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Abstract We present new spatio-temporal geostatistical modelling and interpolation capabilities
of the R package gstat. Various spatio-temporal covariance models have been implemented, such
as the separable, product-sum, metric and sum-metric models. In a real-world application we
compare spatio-temporal interpolations using these models with a purely spatial kriging approach.
The target variable of the application is the daily mean PM10 concentration measured at rural air
quality monitoring stations across Germany in 2005. R code for variogram fitting and interpolation
is presented in this paper to illustrate the workflow of spatio-temporal interpolation using gstat.
We conclude that the system works properly and that the extension of gstat facilitates and eases
spatio-temporal geostatistical modelling and prediction for R users.

1 Introduction

The collection and processing of spatio-temporal data is rapidly increasing due to technological
advances and the societal need for analysis of variables that vary in space and time, such as weather
and air quality variables, and crop yields. Analysis of spatial and temporal correlations is useful in
itself to get insight into the character and causes of variability, but they are also important to predict
values at points from neighbouring observations. Spatio-temporal interpolation can potentially
provide more accurate predictions than spatial interpolation because observations taken at other
times can be included. In addition, spatio-temporal interpolation allows predictions to be made
at single locations or entire fields in between and beyond observation times. However, adding
the temporal domain implies that variability in space and time must be modelled, which is more
complicated than modelling purely spatial or purely temporal variability. The spatial, temporal and
spatio-temporal dependence structures, for instance represented as variograms, do not necessarily
coincide with each other in terms of their parameters nor in terms of their family. In the simplest
case, a spatio-temporal anisotropy parameter might be enough to deal with the different dependence
structures, but this poses strong assumptions on the process.

Interpolation of spatial random fields is a common task in geostatistics. Simple approaches
like inverse distance weighted predictions or the well known kriging procedures have routinely been
applied for many years. Nowadays, modern sensors allow to monitor different variables at an increas-
ing temporal resolution producing rich spatio-temporal data sets. This calls as well for theory and
methods to deal with these data sets to gain a better understanding of the observed spatio-temporal
processes. While the theoretical aspects of spatio-temporal geostatistics show good progress [Cressie
and Wikle, 2011], implementations lack behind. This hinders a wide application of spatio-temporal
modelling, as typically extensive scripting and thorough understanding is necessary to build spatio-
temporal models. Handling of spatio-temporal data in R is provided by the spacetime package
[Pebesma, 2012]. In this paper, we present an extension of the gstat package [Pebesma, 2004]
(version 1.1-3) that reuses the spacetime classes for the estimation of spatio-temporal covari-
ance/variogram models and to perform spatio-temporal interpolation. Our implementation handles
various types of spatio-temporal covariance structures and facilitates spatio-temporal interpolation.
The notation of functions in gstat are extended in a way closely following the purely spatial design.
This allows a researcher acquainted with gstat to readily use spatio-temporal tools. The use of the
newly implemented functions is presented and illustrated by mapping spatio-temporal air-quality
data. Another package that offers extensive spatio-temporal geostatistical functionality is Ran-
domFields [Schlather et al., 2014]; further packages are mentioned in the SpatioTemporal CRAN
task view1.

The paper is organised as follows. The next section introduces the general interpolation routine
and describes the different spatio-temporal covariance models, followed by a section introducing the
German rural background data set for 2005 and performing the parameter estimation (i.e. covari-
ance model fitting). Cross-validation results are presented and discussed in the section thereafter.
Conclusions are drawn in the closing section. R scripts reproducing this study are available from

1http://cran.r-project.org/web/views/SpatioTemporal.html
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within the gstat package as demos. stkrige re-estimates the variogram models, stkrige-prediction
re-executes the prediction for a time series and a couple of stations, and stkrige-crossvalidation

re-runs the entire leave-one-out cross-validation (note that the latter takes a few hours).

