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R has always provided an application programming interface (API) for ex-
tensions. Based on the C language, it uses a number of macros and other
low-level constructs to exchange data structures between the R process
and any dynamically-loaded component modules authors added to it. With
the introduction of the Rcpp package, and its later refinements, this pro-
cess has become considerably easier yet also more robust. By now, Rcpp
has become the most popular extension mechanism for R. This article
introduces Rcpp, and illustrates with several examples how the Rcpp At-
tributes mechanism in particular eases the transition of objects between
R and C++ code.
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Introduction

The R language and environment (R Core Team, 2018a) has es-
tablished itself as both an increasingly dominant facility for data
analysis, and the lingua franca for statistical computing in both
research and application settings.

Since the beginning, and as we argue below, “by design”, the R
system has always provided an application programming interface
(API) suitable for extending R with code written in C or Fortran.
Being implemented chiefly in R and C (with a generous sprinkling of
Fortran for well-established numerical subroutines), R has always
been extensible via a C interface. Both the actual implementation
and the C interface use a number of macros and other low-level
constructs to exchange data structures between the R process and
any dynamically-loaded component modules authors added to it.

A C interface will generally also be accessible to other languages.
Particularly noteworthy here is the C++ language, developed origi-
nally as a ‘better C’, which is by its design very interoperable with C.
And with the introduction of the Rcpp package (Eddelbuettel and
François, 2011; Eddelbuettel, 2013; Eddelbuettel et al., 2019a),
and its later refinements, this process of extending R has become
considerably easier yet also more robust. To date, Rcpp has become
the most popular extension system for R. This article introduces
Rcpp, and illustrates with several examples how the Rcpp Attributes
mechanism (Allaire et al., 2018) in particular eases the transition
of objects between R and C++ code.

Background. Chambers (2008, p. 3) provides a very thorough dis-
cussion of desirable traits for a system designed to program with
data, and the R system in particular. Two key themes motivate
the introductory discussion. First, the Mission is to aid exploration
in order to provide the best platform to analyse data: “to boldly
go where no one has gone before.” Second, the Prime Directive
is that the software systems we build must be trustworthy: “the
many computational steps between original data source and dis-
played result must all be trustful.” The remainder of the book then
discusses R, leading to two final chapters on interfaces.

Chambers (2016, p. 4) builds and expands on this theme. Two
core facets of what “makes” R are carried over from the previous

book. The first states what R is composed of: Everything that exists
in R is an object. The second states how these objects are created
or altered: Everything that happens in R is a function call. A third
statement is now added: Interfaces to other software are part of R.

This last addition is profound. If and when suitable and per-
formant software for a task exists, it is in fact desirable to have
a (preferably also perfomant) interface to this software from R.
Chambers (2016) discusses several possible approaches for simpler
interfaces and illustrates them with reference implementations to
both Python and Julia. However, the most performant interface for
R is provided at the subroutine level, and rather than discussing
the older C interface for R, Chambers (2016) prefers to discuss
Rcpp. This article follows the same school of thought and aims to
introduce Rcpp to analysts and data scientists, aiming to enable
them to use—and create— further interfaces for R which aid the
mission while staying true to the prime directive. Adding interfaces
in such a way is in fact a natural progression from the earliest de-
signs for its predecessor S which was after all designed to provide
a more useable ‘interface’ to underlying routines in Fortran.

The rest of the paper is structured as follows. We start by dis-
cussing possible first steps, chiefly to validate correct installations.
This is followed by an introduction to simple C++ functions, com-
parison to the C API, a discussion of packaging with Rcpp and a
linear algebra example. The appendix contains some empirical
illustrations of the adoption of Rcpp.

