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1 Introduction

The packages graph, RBGL, Rgraphviz and igraph are extremely useful tools for graph oper-
ations, manipulation and layout. The gRbase package adds some additional tools to these fine
packages. The most important tools are:

1. Undirected and directed acyclic graphs can be specified using formulae or an adjacency list
using the functions ug() and dag().

This gives graphs represented in one of the following forms:1

• A graphNEL object (the default),

• A dense adjacency matrix (a “standard” matrix in R).

• A sparse adjacency matrix( a dgCMatrix from the Matrix package).

1There is a fourth form: igraph objects. These, however, will probably not be supported in the future.
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2. Some graph algorithms are implemented in gRbase. These can be applied to graphs repre-
sented as graphNELs and matrices. The most important algorithms are:

• moralize(), (moralize a directed acyclic graph)

• mcs(),(maximum cardinality search for undirected graph)

• triangulate(), (triangulate undirected graph)

• rip(), (RIP ordering of cliques of triangulated undirected graph)

• jTree() (Create junction tree from triangualted undirected graph).

• getCliques(), (get the (maximal) cliques of an undirected graph)

• minimalTriang() (minimal triangulation of undirected graph)

• mpd() (maximal prime subgraph decomposition of undirected graph)

The general scheme is the following: For example, for maximum cardinality search there is
a mcs() function and a mcs.default() method performs maximum cardinality search for
graphs represented as graphNELs and as sparse and dense matrices. The workhorse is the
function mcsMAT() which takes a sparse or a dense matrix as input.

2 Graphs

Undirected graphs can be created by the ug() function and directed acyclic graphs (DAGs) by
the dag() function. The graphs can be specified either using formulae or a list of vectors; see
examples below.

2.1 Undirected graphs

An undirected graph is created by the ug() function. The following specifications are equivalent
(notice that “:” and “*” can be used interchangably):

R> ug11 <- ug( ~a*b + b*c*d)
R> ug12 <- ug( c("a","b"), c("b","c","d") )
R> ug13 <- ug( list( c("a","b"), c("b","c","d") ) )

Default is to return a graphNEL object (for which there is a plot method):

R> ug11

A graphNEL graph with undirected edges
Number of Nodes = 4
Number of Edges = 4

R> nodes(ug11)

[1] "a" "b" "c" "d"

R> str( edges(ug11) )

List of 4
$ a: chr "b"
$ b: chr [1:3] "c" "d" "a"
$ c: chr [1:2] "d" "b"
$ d: chr [1:2] "b" "c"

R> plot( ug11 )
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Matrix representations are obtained with:

R> ug11m <- ug( ~a*b + b*c*d, result="matrix")

a b c d
a 0 1 0 0
b 1 0 1 1
c 0 1 0 1
d 0 1 1 0

R> ug11M <- ug( ~a*b + b*c*d, result="dgCMatrix")

4 x 4 sparse Matrix of class "dgCMatrix"
a b c d

a . 1 . .
b 1 . 1 1
c . 1 . 1
d . 1 1 .

2.2 Directed acyclic graphs (DAGs)

A directed acyclic graph is created by the dag() function. The following specifications are equiv-
alent (notice that “:” and “*” can be used interchangably):

R> dag11 <- dag( ~a*b + b*c*d)
R> dag12 <- dag( c("a","b"), c("b","c","d") )
R> dag13 <- dag( list( c("a","b"), c("b","c","d") ) )

The syntax rules are that ~a (and "a") means that“a”has no parents while ~c:a:b (and c("c","a","b"))
means that “c” has parents “a” and “b”.

R> dag11

A graphNEL graph with directed edges
Number of Nodes = 4
Number of Edges = 3

R> nodes( dag11 )

[1] "a" "b" "c" "d"

R> str( edges( dag11 ) )

List of 4
$ a: chr(0)
$ b: chr "a"
$ c: chr "b"
$ d: chr "b"

R> plot( dag11 )
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Matrix representations are obtained with:

R> dag11m <- dag( ~a*b + b*c*d, result="matrix")
R> dag11M <- dag( ~a*b + b*c*d, result="dgCMatrix")

2.3 Other types of graphs

The dag() function allows for creation of directed graphs which are not DAGs. Consider

R> d1.bi <- dag(~a:b + b:a)
R> edgemode( d1.bi )

[1] "directed"

R> str( edges(d1.bi) )

List of 2
$ a: chr "b"
$ b: chr "a"

This graph is not DAG because there is an edge from a to b and from b to a; i.e., the edge is
bidirected. Likewise we may create:

R> d2.cyc <- dag(~a:b+b:c+c:a)

R> par(mfrow=c(1,2)); plot(d1.bi); plot(d2.cyc)

a

b

a

b

c

Notice: Supplying dag() with forceCheck=TRUE forces dag() to check if the graph is acyclic:

R> print( try( dag(~a:b+b:c+c:a, forceCheck=TRUE) ) )

[1] "Error : In dag/dagList: Graph is not a DAG\n"
attr(,"class")
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[1] "try-error"
attr(,"condition")
<simpleError: In dag/dagList: Graph is not a DAG>

2.4 Graph properties

2.5 Adjacency matrices

Graphs in the graph package (i.e. graphNEL objects) are represented as adjacency lists. However,
there is a substantial overhead (in terms of computing time) for such objects. The graph algorithms
in gRbase are mostly based on a representation as sparse adjacency matrices (which leads to faster
code).

