
Maximum likelihood estimation and analysis with

the bbmle package

Ben Bolker

January 27, 2012

Contents

1 Example: Orobanche/overdispersed binomial 2
1.1 Test basic fit to simulated beta-binomial data 2
1.2 Real data (Orobanche, Crowder (1978)) 5

2 Example: reed frog size predation 11

3 Newer stuff 15

4 Technical details 15
4.1 Profiling and confidence intervals 15

4.1.1 Estimating standard error 15
4.1.2 Profiling . 16
4.1.3 Confidence intervals . 17
4.1.4 Profile plotting . 18

Note: I have suppressed the continuation character (+) in the R examples
throughout this document, as I find it easier to read/cut-and-paste where neces-
sary.

The bbmle package, designed to simplify maximum likelihood estimation and
analysis in R, extends and modifies the mle function and class in the stats4

package that comes with R by default. mle is in turn a wrapper around the
optim function in base R. The maximum-likelihood-estimation function and
class in bbmle are both called mle2, to avoid confusion and conflict with the
original functions in the stats4 package. The major differences between mle

and mle2 are:

� mle2 is more robust, with additional warnings (e.g. if the Hessian can’t be
computed by finite differences, mle2 returns a fit with a missing Hessian
rather than stopping with an error)

� mle2 uses a data argument to allow different data to be passed to the
negative log-likelihood function

1

� mle2 has a formula interface like that of (e.g.) gls in the nlme package. For
relatively simple models the formula for the maximum likelihood can be
written in-line, rather than defining a negative log-likelihood function. The
formula interface also simplifies fitting models with categorical variables.
Models fitted using the formula interface also have applicable predict and
simulate methods.

� bbmle defines anova, AIC, AICc, and BIC methods for mle2 objects, as
well as AICtab, BICtab, AICctab functions for producing summary tables
of information criteria for a set of models.

Other packages with similar functionality (extending GLMs in various ways)
are

� on CRAN: aod (overdispersed models such as beta-binomial); vgam (a wide
range of models); betareg (beta regression); pscl (zero-inflated, hurdle
models); maxLik (another general-purpose maximizer, with a different se-
lection of optimizers)

� In Jim Lindsey’s code repository (http://popgen.unimaas.nl/~jlindsey/
rcode.html): gnlr and gnlr3

1 Example: Orobanche/overdispersed binomial

This example will use the classic data set on Orobanche germination from Crow-
der (1978) (you can also use glm(...,family="quasibinomial") or the aod

package to analyze these data).

1.1 Test basic fit to simulated beta-binomial data

First, generate a single beta-binomially distributed set of points as a simple test.
Load the emdbook package to get functions for the beta-binomial distribution

(random-deviate function rbetabinom — these functions are also available in
Jim Lindsey’s rmutil package).

> library(emdbook)

Generate random deviates from a random beta-binomial:

> set.seed(1001)

> x1 <- rbetabinom(n=1000,prob=0.1,size=50,theta=10)

Load the package:

> library(bbmle)

Construct a simple negative log-likelihood function:

2

http://popgen.unimaas.nl/~jlindsey/rcode.html
http://popgen.unimaas.nl/~jlindsey/rcode.html

> mtmp <- function(prob,size,theta) {

-sum(dbetabinom(x1,prob,size,theta,log=TRUE))

}

Fit the model — use data to pass the size parameter (since it wasn’t hard-
coded in the mtmp function):

> (m0 <- mle2(mtmp,start=list(prob=0.2,theta=9),data=list(size=50)))

Call:

mle2(minuslogl = mtmp, start = list(prob = 0.2, theta = 9), data = list(size = 50))

Coefficients:

prob theta

0.1030974 10.0758090

Log-likelihood: -2723.5

The summary method for mle2 objects shows the parameters; approximate
standard errors (based on quadratic approximation to the curvature at the max-
imum likelihood estimate); and a test of the parameter difference from zero
based on this standard error and on an assumption that the likelihood surface
is quadratic (or equivalently that the sampling distribution of the estimated
parameters is normal).