2 Spatio-temporal dependence modelling and kriging

In the following, we will assume a Gaussian spatio-temporal random field Z defined over a spatial

domain S and temporal domain T . Typically, a sample z =
(
z(s1, t1), . . . , z(sn, tn)

)
has been

observed at a set of distinct spatio-temporal locations (s1, t1), . . . , (sn, tn) ∈ S × T ⊆ R2 × R that
may include repeated measurements at the same location or simultaneous measurements at multiple
spatial locations. Often, one is interested in modelling Z from the sample z in order to predict at
unobserved locations in space and time or simulate from the conditional distribution.

Across our domain of interest S×T , we assume the random field Z to be stationary and spatially
isotropic. Hence, the field can be characterised through a mean µ and a covariance function Cst

where the spatio-temporal covariance only depends on the separating distances across space h ∈ R≥0

and time u ∈ R≥0. Note that extensions beyond this set-up can easily be derived as has been done
for the pure spatial case using for instance universal kriging to overcome the stationarity of the mean.

The general spatio-temporal covariance function is given by Cst(h, u) = Cov
(
Z(s, t), Z(s̃, t̃)

)
for a

separating spatial distance h and temporal distance u and any pair of points (s, t), (s̃, t̃) ∈ S × T
with ||s − s̃|| = h and |t − t̃| = u. In general, this covariance function is hard to estimate but a
couple of models using simplifying assumptions will be presented in the following together with their
spatio-temporal variograms γst(h, u) = Cst(0, 0) − Cst(h, u) and encoding in gstat. Given a valid
covariance function, the covariance matrices used in the linear predictor are easily obtained and the
same algebraic operations as in the well known spatial case yield predictions of the desired random
field [Cressie and Wikle, 2011]. A major difference is, however, the computational complexity of the
matrix inversion. Typically, observations are made at a rather high temporal frequency leading to a
number of spatio-temporal locations that is too large for global kriging. Hence, interpolation based
on a selected neighbourhood of a subset of all data points becomes beneficial. Additionally, this
relaxes the assumption of stationarity, as smooth variations in the mean value across the domain
can be respected. The related class of dynamic models also addresses the computational complexity
resulting in a temporal Markov structure. Implementations can be found in spTimer by Bakar and
Sahu [2015], spBayes by Finley et al. [2015], spate by Sigrist et al. [2015] or INLA by Lindgren
and Rue [2015].

2.1 Covariance models

The covariance models implemented in gstat and presented in this paper are introduced in the
following. Besides further extensions we focus on the basic classes of the separable, product-sum,
metric and sum-metric spatio-temporal covariance functions. The building blocks (in the following
denoted as spatialVgm, temporalVgm or jointVgm) of the spatio-temporal covariance functions are any
of the purely spatial variogram models already available in gstat. Each one of the building blocks
is created by a call of the function gstat::vgm(). Remaining arguments such as sill (the joint sill),
nug (the joint nugget component) or stAni (the spatio-temporal anisotropy used in the jointVgm)
are scalars and refer to parameters of the entire spatio-temporal covariance function:

a) The separable covariance model assumes that the spatio-temporal covariance function can be
represented as the product of a spatial and temporal term:

Csep(h, u) = Cs(h)Ct(u)

Its variogram is given by (see Appendix for details):

γsep(h, u) = sill ·
(
γ̄s(h) + γ̄t(u)− γ̄s(h)γ̄t(u)

)
where γ̄s and γ̄t are standardised spatial and temporal variograms with separate nugget effects
and (joint) sill of 1. The overall sill parameter is denoted by ”sill”.

The R package gstat encodes this model as:

vgmST("separable", space=spatialVgm, time=temporalVgm, sill=sill)

The separable model has a strong computational advantage in the setting where each spatial
location has an observation at each temporal instance (a "STFDF" without NAs, Pebesma [2012]).
In these cases, the covariance matrix (and its inverse) can be composed using the Kronecker-
product of the purely spatial and purely temporal covariance matrices (respectively their inverse).
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b) The above model extends to the product-sum covariance model that we give here in a slightly
different notation as De Cesare et al. [2001] and De Iaco et al. [2001] by

Cps(h, u) = kCs(h)Ct(u) + Cs(h) + Ct(u)

with k > 0.