A non-zero value at entry (i, j) in an adjacency matrix A for a graph means that there is an edge
from i to j. If also (j, i) is non-zero then there is also an edge from j to i. In this case we may
think of a bidirected edge between i and j or we may think of the edge as being undirected. We do
not distinguish between undirected and bidirected edges in the gRbase package. Put differently,
in gRbase, edges are either directed or undirected/bidirected. In contrast, with graphNEL objects
one can work with three types of edges: undirected, directed and bidirected edges.

• is.UG() checks if the adjacency matrix is symmetric (If applied to a graphNEL, the adja-
cency matrix is created and checked for symmetry.)

• is.TUG() checks if the graph is undirected and triangulated (also called chordal) by checking
if the adjacency matrix is symmetric and the vertices can be given a perfect ordering using
maximum cardinality seach.

• is.DG() checks if a graph is directed, i.e., that there are no undirected edges. This is done
by computing the elementwise product of A and the transpose of A; if there are no non–zero
entries in this product then the graph is directed.

• is.DAG() will return TRUE if all edges are directed and if there are no cycles in the graph.
(This is checked by checking if the vertices in the graph can be given a topological ordering
which is based on identifying an undirected edge with a bidrected edge).

Notice a special case, namely if the graph has no edges at all (such that the adjacency matrix
consists only of zeros). Such a graph is both undirected, triangulated, directed and directed acyclic.

Consider these examples (where isDirected() is a method from the graph package):

2.6 Graph coercion

Graphs can be coerced between differente representations using as(); for example:

R> (mat <- as(ug11, "matrix"))

a b c d
a 0 1 0 0
b 1 0 1 1
c 0 1 0 1
d 0 1 1 0

R> (Mat <- as(mat, "dgCMatrix"))

4 x 4 sparse Matrix of class "dgCMatrix"
a b c d

a . 1 . .
b 1 . 1 1
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c . 1 . 1
d . 1 1 .

R> (NEL <- as(Mat, "graphNEL"))

A graphNEL graph with undirected edges
Number of Nodes = 4
Number of Edges = 4

Faster (generally) coercion can be obtained with

R> mat <- coerceGraph(ug11, "matrix")
R> Mat <- coerceGraph(ug11, "dgCMatrix")
R> NEL <- coerceGraph(mat, "graphNEL")

and

R> mat <- graphNEL2M(ug11, result="matrix")
R> Mat <- graphNEL2M(ug11, result="dgCMatrix")
R> NEL <- M2graphNEL(mat)

R> if( require(microbenchmark) ){
microbenchmark(as(ug11, "matrix"), coerceGraph(ug11, "matrix"), graphNEL2M(ug11),

as(ug11, "dgCMatrix"), coerceGraph(ug11, "dgCMatrix"),
graphNEL2M(ug11, result="Matrix"),
as(mat, "graphNEL"), coerceGraph(mat, "graphNEL"), M2graphNEL(mat))

}

Unit: microseconds
expr min lq mean median uq

as(ug11, "matrix") 134.19 182.08 242.17 221.62 283.4
coerceGraph(ug11, "matrix") 63.48 81.92 126.37 122.59 156.8

graphNEL2M(ug11) 48.66 64.62 97.19 94.84 114.8
as(ug11, "dgCMatrix") 139.89 185.51 265.74 248.23 314.4

coerceGraph(ug11, "dgCMatrix") 69.18 108.53 137.22 134.19 155.5
graphNEL2M(ug11, result = "Matrix") 61.20 74.51 113.60 114.61 136.8

as(mat, "graphNEL") 2450.72 2958.20 3842.69 3552.16 4427.6
coerceGraph(mat, "graphNEL") 2487.21 2949.27 3972.70 3657.46 4489.8

M2graphNEL(mat) 2426.39 3075.66 3974.53 3853.60 4655.1
max neval cld

705.1 100 a
528.4 100 a
291.6 100 a
740.1 100 a
311.3 100 a
217.4 100 a
8897.8 100 b
8743.5 100 b
7972.9 100 b

We also have

R> str( edges(as(mat,"graphNEL")) )