> summary(m0)

Maximum likelihood estimation

Call:

mle2(minuslogl = mtmp, start = list(prob = 0.2, theta = 9), data = list(size = 50))

Coefficients:

Estimate Std. Error z value Pr(z)

prob 0.1030974 0.0031626 32.599 < 2.2e-16 ***

theta 10.0758090 0.6213010 16.217 < 2.2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-2 log L: 5446.995

Construct the likelihood profile (you can apply confint directly to m0, but
if you’re going to work with the likelihood profile [e.g. plotting, or looking for
confidence intervals at several different α values] then it is more efficient to
compute the profile once):

> p0 <- profile(m0)

3

Compare the confidence interval estimates based on inverting a spline fit to
the profile (the default); based on the quadratic approximation at the maximum
likelihood estimate; and based on root-finding to find the exact point where the
profile crosses the critical level.

> confint(p0)

2.5 % 97.5 %

prob 0.09709228 0.1095103

theta 8.91708221 11.3559589

> confint(m0,method="quad")

2.5 % 97.5 %

prob 0.09689876 0.1092961

theta 8.85808147 11.2935366

> confint(m0,method="uniroot")

2.5 % 97.5 %

prob 0.09709185 0.1095099

theta 8.91691020 11.3559746

All three types of confidence limits are similar.
Plot the profiles:

> par(mfrow=c(1,2))

> plot(p0,plot.confstr=TRUE)

0.095 0.100 0.105 0.110

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: prob

prob

z

99%

95%

90%

80%

50%

8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: theta

theta

z

99%

95%

90%

80%

50%

By default, the plot method for likelihood profiles displays the square root of
the the deviance difference (twice the difference in negative log-likelihood from
the best fit), so it will be V-shaped for cases where the quadratic approximation
works well (as in this case). (For a better visual estimate of whether the profile
is quadratic, use the absVal=FALSE option to the plot method.)

You can also request confidence intervals calculated using uniroot, which
may be more exact when the profile is not smooth enough to be modeled ac-
curately by a spline. However, this method is also more sensitive to numeric
problems.

4

Instead of defining an explicit function for minuslogl, we can also use the
formula interface. The formula interface assumes that the density function given
(1) has x as its first argument (if the distribution is multivariate, then x should
be a matrix of observations) and (2) has a log argument that will return the
log-probability or log-probability density if log=TRUE. Some of the extended
functionality (prediction etc.) depends on the existence of an s- variant function
for the distribution that returns (at least) the mean and median as a function
of the parameters (currently defined: snorm, sbinom, sbeta, snbinom, spois).

> m0f <- mle2(x1~dbetabinom(prob,size=50,theta),

start=list(prob=0.2,theta=9),data=data.frame(x1))

Note that you must specify the data via the data argument when using the
formula interface. This may be slightly more unwieldy than just pulling the
data from your workspace when you are doing simple things, but in the long
run it makes tasks like predicting new responses much simpler.

It’s convenient to use the formula interface to try out likelihood estimation
on the transformed parameters:

> m0cf <- mle2(x1~dbetabinom(prob=plogis(lprob),size=50,theta=exp(ltheta)),

start=list(lprob=0,ltheta=2),data=data.frame(x1))

> confint(m0cf,method="uniroot")

2.5 % 97.5 %

lprob -2.229963 -2.095757

ltheta 2.187950 2.429744

> confint(m0cf,method="spline")

2.5 % 97.5 %

lprob -2.229963 -2.095756

ltheta 2.187948 2.429742

In this case the answers from uniroot and spline (default) methods barely
differ.

1.2 Real data (Orobanche, Crowder (1978))

Data are incorporated in the aod package:

> library(aod)

Package aod, version 1.2

> summary(orob1)

dilution n y

1/1 :6 Min. : 7.00 Min. : 0.00

1/25 :5 1st Qu.: 17.50 1st Qu.: 8.00

5

1/625:5 Median : 47.50 Median :13.50

Mean : 44.25 Mean :27.19

3rd Qu.: 57.50 3rd Qu.:46.25

Max. :104.00 Max. :90.00

Now construct a negative log-likelihood function that differentiates among
groups:

> ML1 <- function(prob1,prob2,prob3,theta,x) {

prob <- c(prob1,prob2,prob3)[as.numeric(x$dilution)]

size <- x$n

-sum(dbetabinom(x$y,prob,size,theta,log=TRUE))

}

Results from Crowder (1978):

model prob1 prob2 prob3 theta sd.prob1 sd.prob2 sd.prob3 NLL
prop diffs 0.132 0.871 0.839 78.424 0.027 0.028 0.032 −34.991
full model −34.829
homog model −56.258

> (m1 <- mle2(ML1,start=list(prob1=0.5,prob2=0.5,prob3=0.5,theta=1),

data=list(x=orob1)))

Call:

mle2(minuslogl = ML1, start = list(prob1 = 0.5, prob2 = 0.5,

prob3 = 0.5, theta = 1), data = list(x = orob1))

Coefficients:

prob1 prob2 prob3 theta

0.1318187 0.8706259 0.8382504 73.7968323

Log-likelihood: -34.99

Warning: optimization did not converge (code 1:)

Or:

> ## would prefer ~dilution-1, but problems with starting values ...

> (m1B <- mle2(y~dbetabinom(prob,size=n,theta),

param=list(prob~dilution),

start=list(prob=0.5,theta=1),

data=orob1))

The result warns us that the optimization has not converged; we also don’t
match Crowder’s results for θ exactly. We can fix this by setting parscale

appropriately.

6

> (m2 <- mle2(ML1,start=as.list(coef(m1)),

control=list(parscale=coef(m1)),

data=list(x=orob1)))

Call:

mle2(minuslogl = ML1, start = as.list(coef(m1)), data = list(x = orob1),

control = list(parscale = coef(m1)))

Coefficients:

prob1 prob2 prob3 theta

0.1322123 0.8708913 0.8393195 78.4227905

Log-likelihood: -34.99

Calculate likelihood profile (restrict the upper limit of θ, simply because it
will make the picture below a little bit nicer):

> p2 <- profile(m2,prof.upper=c(Inf,Inf,Inf,theta=2000))

Get the curvature-based parameter standard deviations (which Crowder used
rather than computing likelihood profiles):

> round(stdEr(m2),3)

prob1 prob2 prob3 theta

0.028 0.029 0.032 74.223

We are slightly off Crowder’s numbers — rounding error?
Crowder also defines a variance (overdispersion) parameter σ2 = 1/(1 + θ).

> sqrt(1/(1+coef(m2)["theta"]))

theta

0.1122089

Using the delta method (via the deltavar function in the emdbook package)
to approximate the standard deviation of σ:

> sqrt(deltavar(sqrt(1/(1+theta)),meanval=coef(m2)["theta"],

vars="theta",Sigma=vcov(m2)[4,4]))

[1] 0.0524311

Another way to fit in terms of σ rather than θ is to compute θ = 1/σ2 − 1
on the fly in a formula:

> m2b <- mle2(y~dbetabinom(prob,size=n,theta=1/sigma^2-1),

data=orob1,

parameters=list(prob~dilution,sigma~1),

start=list(prob=0.5,sigma=0.1))

> round(stdEr(m2b)["sigma"],3)

7

sigma

0.052

> p2b <- profile(m2b,prof.lower=c(-Inf,-Inf,-Inf,0))

As might be expected since the standard deviation of σ is large, the quadratic
approximation is poor:

> r1 <- rbind(confint(p2)["theta",],

confint(m2,method="quad")["theta",])

> rownames(r1) <- c("spline","quad")

> r1

2.5 % 97.5 %

spline 19.67216 NA

quad -67.05101 223.8966

Plot the profile:

> plot(p2,which="theta",plot.confstr=TRUE)

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: theta

theta

z

99%

95%

90%

80%

50%

What does the profile for σ look like?