The corresponding variogram can be written as

γps(h, u) = (k · sillt + 1)γs(h) + (k · sills + 1)γt(u)− kγs(h)γt(u)

where γs and γt are spatial and temporal variograms (see Appendix for details). The parameter
k needs to be positive and the following identity defines the overall sill (sillst) of the model in
terms of the model’s spatial and temporal sills:

sillst = k · sills · sillt + sills + sillt.

The above equation can also be used to estimate k based on the three sill values. An alternative
formulation of the product-sum variogram can be found in De Iaco et al. [2001].

The gstat definition of this model reads:

vgmST("productSum", space = spatialVgm, time = temporalVgm, k = k)

c) Assuming identical spatial and temporal covariance functions except for spatio-temporal anisotropy,
allows to use a spatio-temporal metric covariance model where, after matching space and time
by an anisotropy correction κ (stAni), the spatial, temporal and spatio-temporal distances are
treated equally resulting in a single covariance model Cjoint:

Cm(h, u) = Cjoint

(√
h2 + (κ · u)2

)
The variogram evaluates to

γm(h, u) = γjoint(
√
h2 + (κ · u)2)

where γjoint (jointVgm) is any known variogram that may include a nugget effect. The following
line generates the model in gstat:

vgmST("metric", joint = jointVgm, stAni = stAni)

The spatio-temporal anisotropy parameter κ (stAni) is given as spatial unit per temporal unit.
In many cases, this will be in m/second, as these are the base units in our implementation. All
temporal distances are hence internally re-scaled to an equivalent spatial distance using stAni

and treated as metric 3D-space.

d) A combination of spatial, temporal and a metric model including an anisotropy parameter κ is
found in Bilonick [1988] and revisited by Snepvangers et al. [2003] as the sum-metric covariance
model:

Csm(h, u) = Cs(h) + Ct(u) + Cjoint

(√
h2 + (κ · u)2

)
This model allows for spatial, temporal and joint nugget effects. Thus, the variogram is given
by

γsm(h, u) = γs(h) + γt(u) + γjoint(
√
h2 + (κ · u)2)

where γs, γt and γjoint are spatial, temporal and joint variograms with separate nugget-effects.
This model can be defined in gstat through:

vgmST("sumMetric", space = spatialVgm, time = temporalVgm, joint = jointVgm,

stAni = stAni)

e) A simplified version of the above model is to restrict the spatial, temporal and joint variograms
to nugget free models. Additionally, a single spatio-temporal nugget is introduced and the
variogram takes the representation:

γssm(h, u) = nug · 1h>0∨u>0 + γs(h) + γt(u) + γjoint(
√
h2 + (κ · u)2)

The simple sum-metric covariance model can be obtained by:

vgmST("simpleSumMetric", space = spatialVgm, time = temporalVgm,

joint = jointVgm, nugget = nug, stAni = stAni)
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Note that the above mentioned spatial, temporal and joint components of the spatio-temporal co-
variance and variogram models need not necessarily exhibit the same structure. Taking for instance
the product-sum and sum-metric models that both contain single temporal and spatial variogram
models: the best fits of the respective spatio-temporal models might suggest different variogram
families and parameters for the pure spatial and temporal ones. This is due to the target of finding
the best overall variogram surface resulting in (potentially) different marginal models.