First Steps with Rcpp

Rcpp is a CRAN package and can be installed by using
install.packages('Rcpp') just like any other R package. On
some operating systems this will download pre-compiled binary
packages; on others an installation from source will be attempted.
But Rcpp is a little different from many standard R packages in one
important aspect: it helps the user to write C(++) programs more
easily. The key aspect to note here is C++ programs: to operate,
Rcpp needs not only R but also an additional toolchain of a compiler,
linker and more in order to be able to create binary object code
extending R.

We note that this requirement is no different from what is
needed with base R when compilation of extensions is attempted.
How to achieve this using only base R is described in some detail
in the Writing R Extensions manual (R Core Team, 2018b) that
is included with R. As for the toolchain requirements, on Linux
and macOS, all required components are likely to be present. The
macOS can offer additional challenges as toolchain elements can
be obtained in different ways. Some of these are addressed in the
Rcpp FAQ (Eddelbuettel and François, 2018a) in sections 2.10 and
2.16. On Windows, users will have to install the Rtools kit provided
by R Core available at https://cran.r-project.org/bin/windows/Rtools/.
Details of these installation steps are beyond the scope of this pa-
per. However, many external resources exist that provide detailed
installation guides for R toolschains in Windows and macOS.
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As a first step, and chiefly to establish that the toolchain is set
up correctly, consider a minimal use case such as the following:

library("Rcpp")
evalCpp("2 + 2")
# [1] 4

Here the Rcpp package is loaded first via the library() func-
tion. Next, we deploy one of its simplest functions, evalCpp(),
which is described in the Rcpp Attributes vignette (Allaire et al.,
2018). It takes the first (and often only) argument—a character
object—and evaluates it as a minimal C++ expression. The value
assignment and return are implicit, as is the addition of a trailing
semicolon and more. In fact, evalCpp() surrounds the expression
with the required ‘glue’ to make it a minimal source file which
can be compiled, linked and loaded. The exact details behind this
process are available in-depth when the verbose option of the
function is set. If everything is set up correctly, the newly-created
R function will be returned.

While such a simple expression is not interesting in itself, it
serves a useful purpose here to unequivocally establish whether
Rcpp is correctly set up. Having accomplished that, we can proceed
to the next step of creating simple functions.

A first C++ function using Rcpp

As a first example, consider the determination of whether a number
is odd or even. The default practice is to use modular arithmetic
to check if a remainder exists under x mod 2. Within R, this can
be implemented as follows:

isOddR <- function(num = 10L) {
result <- (num %% 2L == 1L)
return(result)

}
isOddR(42L)
# [1] FALSE

The operator %% implements the mod operation in R. For the
default (integer) argument of ten used in the example, 10 mod 2
results in zero, which is then mapped to FALSE in the context of a
logical expression.

Translating this implementation into C++, several small details
have to be considered. First and foremost, as C++ is a statically-
typed language, there needs to be additional (compile-time) infor-
mation provided for each of the variables. Specifically, a type, i.e.
the kind of storage used by a variable must be explicitly defined.
Typed languages generally offer benefits in terms of both correct-
ness (as it is harder to accidentally assign to an ill-matched type)
and performance (as the compiler can optimize code based on the
storage and cpu characteristics). Here we have an int argument,
but return a logical, or bool for short. Two more smaller differ-
ences are that each statement within the body must be concluded
with a semicolon, and that return does not require parentheses
around its argument. A graphical breakdown of all aspects of a
corresponding C++ function is given in Figure 1.

When using Rcpp, such C++ functions can be directly em-
bedded and compiled in an R script file through the use of the
cppFunction() provided by Rcpp Attributes (Allaire et al., 2018).
The first parameter of the function accepts string input that rep-
resents the C++ code. Upon calling the cppFunction(), and
similarly to the earlier example involving evalCpp(), the C++

code is both compiled and linked, and then imported into R under
the name of the function supplied (e.g. here isOddCpp()).

library("Rcpp")
cppFunction("
bool isOddCpp(int num = 10) {

bool result = (num % 2 == 1);
return result;

}")
isOddCpp(42L)
# [1] FALSE

Extending R via its C API

Let us first consider the case of ‘standard R’, i.e. the API as defined in
the core R documentation. Extending R with routines written using
the C language requires the use of internal macros and functions
documented in Chapter 5 of Writing R Extensions (R Core Team,
2018b).