> plot(p2b,which="sigma",plot.confstr=TRUE,

show.points=TRUE)

8

0.00 0.05 0.10 0.15 0.20 0.25

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Likelihood profile: sigma

sigma

z

● ●
●

●

●

●

●

●

●

●

●

99%

95%

90%

80%

50%

Now fit a homogeneous model:

> ml0 <- function(prob,theta,x) {

size <- x$n

-sum(dbetabinom(x$y,prob,size,theta,log=TRUE))

}

> m0 <- mle2(ml0,start=list(prob=0.5,theta=100),

data=list(x=orob1))

The log-likelihood matches Crowder’s result:

> logLik(m0)

'log Lik.' -56.25774 (df=2)

It’s easier to use the formula interface to specify all three of the models
fitted by Crowder (homogeneous, probabilities differing by group, probabilities
and overdispersion differing by group):

> m0f <- mle2(y~dbetabinom(prob,size=n,theta),

parameters=list(prob~1,theta~1),

data=orob1,

start=list(prob=0.5,theta=100))

> m2f <- mle2(y~dbetabinom(prob,size=n,theta),

9

parameters=list(prob~dilution,theta~1),

data=orob1,

start=list(prob=0.5,theta=78.424))

> m3f <- mle2(y~dbetabinom(prob,size=n,theta),

parameters=list(prob~dilution,theta~dilution),

data=orob1,

start=list(prob=0.5,theta=78.424))

anova runs a likelihood ratio test on nested models:

> anova(m0f,m2f,m3f)

Likelihood Ratio Tests

Model 1: m0f, y~dbetabinom(prob,size=n,theta): prob~1, theta~1

Model 2: m2f, y~dbetabinom(prob,size=n,theta): prob~dilution, theta~1

Model 3: m3f, y~dbetabinom(prob,size=n,theta): prob~dilution,

theta~dilution

Tot Df Deviance Chisq Df Pr(>Chisq)

1 2 112.515

2 4 69.981 42.5341 2 5.805e-10 ***

3 6 69.981 0.0008 2 0.9996

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The various ICtab commands produce tables of information criteria, option-
ally sorted and with model weights.

> AICtab(m0f,m2f,m3f,weights=TRUE,delta=TRUE,sort=TRUE)

dAIC df weight

m2f 0.0 4 0.881

m3f 4.0 6 0.119

m0f 38.5 2 <0.001

> BICtab(m0f,m2f,m3f,delta=TRUE,nobs=nrow(orob1),sort=TRUE,weights=TRUE)

dBIC df weight

m2f 0.0 4 0.9412

m3f 5.5 6 0.0588

m0f 37.0 2 <0.001

> AICctab(m0f,m2f,m3f,delta=TRUE,nobs=nrow(orob1),sort=TRUE,weights=TRUE)

dAICc df weight

m2f 0.0 4 0.99222

m3f 9.7 6 0.00778

m0f 35.8 2 < 0.001

10

2 Example: reed frog size predation

Data from an experiment by Vonesh (Vonesh and Bolker, 2005)

> frogdat <- data.frame(

size=rep(c(9,12,21,25,37),each=3),

killed=c(0,2,1,3,4,5,rep(0,4),1,rep(0,4)))

> frogdat$initial <- rep(10,nrow(frogdat))

> library(ggplot2)

> gg1 <- ggplot(frogdat,aes(x=size,y=killed))+geom_point()+

stat_sum(aes(size=factor(..n..)))+

labs(size="#")+scale_x_continuous(limits=c(0,40))

> m3 <- mle2(killed~dbinom(prob=c*(size/d)^g*exp(1-size/d),

size=initial),data=frogdat,start=list(c=0.5,d=5,g=1))

> pdat <- data.frame(size=1:40,initial=rep(10,40))

> pdat1 <- data.frame(pdat,killed=predict(m3,newdata=pdat))

> m4 <- mle2(killed~dbinom(prob=c*((size/d)*exp(1-size/d))^g,

size=initial),data=frogdat,start=list(c=0.5,d=5,g=1))

> pdat2 <- data.frame(pdat,killed=predict(m4,newdata=pdat))

> print(gg1 + geom_line(data=pdat1,colour="red")+

geom_line(data=pdat2,colour="blue"))

0

1

2

3

4

5

●

●

●

●

●

●

●●● ●

●

● ●●●●

●

●

●

●

●

● ●

●

●

 0 10 20 30 40
size

ki
lle

d

#
●

●

●

1

2

3

11

> coef(m4)

c d g

0.4138847 13.3517574 18.2511264

> prof4 <- profile(m4)