2.2 Parameter estimation

Fitting routines for the above variogram models are implemented in gstat through the function
fit.StVariogram(), which calls optim() from the R core package stats [R Core Team, 2016]. Ad-
ditional parameters to improve the numerical optimisation can be provided to fit.StVariogram()

and will be passed on to optim() (using R’s three-dots mechanism). As some of the parameters are
limited to certain ranges (nuggets need to be non-negative, ranges must be positive), it is advised
to use an optimisation routine that allows to impose limits on the search space (i.e. L-BFGS-B)
and provide sensible limits via lower and upper. By default, the method L-BFGS-B is called and the
smallest lower and largest upper bounds supported by the model are given. The estimation of the
spatio-temporal variogram models relies on a sample variogram empirically derived from the data.
In contrast to the spatial variogram line, the spatio-temporal variogram is represented by a surface
for lag classes composed of a spatial and temporal separation distance. Different from the spatial
case, a spatio-temporal sample variogram contains lag-classes of zero spatial separation describing
pure temporal dependencies. Without duplicate observations, no estimates can be made for the
lag-class with both zero spatial and zero temporal separation. The sample variogram is calculated
through the function variogram() that dispatches the call for spatio-temporal data objects (of class
"STFDF", "STSDF", or "STIDF") from spacetime. For a visual judgement of the fit between sample
and fitted variograms the plot() function can be called to show the variogram surfaces next to each
other as coloured level plots. Alternatively, a wireframe plot is obtained by setting the parameter
wireframe = TRUE (Figure 3). A further option is to plot the differences between the sample and
model variogram surfaces by setting diff = TRUE, see Figure 4. Additionally to visual compari-
son, fit.StVariogram() provides the output of optim as attribute optim.out of the returned S3-class
"StVariogram". This attribute includes valuable information to diagnose the success of the optim

routine. It contains for instance the convergence code ($convergence) or message ($message) and the
optimised value ($value), which is the mean of the (weighted) squared deviations between sample
and fitted variogram surface. Furthermore, it is advised to check the estimated parameters against
the parameter boundaries and starting values. Additionally, starting values might also influence
the success and result of the optimisation, as local optima may occur due to the interdependence
of the parameters. Alternatively, the user might want to start a grid search in order to better asses
the sensitivity of the estimates.

The fitting approach is identical for all covariance models. However, with the flexibility of the
model also the number of parameters increases, making a numerical estimation at times cumbersome.
Starting values can in most cases be read from the sample variogram. Parameters of the spatial
and temporal variograms can be assessed from the spatio-temporal surface fixing the counterpart
at 0. The overall spatio-temporal sill including the nugget can be deducted from the plateau that a
nicely behaving sample variogram reaches for ’large’ spatial and temporal distances. An important
issue is the potentially different orders of magnitude of the parameters. It is at times advisable to
rescale spatial and temporal distances to ranges similar to the ones of sills and nuggets using the
parameter parscale. parscale needs to be provided via control = list(parscale=...) and holds a
vector of the same length as the number of parameters to be optimised (see the documentation of
optim for further details).

Currently, the implemented fitting routines are based on the (weighted) mean squared difference
between model and sample variogram surfaces. By default, all values are associated the same weight
(fit.method = 6), but other options are available that allow for different weighting schemes based
on the number of pairs, spatial, temporal and spatio-temporal distances or the variogram’s value.
Table 1 lists all currently implemented options. Depending on the target neighbourhood size of the
desired interpolation, it might be beneficial to narrow down the spatial and temporal distances and
to introduce a cutoff. This ensures that the model is fitted to the differences over space and time
actually used in the interpolation, and reduces the risk of overfitting the variogram model to large
distances not used for prediction. Please note that methods 2 and 10 (Table 1) involve weights
based on the fitted variogram that might lead to bad convergence properties of the parameter
estimates. Furthermore, the scalar stAni in methods 7 and 11 will either be the actual fitted
spatio-temporal anisotropy if it is included in the model or a fixed value that has to be passed
as stAni by the user to fit.StVariogram. The latter is advised, as the former might lead to bad
convergence properties as in the case of weights based on the fitted variogram mentioned above.
As the estimation of an anisotropy scaling might be cumbersome on a visual basis, we provide
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Table 1: List of implemented weighting schemes for variogram optimisation. Methods 3, 4, and
5 are kept for compatibility reasons with the purely spatial fit.variogram function. The following
notation is used: Nj number of pairs, hj mean spatial distance and uj mean temporal distance for
each bin j, γ the actual proposed variogram model and stAni a spatio-temporal anisotropy scaling.