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b) {
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;

a = PROTECT(coerceVector(a, REALSXP));
b = PROTECT(coerceVector(b, REALSXP));
na = length(a); nb = length(b);
nab = na + nb - 1;
ab = PROTECT(allocVector(REALSXP, nab));
xa = REAL(a); xb = REAL(b); xab = REAL(ab);
for (int i = 0; i < nab; i++)

xab[i] = 0.0;
for (int i = 0; i < na; i++)

for (int j = 0; j < nb; j++)
xab[i + j] += xa[i] * xb[j];

UNPROTECT(3);
return ab;

}

This function computes a convolution of two vectors supplied
on input, a and b, which is defined to be abk+1 =

∑

i+ j==k
ai · b j .

Before computing the convolution (which is really just the three
lines involving two nested for loops with indices i and j), a total
of ten lines of mere housekeeping are required. Vectors a and b
are coerced to double, and a results vector ab is allocated. This
expression involves three calls to the PROTECT macro for which
a precisely matching UNPROTECT(3) is required as part of the in-
terfacing of internal memory allocation. The vectors are accessed
through pointer equivalents xa, xb and xab; and the latter has to
be explicitly zeroed prior to the convolution calculation involving
incremental summary at index i + j.

Extending R via the C++ API of Rcpp

Using the idioms of Rcpp, the above example can be written in a
much more compact fashion—leading to code that is simpler to
read and maintain.
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Fig. 1. Graphical annotation of the is_odd_cpp function.

#include "Rcpp.h"
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector
convolve_cpp(const NumericVector& a,

const NumericVector& b) {

// Declare loop counters, and vector sizes
int i, j,

na = a.size(), nb = b.size(),
nab = na + nb - 1;

// Create vector filled with 0
NumericVector ab(nab);

// Crux of the algorithm
for(i = 0; i < na; i++) {

for(j = 0; j < nb; j++) {
ab[i + j] += a[i] * b[j];

}
}

// Return result
return ab;

}

To deploy such code from within an R script or session,
first save it into a new file—which could be called con-
volve.cpp—in either the working directory, a temporary direc-
toy or a project directory. Then from within the R session, use
Rcpp::sourceCpp("convolve.cpp") (possibly using a path as
well as the filename). This not only compiles, links and loads
the code within the external file but also adds the necessary
“glue” to make the Rcpp function available in the R environment.
Once the code is compiled and linked, call the newly-created
convolve_cpp() function with the appropriate parameters as
done in previous examples.

What is notable about the Rcpp version is that it has no PROTECT
or UNPROTECT which not only frees the programmer from a tedious
(and error-prone) step but more importantly also shows that mem-
ory management can be handled automatically. The result vector

is already initialized at zero as well, reducing the entire function
to just the three lines for the two nested loops, plus some vari-
able declarations and the return statement. The resulting code is
shorter, easier to read, comprehend and maintain. Furthermore,
the Rcpp code is more similar to traditional R code, which reduces
the barrier of entry.

Data Driven Performance Decisions with Rcpp

When beginning to implement an idea, more so an algorithm, there
are many ways one is able to correctly implement it. Prior to the
routine being used in production, two questions must be asked:

1. Does the implementation produce the correct results?
2. What implementation of the routine is the best?

The first question is subject to a binary pass-fail unit test verifi-
cation while the latter question is where the details of an imple-
mentation are scrutinized to extract maximal efficiency from the
routine. The quality of the best routine follows first and foremost
from its correctness. To that end, R offers many different unit
testing frameworks such as RUnit by Burger et al. (2015), which is
used to construct Rcpp’s 1385+ unit tests, and testthat by Wickham
(2011). Only when correctness is achieved is it wise to begin the
procedure of optimizing the efficiency of the routine and, in turn,
selecting the best routine.