Three different ways to draw the profile:
(1) Built-in method (base graphics):

> print(plot(prof4))

NULL

0.2 0.4 0.6 0.8

0.
0

1.
0

2.
0

Likelihood profile: c

c

z

99%

95%
90%
80%

50%

10 11 12 13 14 15

0.
0

1.
0

2.
0

Likelihood profile: d

d

z

99%

95%
90%
80%

50%

0 10 20 30

0.
0

1.
0

2.
0

Likelihood profile: g

g

z

99%

95%
90%
80%

50%

(2) Using xyplot from the lattice package:

> prof4_df <- as.data.frame(prof4)

> library(lattice)

> print(xyplot(abs(z)~focal|param,data=prof4_df,

subset=abs(z)<3,

type="b",

xlab="",

ylab=expression(paste(abs(z),

" (square root of ",Delta," deviance)")),

scale=list(x=list(relation="free")),

layout=c(3,1)))

12

z
 (

sq
ua

re
 r

oo
t o

f ∆
 d

ev
ia

nc
e)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

●

●
●

c

8 10 12 14

●
●

●

●

●

●

●

●

●

●

●

●

●

●

d

10 20 30 40

●

●

●

●

●

●

●

●

●

g

(3) Using ggplot from the ggplot2 package:

> ss <-subset(prof4_df,abs(z)<3)

> print(ggplot(ss,

aes(x=focal,y=abs(z)))+geom_line()+

geom_point()+

facet_grid(.~param,scale="free_x"))

c d g

0.0

0.5

1.0

1.5

2.0

2.5

3.0

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8 1.0 8 10 12 14 5 10 15 20 25 30 35 40
focal

ab
s(

z)

Additions/enhancements/differences from stats4::mle

� anova method

� warnings on convergence failure

� more robust to non-positive-definite Hessian; can also specify skip.hessian

to skip Hessian computation when it is problematic

13

� when profiling fails because better value is found, report new values

� can take named vectors as well as lists as starting parameter vectors

� added AICc, BIC definitions, ICtab functions

� added "uniroot" and "quad" options to confint

� more options for colors and line types etc etc. The old arguments are:

> function (x, levels, conf = c(99, 95, 90, 80, 50)/100, nseg = 50,

absVal = TRUE, ...) {}

The new one is:

> function (x, levels, which=1:p, conf = c(99, 95, 90, 80, 50)/100, nseg = 50,

plot.confstr = FALSE, confstr = NULL, absVal = TRUE, add = FALSE,

col.minval="green", lty.minval=2,

col.conf="magenta", lty.conf=2,

col.prof="blue", lty.prof=1,

xlabs=nm, ylab="score",

show.points=FALSE,

main, xlim, ylim, ...) {}

which selects (by character vector or numbers) which parameters to plot:
nseg does nothing (even in the old version); plot.confstr turns on the
labels for the confidence levels; confstr gives the labels; add specifies
whether to add the profile to an existing plot; col and lty options specify
the colors and line types for horizontal and vertical lines marking the
minimum and confidence vals and the profile curve; xlabs gives a vector
of x labels; ylab gives the y label; show.points specifies whether to show
the raw points computed.

� mle.options()

� data argument

� handling of names in argument lists

� can use alternative optimizers (nlminb, nlm, constrOptim, optimx, op-
timize)

� uses code from numDeriv package to compute Hessians rather than built-in
optimizer code

� by default, uses MASS::ginv (generalized inverse) rather than solve to
invert Hessian (more robust to positive-semidefinite Hessians . . .)

� can use vecpar=TRUE (and parnames()) to use objective functions with
parameters specified as vectors (for compatibility with optim etc.)

14

3 Newer stuff

To do:

� use predict, simulate etc. to demonstrate different parametric bootstrap
approaches to confidence and prediction intervals

– use predict to get means and standard deviations, use delta method?

– use vcov, assuming quadratic profiles, with predict(...,newparams=...)

– prediction intervals assuming no parameter uncertainty with simu-

late

– both together . . .