fit.method weights

0 no fitting
1 and 3 Nj
2 and 4 Nj/γ(hj , uj)

2

5 reserved for REML
6 1, no weighting
7 Nj/(h

2
j + stAni2 · u2

j )
8 Nj/h

2
j

9 Nj/u
2
j

10 1/γ(hj , uj)
2

11 1/(h2
j + stAni2 · u2

j )
12 1/h2

j

13 1/u2
j

the function estiStAni that provides estimates based on the empirical spatio-temporal variogram.
Four heuristics are available based on (i) rescaling a linear model (linear), (ii) estimating equal
ranges (range), (iii) rescaling a pure spatial variogram (vgm) or (iv) estimating a complete spatio-
temporal metric variogram model and returning its spatio-temporal anisotropy parameter (metric).
The choice of the weighting scheme will influence the selected model and different weightings might
be further assessed in a cross-validation of the selected model. To increase numerical stability, it is
advisable to use weights that do not change with the current model fit.

2.3 Kriging

Standard kriging (krigeST) and trans Gaussian kriging (krigeSTTg) have been implemented. As
spatio-temporal kriging based on the complete data set might be too computationally expensive,
local kriging is an attractive alternative. This poses the question of how to select the ”nearest”
neighbours from the spatio-temporal space S × T . A natural choice would be to select the spatio-
temporal locations exhibiting the strongest correlation to the unobserved location. Depending
on the spatio-temporal covariance model, the relation between spatial and temporal distance in
determining the strength of correlation will vary. As a proxy, we use a spatio-temporal anisotropy
parameter that relates spatial and temporal distances in the same manner as in the metric covariance
models. The k-nearest neighbours within this metric spatio-temporal space S×T are selected using
the R package FNN [Beygelzimer et al., 2013]. The interpolation performs iteratively for each
spatio-temporal prediction location with a local subset of the data set. Without neighbourhood
selection, kriging uses all data.

As the metric induced by the spatial and rescaled temporal distances are only proxies to the
strength of correlation between locations (see Figure 1), we provide an option to search a larger
metric neighbourhood. Within this larger neighbourhood, the covariance function is evaluated for
all spatio-temporal locations and the neighbouring locations with the largest covariance values are
then selected for prediction. However, this approach might still suffer from a clustering of locations
and alternatives such as a staged search (find spatial neighbours first and select a set of temporal
instances for each spatial neighbour) or an octant search (select neighbours per spatial quadrant from
preceding and following time stamps separately) could be considered. However, these alternatives
are not yet available in gstat.

3 Application and illustration

The data set used is taken from AirBase2, the air quality data base for Europe provided by the
European Environmental Agency (EEA). We focus on a single air quality indicator, particulate
matter with a diameter less than 10 µm, measured at rural background stations for 2005 (PM10).
The data base contains data for many years. Besides rural, also urban areas are monitored and not
only at background locations (e.g. traffic stations). However, these processes are considered to be
of a different nature and should be treated separately. As a use case, we therefore limit our data
set to the rural background stations in Germany. Figure 2 shows for 8 randomly chosen days daily

2AirBase - The European air quality database
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Figure 1: A contourplot showing how the spatio-temporal sum-metric variogram model (as esti-
mated in the application below) and a metric distance relate to each other. Distances are rescaled
by 1/5 for easy plotting.

mean values of PM10 concentrations for the entire monitoring network over Germany in 2005 with
69 rural background stations.

In order to fit a spatio-temporal model to the air quality data set, the empirical variogram
surface is computed and used as input for the fitting routines of the different models. The empirical
variogram is based on spatio-temporal bins that span regularly over space and time.