List of 4
$ a: chr "b"
$ b: chr [1:3] "a" "c" "d"
$ c: chr [1:2] "b" "d"
$ d: chr [1:2] "b" "c"

R> str( M2adjList(mat) )

List of 4
$ a: chr "b"
$ b: chr [1:3] "a" "c" "d"
$ c: chr [1:2] "b" "d"
$ d: chr [1:2] "b" "c"
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3 Advanced graph operations

3.1 Moralization

A moralized directed acyclic graph is obtained with

R> dag11.mor <- moralize(dag11)

R> par(mfrow=c(1,2)); plot(dag11); plot(dag11.mor)

a

b

c d a

b

c

d
We can work with a matrix representation too. Default is that the output representation is the
same as the input representation, but this can be changed:

R> moralize( dag11m )

a b c d
a 0 1 0 0
b 1 0 1 1
c 0 1 0 1
d 0 1 1 0

R> moralize( dag11, result="matrix" )

a b c d
a 0 1 0 0
b 1 0 1 1
c 0 1 0 1
d 0 1 1 0

3.2 Topological sort

A topological ordering of a directed graph is a linear ordering of its vertices such that, for every
edge (u → v), u comes before v in the ordering. A topological ordering is possible if and only if
the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at
least one topological ordering.

R> topoSort(dag11)

[1] "c" "d" "b" "a"

R> topoSort(dag11m)

[1] "c" "d" "b" "a"

R> topoSort(dag11M)

[1] "c" "d" "b" "a"

The following graph has a cycle and hence a topological ordering can not be made:
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R> topoSort(dag(~a:b+b:c+c:a))

character(0)

Likewise for an undirected graph (recall that we regard an undirected edge as a bidirected edge):

R> topoSort( ug( ~a:b ) )

character(0)

3.3 Getting the cliques of an undirected graph

In graph theory, a clique is often a complete subset of a graph. A maximal clique is a clique which
can not be enlarged. In statistics (and that is the convention we follow here) a clique is usually
understood to be a maximal clique. Finding the cliques of a general graph is an NP–complete
problem. Finding the cliques of triangulated graph is linear in the number of cliques.

R> str( getCliques(ug11) )

List of 2
$ : chr [1:3] "b" "c" "d"
$ : chr [1:2] "b" "a"

R> str( getCliques(ug11m) )

List of 2
$ : chr [1:3] "b" "c" "d"
$ : chr [1:2] "b" "a"

R> str( getCliques(ug11M) )

List of 2
$ : chr [1:3] "b" "c" "d"
$ : chr [1:2] "b" "a"

For graphNEL objects one may also use the maxClique() function in RBGL, but getCliques()

applies also to matrices and it is substantially faster:

R> if (require(microbenchmark)){
microbenchmark(

RBGL::maxClique( ug11 ), getCliques( ug11 ), getCliques( ug11m ),
getCliques( ug11M ))}

Unit: microseconds
expr min lq mean median uq max neval cld

RBGL::maxClique(ug11) 378.23 410.54 474.14 426.70 480.68 806.6 100 c
getCliques(ug11) 109.86 120.50 149.16 137.61 166.12 241.8 100 b
getCliques(ug11m) 30.41 37.25 51.75 45.24 58.16 238.7 100 a
getCliques(ug11M) 41.44 50.75 64.43 57.02 70.51 120.5 100 a

3.4 Perfect ordering, maximum cardinality search and triangulation

An undirected graph is triangulated (or chordal) if it has no cycles of length ≥ 4 without a chord.
This is equivalent to that the vertices can be given a perfect ordering. A perfect ordering (if it
exists) can be obtained with Maximum Cardinality Search. If character(0) is returned the graph
is not triangulated. Otherwise a perfect ordering of the nodes is returned.

R> mcs(ug11)

[1] "a" "b" "c" "d"

R> mcs(ug11m)

[1] "a" "b" "c" "d"

R> mcs(ug11M)

[1] "a" "b" "c" "d"
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In some applications it is convenient to retain control over the ordering (if it exists). For example:

R> mcs(ug11, root=c("a","c"))

[1] "a" "b" "c" "d"

The desired ordering (specified by root) is followed as far as possible (here only to the first variable
"a"). Notice the output when applying mcs() to a directed graph:2

R> mcs( dag11 )

character(0)

R> mcs( as(dag11, "matrix") )

character(0)

Any undirected graph can be triangulated by adding edges to the graph, so called fill-ins:

R> ug11.nc <- ug( ~a:b:c + c:d + d:e + a:e + f:g )

A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 7

R> mcs(ug11.nc)

character(0)

R> (tug11.nc <- triangulate(ug11.nc))

A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 8

R> mcs(tug11.nc)

