only in their signature by the const-ness.
It is for example the case of the member functions back of the
std::vector template from the STL.

reference back ();
const_reference back () const;

To resolve the ambiguity, it is possible to use const_method
or nonconst_method instead of method in order to restrict the
candidate methods.

2.2.7. Special methods. Rcpp considers the methods [[and [[<- spe-
cial, and promotes them to indexing methods on the R side.

2.2.8. Object finalizers. The .finalizer member function of class_
can be used to register a finalizer. A finalizer is a free function that
takes a pointer to the target class and return void. The finalizer is
called before the destructor and so operates on a valid object of
the target class.

It can be used to perform operations, releasing resources, etc
. . .

The finalizer is called automatically when the R object that
encapsulates the C++ object is garbage collected.

2.2.9. Object factories. The .factory member function of class_
can be used to register a factory that can be used as alternative to
a constructor. A factory can be a static member function or a free
function that returns a pointer to the target class. Typical use-cases
include creating objects in a hierarchy:

#include <Rcpp.h>
using namespace Rcpp;

// abstract class
class Base {

public:
virtual ~Base() {}
virtual std::string name() const = 0;

};

// first derived class
class Derived1: public Base {

public:
Derived1() : Base() {}
virtual std::string name() const {

return "Derived1";
}

};

// second derived class
class Derived2: public Base {

public:
Derived2() : Base() {}
virtual std::string name() const {

return "Derived2";
}

};

Base *newBase(const std::string &name) {
if (name == "d1"){

return new Derived1;
} else if (name == "d2"){

return new Derived2;
} else {

return 0;
}

}

RCPP_MODULE(mod) {
Rcpp::class_< Base >("Base")

.factory<const std::string&>(newBase)

.method("name", &Base::name);
}

The newBase method returns a pointer to a Base object. Since
that class is an abstract class, the objects are actually instances of
Derived1 or Derived2. The same behavior is now available in R:

dv1 <- new(Base, "d1")
dv1$name() # returns "Derived1"
dv2 <- new(Base, "d2")
dv2$name() # returns "Derived2"

2.2.10. S4 dispatch. When a C++ class is exposed by the class_ tem-
plate, a new S4 class is registered as well. The name of the S4 class
is obfuscated in order to avoid name clashes (i.e. two modules
exposing the same class).

This allows implementation of R-level (S4) dispatch. For exam-
ple, one might implement the show method for C++ World objects:

6 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

https://en.wikipedia.org/wiki/Factory_method_pattern
https://cran.r-project.org/package=Rcpp

setMethod("show", yada$World , function(object) {
msg <- paste("World object with message : ",

object$greet())
writeLines(msg)

})

TODO: mention R inheritance (John ?)

2.2.11. Full example. The following example illustrates how to use
Rcpp modules to expose the class std::vector<double> from the
STL.

typedef std::vector<double> vec;
void vec_assign(vec* obj,

Rcpp::NumericVector data) {
obj->assign(data.begin(), data.end());

}
void vec_insert(vec* obj, int position,

Rcpp::NumericVector data) {
vec::iterator it = obj->begin() + position;
obj->insert(it, data.begin(), data.end());

}
Rcpp::NumericVector vec_asR(vec* obj) {

return Rcpp::wrap(*obj);
}
void vec_set(vec* obj, int i, double value) {

obj->at(i) = value;
}

RCPP_MODULE(mod_vec) {
using namespace Rcpp;

// we expose class std::vector<double>
// as "vec" on the R side
class_<vec>("vec")

// exposing constructors
.constructor()
.constructor<int>()

// exposing member functions
.method("size", &vec::size)
.method("max_size", &vec::max_size)
.method("resize", &vec::resize)
.method("capacity", &vec::capacity)
.method("empty", &vec::empty)
.method("reserve", &vec::reserve)
.method("push_back", &vec::push_back)
.method("pop_back", &vec::pop_back)
.method("clear", &vec::clear)

// exposing const member functions
.const_method("back", &vec::back)
.const_method("front", &vec::front)
.const_method("at", &vec::at)

// exposing free functions taking a
// std::vector<double>* as their first
// argument
.method("assign", &vec_assign)
.method("insert", &vec_insert)

.method("as.vector", &vec_asR)

// special methods for indexing
.const_method("[[", &vec::at)
.method("[[<-", &vec_set)
;

}

for code compiled on the fly using
cxxfunction() into ’fx_vec’, we use
mod_vec <- Module("mod_vec",

getDynLib(fx_vec),
mustStart = TRUE)

vec <- mod_vec$vec
and that is not needed in a package
setup as e.g. one created
via Rcpp.package.skeleton(..., module=TRUE)
v <- new(vec)
v$reserve(50L)
v$assign(1:10)
v$push_back(10)
v$size()
v$capacity()
v[[0L]]
v$as.vector()

3. Using modules in other packages

3.1. Namespace import/export.

3.1.1. Import all functions and classes. When using Rcpp modules in
a packages, the client package needs to import Rcpp’s namespace.
This is achieved by adding the following line to the NAMESPACE file.

import(Rcpp)

In some case we have found that explicitly naming a symbol
can be preferable:

import(Rcpp, evalCpp)

3.2. Load the module.

3.2.1. Deprecated older method using loadRcppModules. Note: This ap-
proach is deprecated as of Rcpp 0.12.5, and now triggers a warning
message. Eventually this function will be withdrawn.