Regular measurements over time (i.e. hourly, daily) motivate regular binning intervals of the
same temporal resolution. Nevertheless, flexible binning boundaries can be passed for spatial and
temporal dimensions. This allows for instance to use smaller bins at small distances and larger ones
for large distances. Temporal boundaries, instead of lags, are required when the sampling of the
data is non-regular. In cases where regular temporal observations can be assumed, this is utilised in
the sample variogram calculations and any two temporal consecutive observations are assumed to
have the same temporal distance. Figure 3 shows the empirical variogram along with the proposed
best fitting model of each spatio-temporal variogram family as perspective wireframe plots. In order
to better identify structural shortcomings of the selected model, a difference plot (Figure 4) is a
helpful visual diagnostic plot.

Beyond the selection of the spatio-temporal variogram family, each component of this model
can be chosen from any implemented one-dimensional variogram. In Table 2 a selection of fitted
models in terms of their residuals compared to the sample variogram surface are shown. The best
fitting spatio-temporal model of each family is given as:

a) separable model (weighted MSE: 6.82):

partial sill model range nugget sp.-temp. sill

space 0.86 Exp 558 km 0.14
124

time 1.00 Sph 5.6 days 0.00

obtained via:

separableModel <- vgmST("separable",

space = vgm(0.9, "Exp", 200, 0.1),

time = vgm(0.9, "Sph", 3.5, 0.1),

sill = 124)

fit.StVariogram(empVgm, separableModel, fit.method = 7,

stAni = 117.3, method = "L-BFGS-B",

control = list(parscale = c(100,1,10,1,100)),

lower = c(10,0,0.1,0,0.1),

upper = c(2000,1,12,1,200))

b) product-sum model (weighted MSE: 6.91)

partial sill model range nugget k

space 6.8 Exp 542 km 1.2
1.61

time 8.7 Sph 5.5 days 0.0

obtained via

prodSumModel <- vgmST("productSum",
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Figure 2: Daily mean PM10 concentration [µg/m3] at 8 randomly selected days in 2005.

space = vgm(10, "Exp", 200, 1),

time = vgm(10, "Sph", 2, 1),

k=2)

fit.StVariogram(empVgm, prodSumModel, fit.method = 7,

stAni = 117.3, method = "L-BFGS-B",

control = list(parscale = c(1,10,1,1,0.1,1,10)),

lower = rep(0.0001, 7))

c) metric model (weighted MSE: 10.05)

partial sill model range nugget anisotropy

joint 123.4 Matκ=0.6 453 km 17.4 189 km/day

obtained via

metricModel <- vgmST("metric",

joint = vgm(60, "Mat", 150, 10, kappa=0.6),

stAni = 60)

fit.StVariogram(empVgm, metricModel, fit.method = 7,

stAni = 117.3, method = "L-BFGS-B",

control = list(parscale = c(10,20,5,10)),

lower = c(80,50,5,50),

upper = c(200,1500,60,300))

d) sum-metric model (weighted MSE: 3.31)

partial sill model range nugget anisotropy

space 16.4 Sph 67 km 0
time 9.3 Exp 0.9 days 0
joint 91.5 Sph 999 km 7.3 185 km/day

obtained via

sumMetricModel <- vgmST("sumMetric",

space = vgm(20, "Sph", 150, 1),

time = vgm(10, "Exp", 2, 0.5),

joint = vgm(80, "Sph", 1500, 2.5),

stAni = 120)

fit.StVariogram(empVgm, sumMetricModel, fit.method = 7,

stAni = 117.3, method = "L-BFGS-B",
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control = list(parscale = c(1,100,1,1,0.5,1,1,100,1,100),

maxit=1e4),

lower = c(sill.s = 0, range.s = 10, nugget.s = 0,

sill.t = 0, range.t = 0.1, nugget.t = 0,

sill.st= 0, range.st = 10, nugget.st = 0,

anis = 40),

upper = c(sill.s = 200, range.s = 1E3, nugget.s = 20,

sill.t = 200, range.t = 75, nugget.t = 20,

sill.st= 200, range.st = 5E3, nugget.st = 20,

anis = 500))