Optimization of an algorithm involves performing a quantitative
analysis of the routine’s properties. There are two main approaches
to analyzing the behavior of a routine: theoretical analysis1 or an
empirical examination using profiling tools.2 Typically, the latter
option is more prominently used as the routine’s theoretical prop-
erties are derived prior to an implementation being started. Often
the main concern regarding an implementation in R relates to the
speed of the algorithm as it impacts how quickly analyses can be
done and reports can be provided to decision makers. Coinciden-
tally, the speed of code is one of the key governing use cases of
Rcpp. Profiling R code will reveal shortcomings related to loops,
e.g. for, while, and repeat; conditional statements, e.g. if-else

1Theoretical analysis is often directed to describing the limiting behavior of a function through asymptotic
notation, commonly referred to as Big O and denoted as O (·).

2Within base R, profiling can be activated by utils::Rprof() for individual command timing information,
utils::Rprofmem() for memory information, and System.time({}) for a quick overall execution tim-
ing. Additional profiling R packages such as profvis by Chang and Luraschi (2017), Rperform by Tandon
and Hocking (2015), and benchmarking packages have extended the ability to analyze performance.
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if-else and switch; and recursive functions, i.e. a function writ-
ten in terms of itself such that the problem is broken down on each
call in a reduced state until an answer can be obtained. In contrast,
the overhead for such operations is significantly less in C++. Thus,
critical components of a given routine should be written in Rcpp to
capture maximal efficiency.

Returning to the second question, to decide which implementa-
tion works the best, one needs to employ a benchmark to obtain
quantifiable results. Benchmarks are an ideal way to quantify how
well a method performs because they have the ability to show the
amount of time the code has been running and where bottlenecks
exist within functions. This does not imply that benchmarks are
completely infallible as user error can influence the end results.
For example, if a user decides to benchmark code in one R session
and in another session performs a heavy computation, then the
benchmark will be biased (if “wall clock” is measured).

There are different levels of magnification that a benchmark
can provide. For a more macro analysis, one should benchmark
data using benchmark(test = func(), test2 = func2()), a
function from the rbenchmark R package by Kusnierczyk (2012).
This form of benchmarking will be used when the computation is
more intensive. The motivating example isOdd() (which is only
able to accept a single integer) warrants a much more microscopic
timing comparison. In cases such as this, the objective is to obtain
precise results in the amount of nanoseconds elapsed. Using the
microbenchmark function from the microbenchmark R package
by Mersmann (2015) is more helpful to obtain timing information.
To perform the benchmark:

library("microbenchmark")
results <- microbenchmark(isOddR = isOddR(12L),

isOddCpp = isOddCpp(12L))
print(summary(results)[, c(1:7)],digits=1)

By looking at the summary of 100 evaluations, we note that
the Rcpp function performed better than the equivalent in R by
achieving a lower run time on average. The lower run time in this
part is not necessarily critical as the difference is nanoseconds on a
trivial computation. However, each section of code does contribute
to a faster overall runtime.

Random Numbers within Rcpp: An Example of Rcpp Sugar

Rcpp connects R with C++. Only the former is vectorized: C++ is
not. Rcpp Sugar, however, provides a convenient way to work with
high-performing C++ functions in a similar way to how R offers
vectorized operations. The Rcpp Sugar vignette (Eddelbuettel and
François, 2018b) details these, as well as many more functions
directly accessible to Rcpp in a way that should feel familiar to
R users. Some examples of Rcpp Sugar functions include special
math functions like gamma and beta, statistical distributions and
random number generation.

