
Graphs in the gRbase package

Søren Højsgaard

December 26, 2012

Contents

1 Introduction 1

2 Graphs 2
2.1 Undirected graphs . 2
2.2 Directed acyclic graphs (DAGs) . 4

3 Graph coercion 5

4 Plotting graphs 6

5 Graph queries 7

6 Advanced graph operations 8
6.1 Moralization . 8
6.2 Maximum cardinality search . 9
6.3 Triangulation . 10
6.4 RIP ordering / junction tree . 12

7 Time and space considerations 13
7.1 Time . 13
7.2 Space . 14

1 Introduction

For the R community, the packages igraph, graph, RBGL and Rgraphviz are extremely
useful tools for graph operations, manipulation and layout. The gRbase package adds
some additional tools to these fine packages. The most important tools are:

1

1. Undirected and directed acyclic graphs can be specified using formulae or an adja-
cency list using the functions ug() and dag(). This gives graphs represented in one
of the following four forms:

• graphNEL objects (the default),

• adjacency matrices. There are two type of adjacency matrices in this context:
A “standard” matrix in R and a sparse matrix (or to be precise: a dgCMatrix in
the Matrix package).

• igraphs

2. Some graph algorithms are implemented in gRbase. These can be applied to graphs
represented as graphNELs and matrices. Some can also be applied to igraphs but we
are not consistent with respect to this. The most important algorithms are:

• mcs(),(maximum cardinality search)

• moralize(), (moralization of directed acyclic graph),

• rip(), (RIP ordering of cliques of triangulated undirected graph),

• triangulate(), (triangulate undirected graph).

3. Furthermore corresponding to some of the functions in the graph and RBGL packages
there are corresponding matrix versions of these implemented in gRbase. These are:
maxCliqueMAT().

2 Graphs

Undirected graphs can be created by the ug() function and directed acyclic graphs (DAGs)
by the dag() function.

The graphs can be specified either using formulae or a list of vectors; see examples below.

2.1 Undirected graphs

An undirected graph is created by the ug() function.

As graphNEL: The following specifications are equivalent (notice that “:” and “*” can be
used interchangably):

ug11 <- ug(~a:b:c + c:d + d:e + a:e + f:g)

ug11 <- ug(~a*b*c + c*d + d*e + a*e + f*g)

ug12 <- ug(c("a","b","c"),c("c","d"),c("d","e"),c("a","e"),c("f","g"))

ug13 <- ug(~a:b:c, ~c:d, ~d:e + a:e + f:g)

ug13 <- ug(~a*b*c, ~c*d, ~d*e + a*e + f*g)

2

ug11

A graphNEL graph with undirected edges

Number of Nodes = 7

Number of Edges = 7

As adjacency matrix: A representation as an adjacency matrix can be obtained with
one of the following equivalent specifications:

ug11m <- ug(~a*b*c + c*d + d*e + a*e + f*g, result="matrix")

ug12m <- ug(c("a","b","c"),c("c","d"),c("d","e"),c("a","e"),c("f","g"),

result="matrix")

ug11m

a b c d e f g

a 0 1 1 0 1 0 0

b 1 0 1 0 0 0 0

c 1 1 0 1 0 0 0

d 0 0 1 0 1 0 0

e 1 0 0 1 0 0 0

f 0 0 0 0 0 0 1

g 0 0 0 0 0 1 0

ug11M <- ug(~a*b*c + c*d + d*e + a*e + f*g, result="Matrix")

ug12M <- ug(c("a","b","c"),c("c","d"),c("d","e"),c("a","e"),c("f","g"),

result="Matrix")

ug11M

7 x 7 sparse Matrix of class "dgCMatrix"

a b c d e f g

a . 1 1 . 1 . .

b 1 . 1

c 1 1 . 1 . . .

d . . 1 . 1 . .

e 1 . . 1 . . .

f 1

g 1 .

As igraph: A representation as an igraph object can be obtained with one of the fol-
lowing equivalent specifications:

3

ug11i <- ug(~a*b*c + c*d + d*e + a*e + f*g, result="igraph")

ug12i <- ug(c("a","b","c"),c("c","d"),c("d","e"),c("a","e"),c("f","g"),

result="igraph")

ug11i

IGRAPH UNW- 7 7 --

+ attr: name (v/c), label (v/c), weight (e/n)

2.2 Directed acyclic graphs (DAGs)

A directed acyclic graph is created by the dag() function.

As graphNEL: The following specifications are equivalent (notice that “:” and “*” can be
used interchangably):

dag11 <- dag(~a + b:a + c:a:b + d:c:e + e:a + g:f)

dag11 <- dag(~a + b*a + c*a*b + d*c*e + e*a + g*f)

dag12 <- dag("a", c("b","a"), c("c","a","b"), c("d","c","e"),

c("e","a"),c("g","f"))

dag13 <- dag(~a, ~b:a, ~c:a:b, ~d:c:e, ~e:a, ~g:f)

dag13 <- dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f)

dag11

A graphNEL graph with directed edges

Number of Nodes = 7

Number of Edges = 7

Here ~a means that “a” has no parents while ~d:b:c means that “d” has parents “b” and
“c”.

