
Advanced array operations in the gRbase package

Søren Højsgaard

September 25, 2012

Contents

1 Tables 1

2 Notation 3

3 Algebraic operations on tables 3

4 Defining tables / arrays 5

5 Calculations with probability tables 6

1 Tables

This note describes various functions in the gRbase package for operations on tables /
arrays in R. Notice that there is a distinction between a table and an array in R. For the
purpose of what is described here the concepts can be used interchangably. The important
point is that we are working on vectors which have a dim and a dimnames attribute. (Arrays
do not need a dimnames attribute, but dimnames are essential in what follows here).

Consider the lizard data in gRbase:

1

> data(lizard)

> lizard

, , species = anoli

height

diam >4.75 <=4.75

<=4 32 86

>4 11 35

, , species = dist

height

diam >4.75 <=4.75

<=4 61 73

>4 41 70

Data is of class table and has dim and dimnames attributes

> class(lizard)

[1] "table"

> is.array(lizard)

[1] TRUE

> dim(lizard)

[1] 2 2 2

> dimnames(lizard)

$diam

[1] "<=4" ">4"

$height

[1] ">4.75" "<=4.75"

$species

[1] "anoli" "dist"

Notice from the output above that the first variable (diam) varies fastest.

2

2 Notation

A formal description of an array is as follows: Let ∆ = {δ1, . . . , δR} be a set of factors where
δr has a finite set Ir of levels. Let |Ir| denote the number of levels of δr and let ir ∈ Ir denote
a value of δr. A configuration of the variables in ∆ is i = i∆ = (i1, . . . , iR) ∈ I1×. . .×IR = I.
The total number of configurations is |∆| = ∏

r |Ir|. An array T is a function which maps
I into some domain.

3 Algebraic operations on tables

Let U and V be non–empty subsets of ∆ with configurations IU and IV and let T 1
U and T 2

V

be corresponding arrays.

• The product and quotient of T 1
U and T 2

V are arrays defined on U ∪ V given by

TU∪V (iU∪V) := T 1
U(iU)× T 2

V (iV) and TU∪V (iU∪V) := T 1
U(iU)/T 2

V (iV)

respectively, with the convention that 0/0 = 0.

• If W ⊂ U is non–empty1 then marginalization of T 1
U onto W is defined as

T 1
W (iW) :=

∑
iU\W

T 1
U(iU\W , iW)

• If W ⊂ U is non–empty then a configuration i∗W defines a slice of T 1
U as

T 1
U\V (iU\V) := T 1

U(iU\V , i
∗
V)

In a less abstract setting let U = {A,B,C}, V = {C,D,B} and W = {C,B} where (a, b, c)
denotes a specific configuration of {A,B,C} and so on. Then the product and quotient
become

TABCD(a, b, c, d) = T 1
ABC(a, b, c)T 2

CDB(c, d, b)

The marginal becomes
T 1
CB =

∑
a

T 1(a, b, c) and

Finally the slice defined by C = c∗ and B = b∗ becomes

T 1
A(a) = T 1

ABC(a, b∗, c∗)

To illustrate we find two marginal tables

1Marginalization onto an empty set is not implemented.

3

> T1.U <- tableMargin(lizard, c("species","height"))

height

species >4.75 <=4.75

anoli 43 121

dist 102 143

> T1.V <- tableMargin(lizard, c("diam","species"))

species

diam anoli dist

<=4 118 134

>4 46 111

Multiplication of these is done with

> T1.UV<-tableOp(T1.U, T1.V, op = "*")

, , height = >4.75

species

diam anoli dist

<=4 5074 13668

>4 1978 11322

, , height = <=4.75

species

diam anoli dist

<=4 14278 19162

>4 5566 15873

A slice of a table is obtained with tableSlice:

> tableSlice(lizard, "species", "anoli")

height

diam >4.75 <=4.75

<=4 32 86

>4 11 35

A reorganization of the table can be made with tablePerm:

4

> tablePerm(T1.UV, c("species","height","diam"))

, , diam = <=4

height

species >4.75 <=4.75

anoli 5074 14278

dist 13668 19162

, , diam = >4

height

species >4.75 <=4.75

anoli 1978 5566

dist 11322 15873

4 Defining tables / arrays

As mentioned above, a table can be represented as an array. In general, arrays do not need
dimnames in R, but for the functions described here, the dimnames are essential.

The examples here relate to the chest clinique example of Lauritzen and Spiegelhalter. The
following two specifications are equivalent:

> yn <- c('y','n')
> T.U <- array(c(5,95,1,99), dim=c(2,2), dimnames=list("tub"=yn, "asia"=yn))

> T.U <- parray(c("tub","asia"), levels=list(yn, yn), values=c(5,95,1,99))

Using parray(), arrays can be normalized in two ways: Normalization can be over the
first variable for each configuration of all other variables or over all configurations. We
illustrate this by defining the probability of tuberculosis given a recent visit to Asia and
by defining the marginal probability of a recent visit to Asia:

5

> T.U <- parray(c("tub","asia"), levels=list(yn, yn),

+ values=c(5,95,1,99), normalize="first")

asia

tub y n

y 0.05 0.01

n 0.95 0.99

> T.V <- parray("asia", list(yn), values=c(1,99),

+ normalize="all")

asia

y n

0.01 0.99

5 Calculations with probability tables

The joint distributions is

> T.all <- tableOp(T.U, T.V, op="*")

tub

asia y n

y 0.0005 0.0095

n 0.0099 0.9801

The marginal distribution of "tub" is

> T.W <- tableMargin(T.all, "tub")

tub

y n

0.0104 0.9896

The conditional distribution of "asia" given "tub" is

> tableOp(T.all, T.W, op="/")

asia

tub y n

y 0.048076923 0.9519231

n 0.009599838 0.9904002

6