We will illustrate a case of random number generation. Consider
drawing one or more N(0,1)-distributed random variables. The
very simplest case can just use evalCpp():

evalCpp("R::rnorm(0, 1)")
# [1] 1.2806

By setting a seed, we can make this reproducible:

set.seed(123)
evalCpp("R::rnorm(0, 1)")
# [1] -0.56048

One important aspect of the behind-the-scenes code generation
for the single expression (as well as all code created via Rcpp
Attributes) is the automatic preservation of the state of the random
nunber generators in R. This means that from a given seed, we
will receive identical draws of random numbers whether we access
them from R or via C++ code accessing the same generators (via
the Rcpp interfaces). To illustrate, the same number is drawn via R
code after resetting the seed:

set.seed(123)
# Implicit mean of 0, sd of 1
rnorm(1)
# [1] -0.56048

We can make the Rcpp Sugar function rnorm() accessible from
R in the same way to return a vector of values:

set.seed(123)
evalCpp("Rcpp::rnorm(3)")
# [1] -0.56048 -0.23018 1.55871

Note that we use the Rcpp:: namespace explicitly here to con-
trast the vectorised Rcpp::rnorm() with the scalar R::rnorm()
also provided as a convenience wrapper for the C API of R.

And as expected, this too replicates from R as the very same
generators are used in both cases along with consistent handling
of generator state permitting to alternate:

set.seed(123)
rnorm(3)
# [1] -0.56048 -0.23018 1.55871

Translating Code from R into Rcpp: Bootstrap Example

Statistical inference relied primarily upon asymptotic theory until
Efron (1979) proposed the bootstrap. Bootstrapping is known to
be computationally intensive due to the need to use loops. Thus, it
is an ideal candidate to use as an example. Before starting to write
C++ code using Rcpp , prototype the code in R.

# Function declaration
bootstrap_r <- function(ds, B = 1000) {

# Preallocate storage for statistics
boot_stat <- matrix(NA, nrow = B, ncol = 2)

# Number of observations
n <- length(ds)

# Perform bootstrap
for(i in seq_len(B)) {

# Sample initial data
gen_data <- ds[ sample(n, n, replace=TRUE) ]
# Calculate sample data mean and SD
boot_stat[i,] <- c(mean(gen_data),

sd(gen_data))
}
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# Return bootstrap result
return(boot_stat)

}

Before continuing, check that the initial prototype R code works.
To do so, write a short R script. Note the use of set.seed() to
ensure reproducible draws.

# Set seed to generate data
set.seed(512)
# Generate data
initdata <- rnorm(1000, mean = 21, sd = 10)
# Set a new _different_ seed for bootstrapping
set.seed(883)
# Perform bootstrap
result_r <- bootstrap_r(initdata)

Figure 2 shows that the bootstrap procedure worked well!
With reassurances that the method to be implemented within

Rcpp works appropriately in R, proceed to translating the code
into Rcpp. As indicated previously, there are many convergences
between Rcpp syntax and base R via Rcpp Sugar.

#include <Rcpp.h>

// Function declaration with export tag
// [[Rcpp::export]]
Rcpp::NumericMatrix
bootstrap_cpp(Rcpp::NumericVector ds,

int B = 1000) {

// Preallocate storage for statistics
Rcpp::NumericMatrix boot_stat(B, 2);

// Number of observations
int n = ds.size();

// Perform bootstrap
for(int i = 0; i < B; i++) {

// Sample initial data
Rcpp::NumericVector gen_data =

ds[ floor(Rcpp::runif(n, 0, n)) ];
// Calculate sample mean and std dev
boot_stat(i, 0) = mean(gen_data);
boot_stat(i, 1) = sd(gen_data);

}

// Return bootstrap results
return boot_stat;

}

In the Rcpp version of the bootstrap function, there are a few
additional changes that occurred during the translation. In par-
ticular, the use of Rcpp::runif(n, 0, n) enclosed by floor(),
which rounds down to the nearest integer, in place of sample(n,
n, replace = TRUE) to sample row ids. This is an equivalent
substitution since equal weight is being placed upon all row ids
and replacement is allowed.3 Note that the upper bound of the
interval, n, will never be reached. While this may seem flawed,
it is important to note that vectors and matrices in C++ use a

