
Introduction to Spatio-Temporal Variography
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1 Introduction

Since gstat package version 1.0-0, a dependency of gstat on the R package
spacetime was introduced, allowing the code in gstat to exploit spatio-temporal
data structures from that package. This vignette describes the possibilities and
limitations of the package for spatio-temporal geostatistics.

To understand some of the possibilities and limitations, some knowledge of
the history of the software is needed. The original gstat software (Pebesma
and Wesseling, 1998) was a standalone computer program written in around
25,000 lines of C code, and would do geostatistical modelling, prediction and
simulation. The gstat R package (Pebesma, 2004) consisted mostly of an R
interface to this C code, together with convenience functions to use R’s modelling
interface (formula’s, see ?lm) and graphic capabilities (trellis graphics in package
lattice to show cross variogram as matrix plots; interaction with variogram
clouds using base plots).

Starting 2003, a group of programmers developed a set of classes and meth-
ods for dealing with spatial data in R (points, lines, polygons, grids), which was
supported by the publications of the well-known ASDAR book (Bivand et al.
2008; see also http://www.asdar-book.org/) and helped convergence in the
user community, with in 2011 over 2000 subscribers on the r-sig-geo mailing
list. Package gstat was one of the first packages that adopted and benefited
from these classes.

To realize a particular idea, writing code in C typically takes about 10-20
times as long as writing it in R. C code can be more efficient, gives more control
over memory usage, but is also more error prone–mistakes in C code make an
R session crash, something that is hard to do when writing R code.

The original C code of gstat (Pebesma and Wesseling, 1998) provides all
kriging varieties (universal, ordinary, simple; univariable, or multivariable as
in cokriging) for two- or three-dimensional data. When the spatial domain
is constrained to two dimensions (and this might cover over 99% of the use
cases!), the third dimension might be used to represent time. As such, the
metric variogram model, which allows for geometric anisotropy definition in
three dimensions, can be used for spatio-temporal kriging. When defining the
three-dimensional variogram as the sum of 2 or more nested variogram (summed)
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models, one can choose anisotropy coefficients for a single model such that this
model is effectively zero in some directions, e.g. in space or in time; this allows
one to approximate the so-called space-time sum model. It should be noted that
at the C code there is no knowledge whether a third dimension represents space,
or time. As such, particular characteristics of time cannot be taken care of.

Since the second half of 2010, the development of an R package spacetime

started. It provides methods and classes for spatio-temporal data, and builds
on the spatial data classes in sp and time series classes in xts. This document
will explain how data in this form, and methods provided by this package, can
be used for spatio-temporal geostatistics.

We will work with a data set with air quality (PM10) measurements over ger-
many, taken from rural background stations available in the data sets provided
by the European Environmental Agency.

> library(spacetime)

> rm(list = ls())

> data(air)

> ls()

[1] "DE" "DE_NUTS1" "rural"

2 Variography

2.1 Temporal autocorrelation and cross correlation

We will look into a subset of the data, ranging from 2005 to 2010, and remove
stations that have only missing values in this period:

> if (!exists("rural"))

+ rural = STFDF(stations, dates, data.frame(PM10 = as.vector(air)))

> rr = rural[,"2005::2010"]

> unsel = which(apply(as(rr, "xts"), 2, function(x) all(is.na(x))))

> r5to10 = rr[-unsel,]

> summary(r5to10)

Object of class STFDF

with Dimensions (s, t, attr): (53, 1826, 1)

[[Spatial:]]

Object of class SpatialPoints

Coordinates:

min max

coords.x1 6.28107 14.78617

coords.x2 47.80847 54.92497

Is projected: FALSE

proj4string :

[+init=epsg:4326 +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs

+towgs84=0,0,0]

Number of points: 53

[[Temporal:]]

Index ..1

Min. :2004-12-31 Min. :2558
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1st Qu.:2006-04-01 1st Qu.:3014

Median :2007-07-01 Median :3470

Mean :2007-07-01 Mean :3470

3rd Qu.:2008-09-29 3rd Qu.:3927

Max. :2009-12-30 Max. :4383

[[Data attributes:]]

PM10

Min. : 0.560

1st Qu.: 9.275

Median : 13.852

Mean : 16.261

3rd Qu.: 20.333

Max. :269.079

NA's :21979

Next, we will (rather arbitrarily) select four stations, which have the following
labels:

> rn = row.names(r5to10@sp)[4:7]

> rn

[1] "DEBE056" "DEBE032" "DEHE046" "DENW081"

In the following, autocorrelation functions are computed and plotted. The
resulting plot is shown in Figure 1.