e) simple sum-metric model (weighted MSE: 3.31)

partial sill model range anisotropy sp.-temp. nugget

space 16.4 Sph 67 km
 7.3time 9.3 Exp 0.9 days

joint 91.5 Sph 999 km 185 km/day

obtained via

simpleSumMetricModel <- vgmST("simpleSumMetric",

space=vgm(120,"Sph", 150),

time =vgm(120,"Exp", 10),

joint=vgm(120,"Sph", 150),

nugget=10, stAni=150)

fit.StVariogram(empVgm, simpleSumMetricModel, fit.method = 7,

stAni = 117.3, method = "L-BFGS-B",

control = list(parscale = c(1,10,1,1,1,100,1,10))

lower = c(sill.s = 0, range.s = 10,

sill.t = 0, range.t = 0.1,

sill.st= 0, range.st= 10,

nugget=0, anis = 40),

upper = c(sill.s = 200, range.s = 500,

sill.t = 200, range.t = 20,

sill.st= 200, range.st = 5000,

nugget = 100, anis = 1000))

The variogram parameters are numerically optimised using the function fit.StVariogram and
the L-BFGS-B routine of optim. The parameter fit.method that controls the weighing of the residuals
between empirical and model surface of fit.StVariogram is set to 7 (the spatio-temporal analog to
the commonly used spatial weighting). A full list of all weighting schemes is presented in Table 1.
In our application, the residuals are multiplied by the number of pairs in the corresponding spatio-
temporal bin divided by the metric distance: Nj/(h

2
j +stAni2 ·u2

j ). The spatio-temporal anisotropy
is estimated beforehand and fixed at 118 km/day. This weighting scheme puts higher confidence in
lags filled with many pairs of spatio-temporal locations, but respects to some degree the need of an
accurate model for short distances, as these short distances are the main source of information in
the prediction step. Note, that different weighting schemes will in general result in different model
parameters generating different interpolation values. Our selection is based on the assumption that
well filled bins provide more reliable empirical variogram estimates and the fact that short distances
are the most important ones for a local interpolation.

For comparison with classical approaches, we interpolate across Germany iteratively for each
single day using all available data for variogram estimation. The purely spatial empirical variogram
can directly be obtained from the empirical spatio-temporal variogram, by fixing the temporal lag at
0 separation. From the same set of variogram models as investigated for the spatio-temporal models,
the exponential model (partial sill: 66.5, range: 224 km, nugget: 13.5) is the best suited based on
the optimisation criterion. Alternatively, we could have fitted the spatial variogram for each day
separately using observations from that day only. However, given the small number of observation
stations, this produced unstable variograms for several days and we decided to use the single spatial
variogram derived from all spatio-temporal locations treating time slices as uncorrelated copies of
the spatial random field.

Once the best fitting spatio-temporal variogram model is identified, the interpolation can be
executed with the help of the function krigeST. We use the sum-metric model that obtained the
smallest RMSE (compare Table 2) to produce a gridded prediction. The interpolation domain
consists of daily values for a regular grid spanning over Germany in UTM projection. The cell size
is 10 km × 10 km. Figure 5 shows the interpolated grid for the same days as Figure 2 alongside
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Figure 3: Sample and the best fitting spatio-temporal variogram of each family.

Figure 4: Differences between the sample and the best fitting spatio-temporal variogram of each
family.
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Table 2: Weighted MSE (fit.method = 7, see Table 1) for different spatio-temporal variogram
families and different choices for the one-dimensional variogram components. Columns denote the
spatial and temporal variogram choices. The metric model is only applicable if both domains use
the same family.

model joint Exp+Exp Exp+Sph Sph+Exp Sph+Sph Matκ=0.6

separable · 9.87 6.82 10.42 7.50 ·
product-sum · 10.09 6.91 10.64 7.59 ·
metric · 10.25 · · 10.59 10.05

sum-metric
Exp 4.10 3.60 3.89 3.32 ·
Sph 3.74 3.73 3.31 3.36 ·

simple sum-metric
Exp 4.10 3.60 3.94 3.32 ·
Sph 3.74 3.98 3.31 3.56 ·

with all sampling locations. Additionally, maps depicting the differences from a leave-one-out cross-
validation are presented in Figure 6. A time series view is presented in Figure 7 showing the observed
and predicted time series at a single location along with its 95 % prediction intervals. An animation
of the entire year of daily mean PM10 prediction maps can be viewed online.3.