3For more flexibility in sampling see Christian Gunning’s Sample extension for RcppArmadillo and
Rcpp Gallery: Using the RcppArmadillo-based Implementation of R’s sample() or consider using the
Rcpp::sample() sugar function added in 0.12.9 by Nathan Russell.

zero-based indexing system, meaning that they begin at 0 instead
of 1 and go up to n− 1 instead of n, which is unlike R’s system.
Thus, an out of bounds error would be triggered if n was used as
that point does not exist within the data structure. The application
of this logic can be seen in the span the for loop takes in C++
when compared to R. Another syntactical change is the use of ()
in place of [] while accessing the matrix. This change is due to the
governance of C++ and its comma operator making it impossible
to place multiple indices inside the square brackets.

To validate that the translation was successful, first run the
C++ function under the same data and seed as was given for the R
function.

# Use the same seed use in R and C++
set.seed(883)
# Perform bootstrap with C++ function
result_cpp <- bootstrap_cpp(initdata)

Next, check the output between the functions using R ’s
all.equal() function that allows for an ε-neighborhood around
a number.

# Compare output
all.equal(result_r, result_cpp)
# [1] "Mean relative difference: 0.019931"

Lastly, make sure to benchmark the newly translated Rcpp
function against the R implementation. As stated earlier, data
is paramount to making a decision related to which function to use
in an analysis or package.

library(rbenchmark)

benchmark(r = bootstrap_r(initdata),
cpp = bootstrap_cpp(initdata))[, 1:4]

# test replications elapsed relative
# 2 cpp 100 1.303 1.000
# 1 r 100 4.111 3.155

Using Rcpp as an Interface to External Libraries: Exploring
Linear Algebra Extensions

Many of the previously illustrated Rcpp examples were directed
primarily to show the gains in computational efficiency that are
possible by implementing code directly in C++; however, this is
only one potential application of Rcpp. Perhaps one of the most un-
derstated features of Rcpp is its ability to enable Chambers (2016)’s
third statement of Interfaces to other software are part of R. In par-
ticular, Rcpp is designed to facilitate interfacing libraries written in
C++ or C to R. Hence, if there is a specific feature within a C++ or
C library, then one can create a bridge to it using Rcpp to enable it
from within R.

An example is the use of C++ matrix algebra libraries like Ar-
madillo (Sanderson, 2010) or Eigen (Guennebaud et al., 2012). By
outsourcing complex linear algebra operations to matrix libraries,
the need to directly call functions within Linear Algebra PACK-
age (LAPACK) (Anderson et al., 1999) is negated. Moreover, the
Rcpp design allows for seamless transfer between object types by
using automatic converters governed by wrap(), C++ to R , and
as<T>(), R to C++ with the T indicating the type of object being
cast into. These two helper functions provide a non-invasive way
to work with an external object. Thus, a further benefit to using
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Fig. 2. Results of the bootstrapping procedure for sample mean and variance.

external C++ libraries is the ability to have a portable code base
that can be implemented within a standalone C++ program or
within another computational language.

Compute RNG draws from a multivariate Normal. A common appli-
cation in statistical computing is simulating from a multivariate nor-
mal distribution. The algorithm relies on a linear transformation of
the standard Normal distribution. Letting Y m×1 = Am×nZn×1+bm×1,
where A is a m× n matrix, b ∈ Rm, Z ∼ N(0n, In), and In is the
identity matrix, then Y ∼ Nm

�

µ= b,Σ= AAT
�

. To obtain the ma-
trix A from Σ, either a Cholesky or Eigen decomposition is required.
As noted in Venables and Ripley (2002), the Eigen decomposition
is more stable in addition to being more computationally demand-
ing compared to the Cholesky decomposition. For simplicity and
speed, we have opted to implement the sampling procedure using
a Cholesky decomposition. Regardless, there is a need to involve
one of the above matrix libraries to make the sampling viable in
C++.