4 Technical details

4.1 Profiling and confidence intervals

This section describes the algorithm for constructing profiles and confidence
intervals, which is not otherwise documented anywhere except in the code. *
indicates changes from the version in stats4:::mle

4.1.1 Estimating standard error

In order to construct the profile for a particular parameter, one needs an initial
estimate of the scale over which to vary that parameter. The estimated standard
error of the parameter based on the estimated curvature of the likelihood surface
at the MLE is a good guess.

� if std.err is missing, extract the standard error from the summary coef-
ficient table (ultimately computed from sqrt(diag(inverse Hessian))

of the fit)

� * a user-set value of std.err overrides this behavior unless the value is
specified as NA (in which case the estimate from the previous step is used)

� * if the standard error value is still NA (i.e. the user did not specify it and
the value estimated from the Hessian is missing or NA) use sqrt(1/diag(hessian)).
This represents a (fairly feeble) attempt to come up with a plausible num-
ber when the Hessian is not positive definite but still has positive diagonal
entries

� if all else fails, stop and * print an error message that encourages the user
to specify the values with std.err

There may be further tricks that would help guess the appropriate scale: for
example, one could guess on the basis of a comparison between the parameter
values and negative log-likelihoods at the starting and ending points of the fits.

15

On the other hand, (a) this would take some effort and still be subject to failure
for sufficiently pathological fits and (b) there is some value to forcing the user
to take explicit, manual steps to remedy such problems, as they may be signs
of poorly defined or buggy log-likelihood functions.

4.1.2 Profiling

Profiling is done on the basis of a constructed function that minimizes the
negative log-likelihood for a fixed value of the focal parameter and returns the
signed square-root of the deviance difference from the minimum (denoted by
z). At the MLE z = 0 by definition; it should never be < 0 unless something
has gone wrong with the original fit. The LRT significance cutoffs for z are
equal to the usual two-tailed normal distribution cutoffs (e.g. ± ≈ 1.96 for 95%
confidence regions).

In each direction (decreasing and increasing from the MLE for the focal
parameter):

� fix the focal parameter

� adjust control parameters etc. accordingly (e.g. remove the entry for
the focal parameter so that the remaining control parameters match the
non-fixed parameters)

� controls on the profiling (which can be set manually, but for which there
is not much guidance in the documentation):

– zmax Maximum z to aim for. (Default: sqrt(qchisq(1-alpha/2,

p))) The default maximum α (type I error) is 0.01. I don’t under-
stand this criterion. It seems to expand the size of the univariate
profile to match a cutoff for the multivariate confidence region of the
model. The χ2 cutoff for deviance to get the (1−α) multivariate con-
fidence region (i.e., on all p of the parameters) would be qchisq(1-

alpha,p) — representing a one-tailed test on the deviance. Taking
the square root makes sense, since we are working with the square
root of the deviance, but I don’t understand (1) why we are expand-
ing the region to allow for the multivariate confidence region (since
we are computing univariate profiles) [you could at least argue that
this is conservative, making the region a little bigger than it needs to
be]; (2) why we are using 1−α/2 rather than 1−α. For comparison,
MASS::profile.glm (written by Bates and Venables in 1996, ported
to R by BDR in 1998) uses zmax=sqrt(qchisq(1-alpha,1)) (this
makes more sense to me . . .) . On the other hand, the profiling
code in lme4a (the profile method for merMod, in profile.R) uses
qchisq(1-alphamax, nptot) . . .

– del Step size (scaled by standard error) (Default: zmax/5.) Pre-
sumably (?) copied from MASS::profile.glm, which says (in ?pro-

file.glm): “[d]efault value chosen to allow profiling at about 10
parameter values.”

16

– maxsteps Maximum number of profiling steps to try in each direction.
(Default: 100)

� While step<maxsteps and abs(z) < zmax, set the value of the focal pa-
rameter to its MLE + sgn*step*del*std.err where sgn represents the
direction, step is the current (integer) step, and del and std.err are the
step size scaling factor and standard error estimate discussed above (i.e.
take steps of size (del*std.err) in the appropriate direction); evaluate z

� Stop the profiling:

– if z doesn’t change from the previous step (stop_flat)

– * stop if z is less than tol.newmin (default: 0.001) units better than
the MLE fit, i.e. z < −tol.newmin (if −tol.newmin < z < 0, set z
to zero) (newpars_found)

– if z is NA (stop_na) (for greater robustness, should we try to keep
going anyway?)