[1] "a" "b" "c" "e" "d" "f" "g"

R> par(mfrow=c(1,2)); plot(ug11.nc); plot(tug11.nc)

a

b

c

d

e
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3.5 RIP ordering / junction tree

A RIP–ordering of the cliques of a triangulated graph can be obtained as:

R> rp <- rip(tug11.nc); rp

cliques
1 : c a b
2 : c a e
3 : c d e

2Perhaps better to signal an error.
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4 : f g
separators
1 :
2 : c a
3 : c e
4 :

parents
1 : 0
2 : 1
3 : 2
4 : 0

R> plot( rp )

1

2

3

4

The function jTree takes an undirected graph as input; triangulates it if it is not already so and
then finds a RIP–ordering.

3.6 Minimal triangulation and maximum prime subgraph decomposi-
tion

A triangulation is minimal if no fill-ins can be removed without breaking the property that the
graph is triangulated. (A related concept is the minimum triangulation, which is the the graph with
the smallest number of fill-ins. The minimum triangulation is unique, but finding the minimum
triangulation is NP-hard.)

For example, this graph has two 4–cycles:

R> g1 <- ug(~a:b+b:c+c:d+d:e+e:f+a:f+b:e)
R> g1mt <- minimalTriang(g1) # A minimal triangulation

R> par(mfrow = c(1,2)); plot(g1); plot(g1mt)
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The following graph is also a triangulation of g1, and from this a minimal triangulation can be
obtained:

R> g2 <- ug(~a:b:e:f+b:c:d:e)
R> g1mt2 <- minimalTriang(g1, tobject=g2)

R> par(mfrow = c(1,2)); plot(g2); plot(g1mt2)

a
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d

a

b

e

fc

d

The junction tree of a maximum prime subgraph decomposition is obtained with:

R> mm <- mpd( g1 ); mm

cliques
1 : b a f e
2 : b d e c

separators
1 :
2 : b e

parents
1 : 0
2 : 1

R> par(mfrow = c(1,2))
R> plot(subGraph(mm$cliques[[1]], g1))
R> plot(subGraph(mm$cliques[[2]], g1))
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4 Time and space considerations

4.1 Time

It is worth noticing that working with graphs representated as graphNEL objects can be somewhat
slower than working with graphs represented as adjacency matrices. Consider finding the cliques
of an undirected graph represented as a graphNEL object or as a matrix:

R> if(require(microbenchmark)){
microbenchmark(

RBGL::maxClique(ug11),
getCliques(ug11),
getCliques(ug11m),
getCliques(ug11M) ) }

Unit: microseconds
expr min lq mean median uq max neval cld

RBGL::maxClique(ug11) 411.69 471.56 680.67 603.65 794.29 2148.5 100 c
getCliques(ug11) 114.04 137.99 200.11 176.38 258.49 496.5 100 b
getCliques(ug11m) 33.45 43.53 71.96 65.00 83.63 242.5 100 a
getCliques(ug11M) 43.72 62.91 96.06 87.62 107.58 408.6 100 a

4.2 Space

The graphNEL representation is – at least – in principle more economic in terms of space require-
ments than the adjacency matrix representation (because the adjacency matrix representation uses
a 0 to represent a “missing edge”. The sparse matrix representation is clearly only superior to the
standard matrix representation if the graph is sparse:

R> V <- 1:300
R> M <- 1:10
R> ## Sparse graph
R> ##
R> g1 <- randomGraph(V, M, 0.05)
R> length(edgeList(g1))

[1] 876

R> s<-c(NEL=object.size(g1), dense=object.size(as(g1, "matrix")),
sparse=object.size(as(g1, "dgCMatrix")))

R> s/max(s)
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NEL dense sparse
1.00000 0.95467 0.07258

R> ## More dense graph
R> ##
R> g1 <- randomGraph(V, M, 0.5)
R> length(edgeList(g1))

[1] 42955

R> s <- c(NEL=object.size(g1), dense=object.size(as(g1, "matrix")),
sparse=object.size(as(g1, "dgCMatrix")))

R> s/max(s)

NEL dense sparse
1.00000 0.02325 0.03291

5 Graph queries

The graph and RBGL packages implement various graph operations for graphNEL objects. See
the documentation for these packages. The gRbase implements a few additional functions, see
Section 1. An additional function in gRbase for graph operations is querygraph(). This function
is intended as a wrapper for the various graph operations available in gRbase, graph and RBGL.
There are two main virtues of querygraph(): 1) querygraph() operates on any of the three graph
representations described above3 and 2) querygraph() provides a unified interface to the graph
operations. The general syntax is

R> args(querygraph)

function (object, op, set = NULL, set2 = NULL, set3 = NULL)
NULL

3Actually not quite yet, but it will be so in the future.
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