Here, we demonstrate how to take advantage of the Ar-
madillo linear algebra template classes (Sanderson and Curtin,
2016) via the RcppArmadillo package (Eddelbuettel and Sander-
son, 2014; Eddelbuettel et al., 2019b). Prior to running this
example, the RcppArmadillo package must be installed using
install.packages('RcppArmadillo').4 One important caveat
when using additional packages within the Rcpp ecosystem is
the correct header file may not be Rcpp.h. In a majority of
cases, the additional package ships a dedicated header (as e.g.
RcppArmadillo.h here) which not only declares data structures
from both systems, but may also add complementary integration
and conversion routines. It typically needs to be listed in an
include statement along with a depends() attribute to tell R
where to find the additional header files:

4macOS users may encounter ‘-lgfortran‘ and ‘-lquadmath‘ errors on compilations with this package if the
development environment is not appropriately set up. Section 2.16 of the Rcpp FAQ provides details
regarding the necessary ‘gfortran‘ binaries.

// Use the RcppArmadillo package
// Requires different header file from Rcpp.h
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

With this in mind, sampling from a multivariate normal distri-
bution can be obtained in a straightforward manner. Using only
Armadillo data types and values:

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// Sample N x P observations from a Standard
// Multivariate Normal given N observations, a
// vector of P means, and a P x P cov matrix
// [[Rcpp::export]]
arma::mat rmvnorm(int n,

const arma::vec& mu,
const arma::mat& Sigma) {

unsigned int p = Sigma.n_cols;

// First draw N x P values from a N(0,1)
Rcpp::NumericVector draw = Rcpp::rnorm(n*p);

// Instantiate an Armadillo matrix with the
// drawn values using advanced constructor
// to reuse allocated memory
arma::mat Z = arma::mat(draw.begin(), n, p,

false, true);

// Simpler, less performant alternative
// arma::mat Z = Rcpp::as<arma::mat>(draw);

// Generate a sample from the Transformed
// Multivariate Normal
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arma::mat Y = arma::repmat(mu, 1, n).t() +
Z * arma::chol(Sigma);

return Y;
}

As a result of using a random number generation (RNG), there
is an additional requirement to ensure reproducible results: the
necessity to explicitly set a seed (as shown above). Because of
the (programmatic) interface provided by R to its own RNGs, this
setting of the seed has to occur at the R level via the set.seed()
function as no (public) interface is provided by the R header files.

Faster linear model fits. As a second example, consider the problem
of estimating a common linear model repeatedly. One use case
might be the simulation of size and power of standard tests. Many
users of R would default to using lm(), however, the overhead
associated with this function greatly impacts speed with which an
estimate can be obtained. Another approach would be to take the
base R function lm.fit(), which is called by lm(), to compute
estimated β̂ in just about the fastest time possible. However, this
approach is also not viable as it does not report the estimated
standard errors. As a result, we cannot use any default R functions
in the context of simulating finite sample population effects on
inference.

One alternative is provided by the fastLm() function in Rcp-
pArmadillo (Eddelbuettel et al., 2019b).

#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]

// Compute coefficients and their standard error
// during multiple linear regression given a
// design matrix X containing N observations with
// P regressors and a vector y containing of
// N responses
// [[Rcpp::export]]
Rcpp::List fastLm(const arma::mat& X,

const arma::colvec& y) {
// Dimension information
int n = X.n_rows, p = X.n_cols;
// Fit model y ~ X
arma::colvec coef = arma::solve(X, y);
// Compute the residuals
arma::colvec res = y - X*coef;
// Estimated variance of the random error
double s2 =

std::inner_product(res.begin(), res.end(),
res.begin(), 0.0)
/ (n - p);

// Standard error matrix of coefficients
arma::colvec std_err = arma::sqrt(s2 *

arma::diagvec(arma::pinv(X.t()*X)));

// Create named list with the above quantities
return Rcpp::List::create(

Rcpp::Named("coefficients") = coef,
Rcpp::Named("stderr") = std_err,
Rcpp::Named("df.residual") = n - p );

}

Fig. 3. Graphical annotation of the is_odd_cpp function.