– if z is beyond zmax (i.e., we have reached our goal: stop_cutoff)

– if step==maxsteps

– if the focal parameter has hit its upper/lower bound (stop_bound)

� if we have hit the maximum number of steps but not reached the cutoff
(stop_maxstep but not stop_cutoff), “try a bit harder”: go almost one
more del*std.err unit out (in intervals of 0.2, 0.4, 0.6, 0.8, 0.9) (also
seems reasonable but don’t know where it comes from)

� * if we violated the boundary but did not reach the cutoff (!stop_cutoff && stop_bound),
evaluate z at the boundary

� if we got to the cutoff in < 5 steps, try smaller steps: start at step=0.5

and proceed to mxstep-0.5 in unit increments (rather than the original
scale which went from 0 to mxstep). (Again, it seems reasonable, but I
don’t know what the original justification was . . .)

4.1.3 Confidence intervals

We are looking for the values where z (signed square root deviance difference) is
equal to the usual two-tailed normal distribution cutoffs for a specified α level,
e.g. z = ±1.96 for 95% confidence intervals (this is equivalent to a one-tailed
test on the deviance difference with the cutoff value for χ2

1).

� If necessary, construct the profile

� * If the profile of the signed square root is non-monotonic, warn the user
and revert to linear approximation on the profiled points to find the cutoffs:

17

� Otherwise, build an interpolation spline of z (signed square root deviance
difference) based on profiled points (the default is n = 3 × L where L is
the length of the original vector). Then use linear approximation on the
y (z) and x (focal parameter value) of the spline to find the cutoffs (Why
construct a spline and then interpolate linearly? Why not use backSpline

as in the profile plotting code?)

It is also possible to use method="quad" (this is obsolete, should be replaced
by documentation pointing to confint.default) and method="uniroot" (un-
documented for now; rather than approximating from the profile, try to use
uniroot with calls to the negative log-likelihood function to identify the confi-
dence intervals as precisely and robustly as possible (should be more accurate,
but slower — must also be computed for each specified α level separately).

4.1.4 Profile plotting

Plot the signed (or unsigned) square root deviance difference, and (1−α) confi-
dence regions/critical values designated by conf (default: {0.99, 0.95, 0.9, 0.8, 0.5}).

� * If the (signed) profile is non-monotonic, simply plot computed points
with type="l" (i.e., with the default linear interpolation)

� Construct the interpolation spline (using splines:::interpSpline rather
than spline as in the confidence interval method (why this difference?)

� attempt to construct the inverse of the interpolation spline (using back-

Spline)

� * if this fails warn the user (assume this was due to non-monotonicity)
and try to use uniroot and predict to find cutoff values

� otherwise, use the inverse spline to find cutoff values

Why is there machinery in the plotting code to find confidence intervals? Shouldn’t
this call confint, for consistency/fewer points of failure?

Bugs, wishes, to do

� WISH: further methods and arguments: subset, predict, resid: sim?

� WISH: extend ICtab to allow DIC as well?

� minor WISH: better methods for extracting nobs information when pos-
sible (e.g. with formula interface)

� WISH: better documentation, especially for S4 methods

� WISH: variable-length chunks in argument list

� WISH: limited automatic differentiation (add capability for common dis-
tributions)

18

References

Crowder, M. J. (1978). Beta-binomial Anova for proportions. Applied Statis-
tics 27, 34–37.

Vonesh, J. R. and B. M. Bolker (2005). Compensatory larval responses shift
tradeoffs associated with predator-induced hatching plasticity. Ecology 86 (6),
1580–1591.

19

	Example: Orobanche/overdispersed binomial
	Test basic fit to simulated beta-binomial data
	Real data (Orobanche, Crowder1978)

	Example: reed frog size predation
	Newer stuff
	Technical details
	Profiling and confidence intervals
	Estimating standard error
	Profiling
	Confidence intervals
	Profile plotting