The simplest way to load all functions and classes from a
module directly into a package namespace used to be to use the
loadRcppModules function within the .onLoad body.

.onLoad <- function(libname, pkgname) {
loadRcppModules()

}

This will look in the package’s DESCRIPTION file for the
RcppModules field, load each declared module and populate
their contents into the package’s namespace. For exam-
ple, both the testRcppModule package (which is part of
large unit test suite for Rcpp) and the package created via
Rcpp.package.skeleton("somename", module=TRUE) have
this declaration:

Eddelbuettel and François Rcpp Vignette | March 16, 2019 | 7

RcppModules: yada, stdVector, NumEx

The loadRcppModules function has a single argument direct
with a default value of TRUE. With this default value, all content
from the module is exposed directly in the package namespace. If
set to FALSE, all content is exposed as components of the module.

3.2.2. Preferred current method using loadModule. Starting with release
0.9.11, an alternative is provided by the loadModule() function
which takes the module name as an argument. It can be placed
in any .R file in the package. This is useful as it allows to load
the module from the same file as some auxiliary R functions using
the module. For the example module, the equivalent code to the
.onLoad() use shown above then becomes

loadModule("yada")
loadModule("stdVector")
loadModule("NumEx")

This feature is also used in the new Rcpp Classes introduced
with Rcpp 0.9.11.

3.2.3. Just expose the module. Alternatively, it is possible to just ex-
pose the module to the user of the package, and let them extract
the functions and classes as needed. This uses lazy loading so that
the module is only loaded the first time the user attempts to extract
a function or a class with the dollar extractor.

yada <- Module("yada")

.onLoad <- function(libname, pkgname) {
placeholder

}

3.3. Support for modules in skeleton generator. The
Rcpp.package.skeleton function has been improved to
help Rcpp modules. When the module argument is set to TRUE,
the skeleton generator installs code that uses a simple module.

Rcpp.package.skeleton("testmod", module = TRUE)

Creating a new package using Rcpp modules is easiest via the
call to Rcpp.package.skeleton() with argument module=TRUE
as a working package with three example Modules results.

3.4. Module documentation. Rcpp defines a prompt method for
the Module class, allowing generation of a skeleton of an Rd file
containing some information about the module.

yada <- Module("yada")
prompt(yada, "yada-module.Rd")

We strongly recommend using a package when working with
Modules. But in case a manually compiled shared library has to
loaded, the return argument of the getDynLib() function can be
supplied as the PACKAGE argument to the Module() function as
well.

4. Future extensions

Boost.Python has many more features that we would like to port
to Rcpp modules : class inheritance, default arguments, enum
types, . . .

5. Known shortcomings

There are some things Rcpp modules is not good at:

• serialization and deserialization of objects: modules are im-
plemented via an external pointer using a memory loca-
tion, which is non-constant and varies between session. Ob-
jects have to be re-created, which is different from the (de-
)serialization that R offers. So these objects cannot be saved
from session to session.

• mulitple inheritance: currently, only simple class structures
are representable via Rcpp modules.

6. Summary

This note introduced Rcpp modules and illustrated how to expose
C++ function and classes more easily to R. We hope that R and C++
programmers find Rcpp modules useful.

References

Abrahams D, Grosse-Kunstleve RW (2003). Building Hybrid Systems with
Boost.Python. Boost Consulting. URL http://www.boostpro.com/writing/bpl.
pdf.

Allaire JJ, Eddelbuettel D, François R (2018). Rcpp Attributes. Vignette included
in R package Rcpp, URL http://CRAN.R-Project.org/package=Rcpp.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.”
Journal of Statistical Software, 40(8), 1–18. URL http://www.jstatsoft.org/v40/
i08/.

Eddelbuettel D, François R, Allaire J, Ushey K, Kou Q, Russel N, Chambers J,
Bates D (2019). Rcpp: Seamless R and C++ Integration. R package version
1.0.1, URL http://CRAN.R-Project.org/package=Rcpp.

R Core Team (2018). Writing R extensions. R Foundation for Statistical Com-
puting, Vienna, Austria. URL http://CRAN.R-Project.org/doc/manuals/R-exts.
html.

8 | https://cran.r-project.org/package=Rcpp Eddelbuettel and François

http://www.boostpro.com/writing/bpl.pdf
http://www.boostpro.com/writing/bpl.pdf
http://CRAN.R-Project.org/package=Rcpp
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v40/i08/
http://CRAN.R-Project.org/package=Rcpp
http://CRAN.R-Project.org/doc/manuals/R-exts.html
http://CRAN.R-Project.org/doc/manuals/R-exts.html
https://cran.r-project.org/package=Rcpp

	Motivation
	Exposing functions using
	Exposing classes using Rcpp

	Rcpp modules
	Exposing functions using Rcpp modules
	Documentation for exposed functions using Rcpp modules
	Formal arguments specification

	Exposing classes using Rcpp modules
	Initial example
	Exposing constructors using Rcpp modules
	Exposing fields and properties
	Exposing methods using Rcpp modules
	Documenting methods
	Const and non-const member functions
	Special methods
	Object finalizers
	Object factories
	S4 dispatch
	Full example

	Using modules in other packages
	Namespace import/export
	Import all functions and classes

	Load the module
	Deprecated older method using loadRcppModules
	Preferred current method using loadModule
	Just expose the module

	Support for modules in skeleton generator
	Module documentation

	Future extensions
	Known shortcomings
	Summary