As adjacency matrix: A representation as an adjacency matrix can be obtained with

dag11m <- dag(~a + b:a + c:a:b + d:c:e + e:a + g:f, result="matrix")

dag12m <- dag("a", c("b","a"), c("c","a","b"), c("d","c","e"),

c("e","a"),c("g","f"), result="matrix")

4

dag11m

a b c d e g f

a 0 1 1 0 1 0 0

b 0 0 1 0 0 0 0

c 0 0 0 1 0 0 0

d 0 0 0 0 0 0 0

e 0 0 0 1 0 0 0

g 0 0 0 0 0 0 0

f 0 0 0 0 0 1 0

dag11M <- dag(~a + b:a + c:a:b + d:c:e + e:a + g:f, result="Matrix")

dag12M <- dag("a", c("b","a"), c("c","a","b"), c("d","c","e"),

c("e","a"),c("g","f"), result="Matrix")

dag11M

7 x 7 sparse Matrix of class "dgCMatrix"

a b c d e g f

a . 1 1 . 1 . .

b . . 1

c . . . 1 . . .

d

e . . . 1 . . .

g

f 1 .

As igraph: A representation as an igraph object can be obtained with

dag11i <- dag(~a + b:a + c:a:b + d:c:e + e:a + g:f, result="igraph")

dag12i <- dag("a", c("b","a"), c("c","a","b"), c("d","c","e"),

c("e","a"),c("g","f"), result="igraph")

3 Graph coercion

Graphs can be coerced between differente representations using as(); for example

5

as(ug11,"igraph")

IGRAPH UNW- 7 7 --

+ attr: name (v/c), label (v/c), weight (e/n)

as(as(ug11,"igraph"),"matrix")

a b c d e f g

a 0 1 1 0 1 0 0

b 1 0 1 0 0 0 0

c 1 1 0 1 0 0 0

d 0 0 1 0 1 0 0

e 1 0 0 1 0 0 0

f 0 0 0 0 0 0 1

g 0 0 0 0 0 1 0

as(as(as(ug11,"igraph"),"matrix"),"graphNEL")

A graphNEL graph with undirected edges

Number of Nodes = 7

Number of Edges = 7

as(as(as(as(ug11,"igraph"),"matrix"),"graphNEL"),"Matrix")

7 x 7 sparse Matrix of class "dgCMatrix"

a b c d e f g

a . 1 1 . 1 . .

b 1 . 1

c 1 1 . 1 . . .

d . . 1 . 1 . .

e 1 . . 1 . . .

f 1

g 1 .

4 Plotting graphs

Graphs represented as graphNELs and igraphs: Graphs represented as graphNEL

objects and igraph objects are displayed with plot().

6

par(mfrow=c(1,2))

plot(ug11)

plot(ug11i)

a

b

c

d

e

f

g
●

●

●●

●

● ●

a

b

cd

e

f g

Graphs represented as adjacency matrices: There is no plot method for graphs
represented as adjacency matrices in gRbase but the gplot() function in the sna package
has these facilities:

par(mfrow=c(1,2))

library(sna)

gplot(ug11m, label=colnames(ug11m),gmode="graph")

gplot(dag11m, label=colnames(dag11m))

5 Graph queries

The graph and RBGL packages implement various graph operations for graphNEL objects.
See the documentation for these packages. The gRbase implements a few additional
functions, see Section 1. An additional function in gRbase for graph operations is query-
graph(). This function is intended as a wrapper for the various graph operations available
in gRbase, graph and RBGL. There are two main virtues of querygraph(): 1) query-

graph() operates on any of the three graph representations described above1 and 2)
querygraph() provides a unified interface to the graph operations. The general syntax is

args(querygraph)

function (object, op, set = NULL, set2 = NULL, set3 = NULL)

NULL

1Actually not quite yet, but it will be so in the future.

7

6 Advanced graph operations

6.1 Moralization

apropos("^moralize\\.")

[1] "moralize.Matrix" "moralize.graphNEL" "moralize.igraph"

[4] "moralize.matrix"

A moralized directed acyclic graph is obtained with

dag11.mor <- moralize(dag11)

par(mfrow=c(1,2))

plot(dag11)

plot(dag11.mor)

a

b

c

d

e

g

f a

b

c

d

e

g

f

For the alternative representations

8

moralize(dag11m)

a b c d e g f

a 0 1 1 0 1 0 0

b 1 0 1 0 0 0 0

c 1 1 0 1 1 0 0

d 0 0 1 0 1 0 0

e 1 0 1 1 0 0 0

g 0 0 0 0 0 0 1

f 0 0 0 0 0 1 0

moralize(dag11M)

7 x 7 sparse Matrix of class "dgCMatrix"

a b c d e g f

a . 1 1 . 1 . .

b 1 . 1

c 1 1 . 1 1 . .

d . . 1 . 1 . .

e 1 . 1 1 . . .

g 1

f 1 .

moralize(dag11i)

IGRAPH UN-- 7 8 --

+ attr: name (v/c), label (v/c)

6.2 Maximum cardinality search

apropos("^mcs\\.")