The interface is very simple: a matrix Xn×p of regressors, and
a dependent variable yn×1 as a vector. We invoke the standard
Armadillo function solve() to fit the model y ~ X.5 We then
compute residuals, and extract the (appropriately scaled) diagonal
of the covariance matrix, also taking its square root, in order to
return both estimates β̂ and σ̂.

Rcpp in Packages

Once a project containing compiled code has matured to the point of
sharing it with collaborators6 or using it within a parallel computing
environments, the ideal way forward is to embed the code within
an R package. Not only does an R package provide a way to
automatically compile source code, but also enables the use of the
R help system to document how the written functions should be
used. As a further benefit, the package format enables the use of
unit tests to ensure that the functions are producing the correct
output. Lastly, having a package provides the option of uploading
to a repository such as CRAN for wider dissemination.

To facilitate package building, Rcpp provides a function
Rcpp.package.skeleton() that is modeled after the base R func-
tion package.skeleton(). This function automates the creation
of a skeleton package appropriate for distributing Rcpp:

library("Rcpp")
Rcpp.package.skeleton("samplePkg")

This shows how distinct directories man, R, src are created for,
respectively, the help pages, files with R code and files with C++
code. Generally speaking, all compiled code, be it from C, C++ or
Fortran sources, should be placed within the src/ directory.

Alternatively, one can achieve similar results to using
Rcpp.package.skeleton() by using a feature of the RStudio IDE.

5We should note that this will use the standard LAPACK functionality via Armadillo whereas R uses an
internal refinement of LINPACK (Dongarra et al., 1979) via pivoting, rendering the operation numerically
more stable. That is an important robustness aspect—though common datasets on current hardware
almost never lead to actual differences. That said, if in doubt, stick with the R implementation. What is
shown here is mostly for exposition of the principles.

6 It is sometimes said that every project has two collaborators: self, and future self. Packaging code is best
practices even for code not intended for public uploading.
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Specifically, while creating a new package project there is an op-
tion to select the type of package by engaging a dropdown menu
to select “Package w/ Rcpp” in RStudio versions prior to v1.1.0.
In RStudio versions later than v1.1.0, support for package tem-
plates has been added allowing users to directly create Rcpp-based
packages that use Eigen or Armadillo.

Lastly, one more option exists for users who are famil-
iar with the devtools R package. To create the R package
skeleton use devtools::create("samplePkg"). From here,
part of the structure required by Rcpp can be added by using
devtools::use_rcpp(). The remaining aspects needed by Rcpp
must be manually copied from the roxygen tags written to con-
sole and pasted into one of the package’s R files to successfully
incorporate the dynamic library and link to Rcpp’s headers.

All of these methods take care of a number of small settings
one would have to enable manually otherwise. These include an
‘Imports:’ and ‘LinkingTo:’ declaration in file DESCRIPTION, as
well as ‘useDynLib’ and ‘importFrom’ in NAMESPACE. For Rcpp At-
tributes use, the compileAttributes() function has to be called.
Similarly, to take advantage of its documentation-creation feature,

the roxygenize() function from roxygen2 has to be called.7 Ad-
ditional details on using Rcpp within a package scope are detailed
in Eddelbuettel and François (2018c).

Conclusion

R has always provided mechanisms to extend it. The bare-bones C
API is already used to great effect by a large number of packages.
By taking advantage of a number of C++ features, Rcpp has been
able to make extending R easier, offering a combination of both
speed and ease of use that has been finding increasingly widespread
utilization by researchers and data scientists. We are thrilled about
this adoption, and look forward to seeing more exciting extensions
to R being built.
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