> par(mfrow=c(2,2))

> # select 4, 5, 6, 7

> for(i in rn)

+ acf(na.omit(r5to10[i,]), main = i)

> par(mfrow=c(1,1))

Auto- and cross correlations can be computed when a multivariate time series
object is passed to acf:

> acf(na.omit(as(r5to10[rn,], "xts")))

The resulting plot is shown in Figure 2. From these graphs one should be able
to observe the following

� autocorrelations for lag 0 are always 1

� cross correlations for lag 0 are not always 1

� cross correlations can be asymmetric, meaning that when ρAB(h) is the
correlation between Z(sA, t) and Z(sB , t+ h),

ρAB(h) = ρBA(−h) 6= ρAB(−h)

with sA and sB the two stations between which a cross correlation is
computed, and h the (directional!) lag between the series.
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> par(mfrow=c(2,2))

> # select 4, 5, 6, 7

> rn = row.names(r5to10@sp)[4:7]

> for(i in rn)

+ acf(na.omit(r5to10[i,]), main = i)
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Figure 1: Autocorrelations for PM10; time lag unit in days.

The plot further more shows that for these four stations the asymmetry is not
very strong, but that cross correlations are fairly strong and of a similar form
of autocorrelations.

This kind of plot does not work very well in layouts of e.g. 10 x 10 sub-plots;
acf automatically chooses 4 x 4 as the maximum a single plot. To try this out,
do a 7 x 7 plot

> acf(na.omit(as(r5to10[4:10,], "xts")))

and note that here we see in the last figure (DESH & DESN04) a pair of plots
with nearly no cross correlation. This might have to do with the spatial distance
between these two stations:

> library(sp)

> print(spDists(r5to10[4:10,]@sp), digits=3)
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Figure 2: autocorrelations (diagonal) and cross correlations (off-diagonal) for
the four stations selected; time lag unit in days.

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0.0 28.8 344 468 292 235 135

[2,] 28.8 0.0 317 440 269 231 131

[3,] 343.6 317.3 0 150 309 282 285

[4,] 467.9 439.7 150 0 336 432 430

[5,] 291.7 268.5 309 336 0 438 362

[6,] 235.5 231.0 282 432 438 0 101

[7,] 134.6 130.9 285 430 362 101 0

(What is the spatial distance between stations DESH and DESN04?)

2.2 Spatial correlation, variograms

In the next steps, we will sample 100 time instances randomly,

> rs = sample(dim(r5to10)[2], 100)

we select these instances as a SpatialPointsDataFrame and add a time index
to them. After this we bind them together in a single SpatialPointsDataFrame
which has a time index ti:
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> lst = lapply(rs, function(i) { x = r5to10[,i]; x$ti = i; rownames(x@coords) = NULL; x} )

> pts = do.call(rbind, lst)

Then, we can compute the pooled variogram

> library(gstat)

> v = variogram(PM10~ti, pts[!is.na(pts$PM10),], dX=0)

and plot it (Figure 3):

> # plot(v, fit.variogram(v, vgm(1, "Exp", 200, 1)))

> vmod = fit.variogram(v, vgm(100, "Exp", 200))

> plot(v, vmod)
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Figure 3: sample spatial variogram, averaged over 100 randomly chosen time
steps

The fitted model is this:

> vmod

model psill range

1 Exp 49.06525 66.62627
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One should note that the fit is rather poor, and not forget that we only have
53 stations selected. The time resolution is rich (1862 days) but the number of
stations is small:

> dim(r5to10)

space time variables

53 1826 1

We can fit a spatio-temporal variogram the usual way, by passing an object
of class STFDF (Pebesma, 2012):

> vv = variogram(PM10~1, r5to10, width=20, cutoff = 200, tlags=0:5)

Alternatively, if this takes too long, a temporal subset can be taken, e.g. using
the first 200 days:

> vv = variogram(PM10~1, r5to10, width=20, cutoff = 200, tlags=0:5)

taking random days from the full period will lead to the a wrong assumption that
every time index increment reflect a constant lag increase. As an alternative,
we will here load the precomputed S/T variogram:

> data(vv)

Plotting this object can be done in several ways, two 2D-plots are shown in
Figure 4 and a 3D wireplot is shown in Figure 7:

> plot(vv)

> plot(vv, map = FALSE)

2.3 Fitting a spatio-temporal variogram model

At first, we try to fit a metric model with spatio-temporal anisotropy:

> metricVgm <- vgmST("metric",

+ joint=vgm(50,"Exp",100,0),

+ stAni=50)

> metricVgm <- fit.StVariogram(vv, metricVgm)

As numerical criterion to judge the goodness of fit of model and sample vari-
ogram, the root-mean-squared-difference between the surfaces can be obtained
by:

> attr(metricVgm, "optim")$value

[1] 60.60853

The final model can be plotted with the sample variogram (Figure 5):

> plot(vv, metricVgm)
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Figure 4: Spatio-temporal sample variogram map (top) and sample variograms
for each time lag (bottom); both figures depict the information of object vv.

Now, let us try to fit and plot a separable model (Figure 6):

> sepVgm <- vgmST("separable",

+ space=vgm(0.9,"Exp", 123, 0.1),

+ time =vgm(0.9,"Exp", 2.9, 0.1),

+ sill=100)

> sepVgm <- fit.StVariogram(vv, sepVgm, method = "L-BFGS-B",

+ lower = c(10,0,0.01,0,1),

+ upper = c(500,1,20,1,200))

To compare this model with the previous one, we look at the optimized root-
mean-squared-differences between the two surfaces and plot sample and both
models:

> attr(sepVgm, "optim")$value

[1] 46.39099

> plot(vv, list(sepVgm, metricVgm))
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Figure 5: Sample variogram map (left) and fitted metric model (right).
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Figure 6: Sample variogram map (left), fitted separable model (middle) and
fittted metric model (right).

A wireframe (3D) plot of sample variogram and fitted variogram models can
be obtained e.g. by

> library(lattice)

> plot(vv, list(sepVgm, metricVgm), all=T, wireframe=T, zlim=c(0,120),

+ zlab=NULL,

+ xlab=list("distance (km)", rot=30),

+ ylab=list("time lag (days)", rot=-35),

+ scales=list(arrows=F, z = list(distance = 5)))

which is shown in Figure 7. Further spatio-temporal model definitions can
be found in the help pages of fit.StVariogram and variogramSurface. The
demo stkrige presents further examples and illustrates an interactive 3D-plot
of sample variogram and the fitted variogram model. An interactive variogram
exploration web-tool is avaialble at http://giv-graeler.uni-muenster.de:

3838/spacetime/.
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Figure 7: Wireframe plots of sample and fitted space-time variograms.

10



3 Spatio-temporal prediction

The vignette in package spacetime gives an example of using the gstat function
krigeST for spatio-temporal kriging of the Irish wind data. The krigeST func-
tion uses global kriging, but only needs to invert the purely spatial and purely
time covariance matrices in the separable case.

For more generic spatio-temporal kriging where space is two-dimensional,
one could use krige, defining the observations and prediction locations as three-
dimensional data sets, see for an example

> demo(gstat3D)

It needs to be pointed out that in that case, the time (typically the third di-
mension) needs to be numeric, and three-dimensional anisotropy needs to be
defined properly (see ?vgm).

In case the data set is too large for global kriging, one could try to use local
kriging, and select data within some distance, or by specifying nmax (the nearest
n observations). In both cases, it is advisable to transform time such that one
can use an isotropic variogram model in the three dimensions, as only in that
case the nearest n observations correspond to the nmost correlated observations.
krigeST provides a solution where a bufferNmax-times larger neighbourhood is
evaluated within the covariance model and the strongest correlated nmax neigh-
bours are selected.

An additional consideration is that in space-time, observations may not be
regularly spaced. In some cases, the nearest n observations may come from a
single measurement location, which may lead to sharp jumps/boundaries in the
interpolated values. This might be solved by using larger neighbourhoods, or
by setting the omax in krige or gstat calls to the neighbourhood size to select
per octant (this should be combined with specifying maxdist).
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