[1] "mcs.Matrix" "mcs.graphNEL" "mcs.igraph" "mcs.matrix"

Testing for whether a graph is triangulated is based on Maximum Cardinality Search. If
character(0) is returned the graph is not triangulated. Otherwise a linear ordering of the
nodes is returned.

9

mcs(ug11)

character(0)

mcs(ug11m)

character(0)

mcs(ug11M)

character(0)

mcs(ug11i)

character(0)

mcs(dag11.mor)

[1] "a" "b" "c" "e" "d" "g" "f"

mcs(as(dag11.mor,"matrix"))

[1] "a" "b" "c" "e" "d" "g" "f"

mcs(as(dag11.mor,"Matrix"))

[1] "a" "b" "c" "e" "d" "g" "f"

mcs(as(dag11.mor,"igraph"))

[1] "a" "b" "c" "e" "d" "g" "f"

mcs(dag11)

character(0)

6.3 Triangulation

apropos("^triangulate\\.")

[1] "triangulate.Matrix" "triangulate.graphNEL" "triangulate.igraph"

[4] "triangulate.matrix"

Triangulate an undirected graph by adding extra edges to the graph:

10

(tug11<-triangulate(ug11))

A graphNEL graph with undirected edges

Number of Nodes = 7

Number of Edges = 8

(tug11m<-triangulate(ug11m))

a b c d e f g

a 0 1 1 0 1 0 0

b 1 0 1 0 0 0 0

c 1 1 0 1 1 0 0

d 0 0 1 0 1 0 0

e 1 0 1 1 0 0 0

f 0 0 0 0 0 0 1

g 0 0 0 0 0 1 0

(tug11M<-triangulate(ug11M))

7 x 7 sparse Matrix of class "dgCMatrix"

a b c d e f g

a . 1 1 . 1 . .

b 1 . 1

c 1 1 . 1 1 . .

d . . 1 . 1 . .

e 1 . 1 1 . . .

f 1

g 1 .

(tug11i<-triangulate(ug11i))

IGRAPH UN-- 7 8 --

+ attr: name (v/c), label (v/c)

par(mfrow=c(1,2))

plot(ug11)

plot(tug11)

11

a

b

c

d

e

f

g

a

b

c

d

e

f

g

6.4 RIP ordering / junction tree

apropos("^rip\\.")

[1] "rip.Matrix" "rip.graphNEL" "rip.igraph" "rip.matrix"

A RIP ordering of the cliques of a triangulated graph can be obtained as:

rr <- rip(tug11)

rr

cliques

1 : c a b

2 : e a c

3 : d c e

4 : g f

separators

1 :

2 : a c

3 : c e

4 :

parents

1 : 0

2 : 1

3 : 2

4 : 0

rr <- rip(tug11m)

rr <- rip(tug11M)

12

plot(rr)

1

2

3

4

7 Time and space considerations

7.1 Time

It is worth noticing that working with graphs representated as graphNEL objects is some-
what slower working with graphs represented as adjacency matrices. Consider finding the
cliques of an undirected graph represented as a graphNEL object or as a matrix:

system.time({for (ii in 1:200) maxClique(ug11)}) ## in RBGL

user system elapsed

0.11 0.00 0.11

system.time({for (ii in 1:200) maxCliqueMAT(ug11m)}) ## in gRbase

user system elapsed

0.02 0.00 0.01

Working with sparse matrices rather than standard matrices slows indexing down:

13

system.time({for (ii in 1:2000) ug11m[2,]})

user system elapsed

0 0 0

system.time({for (ii in 1:2000) ug11M[2,]})

user system elapsed

0.76 0.00 0.76

However, gRbase has some functionality for indexing sparse matrices quickly:

system.time({for (ii in 1:2000) sp_getXj(ug11M,2)})

user system elapsed

0.03 0.00 0.03

7.2 Space

The graphNEL representation is – at least – in principle more economic in terms of space
requirements than the adjacency matrix representation (because the adjacency matrix rep-
resentation uses a 0 to represent a “missing edge”. The sparse matrix representation is
clearly only superior to the standard matrix representation if the graph is sparse:

14

V <- 1:100

M <- 1:10

Sparse graph

##

g1 <- randomGraph(V, M, 0.05)

length(edgeList(g1))

[1] 94

object.size(g1)

117232 bytes

object.size(as.adjMAT(g1))

51648 bytes

object.size(as.adjMAT(g1, "Matrix"))

15360 bytes

More dense graph

##

g1 <- randomGraph(V, M, 0.5)

length(edgeList(g1))

[1] 4608

object.size(g1)

3511640 bytes

object.size(as.adjMAT(g1))

51648 bytes

object.size(as.adjMAT(g1, "Matrix"))

123696 bytes

15