The interpolated maps are generated for a set of time stamps tIDs and a grid over Germany
DE_pred by

krigeST(PM10~1, data = DE_RB_2005[ , tIDS],

newdata = DE_pred, fitSumMetricModel, nmax = 50,

stAni = fitMetricModel$stAni/24/3600)

To further compare the different approaches, a leave-one-out cross-validation was carried out.
The spatio-temporal interpolations are done for the closest 50 and 10 neighbours assessing the
impact of the neighbourhood size. Inspection of the ranges of the variograms in the temporal
domain, suggests that any station more than at most 6 days apart does not meaningfully contribute.
Furthermore, the local estimation allows the spatio-temporal random field to have a varying mean
value over space and time. The purely spatial interpolation can be considered as the extreme
temporally local case, where only observations from the same time instance are considered.

3http://gstat.r-forge.r-project.org/STpred.html

Figure 5: Spatio-temporal interpolation of daily mean PM10 concentrations using the sum-metric
covariance model with the closest 50 neighbouring spatio-temporal locations. The crosses indicate
sampling locations. The cell size of the grid in UTM projection is 10 km× 10 km.
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Figure 6: Differences of spatio-temporal predictions and observed daily mean PM10 concentra-
tions using the sum-metric covariance model with the closest (approx. strongest correlated) 50
neighbouring spatio-temporal locations.

Figure 7: Subset of the time series of observed and predicted PM10 at a single station in Lower
Saxony along with its 95 % prediction intervals.

4 Results and discussion

In terms of added value of spatio-temporal kriging measured in cross-validation results, Table 3
shows hardly any benefit in the illustrative example. This effect can to a large degree already be
explained from the spatio-temporal variograms: a temporal lag of one or a few days leads already
to a large variability compared to spatial distances of few hundred kilometres, implying that the
temporal correlation is too weak to considerably improve the overall prediction. Nevertheless,
investigating a process with a higher temporal frequency will likely show a stronger correlation in
the temporal domain. Looking into station-wise cross-validation statistics (not shown), the four
stations with an RMSE of 10 and larger correspond to the locations with the largest annual mean
concentrations (> 22 µg/m3).

The added value of spatio-temporal kriging lies in the flexibility of the model. We are now in
the position to not only interpolate at unobserved locations in space, but also at unobserved time
instances. This makes spatio-temporal kriging a suitable tool to fill gaps in time series not only
based on the time series solely, but also including some of its spatial neighbours. A very irregular
sampled data set would as well largely benefit from a spatio-temporal approach, as spatially close
but unobserved locations in one time slice are not of any help in a purely spatial approach, but the
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Table 3: Leave-one-out cross-validation results. The column wMSE refers to the optimised value
from the variogram estimation.

covariance model wMSE neigh. RMSE MAE ME COR

pure Spatial 10 6.15 4.09 -0.01 0.84
separable [6.82] 10 6.08 4.04 -0.01 0.84
product-sum [6.91] 10 6.08 4.04 -0.01 0.84
metric [10.05] 10 6.11 4.07 0.03 0.84
sum-metric [3.31] 10 6.16 4.08 -0.06 0.84
simple sum-metric [3.31] 10 6.14 4.08 -0.02 0.84

pure Spatial 50 6.10 4.07 0.00 0.84
separable [6.82] 50 6.05 4.04 0.01 0.84
product-sum [6.91] 50 6.05 4.04 0.00 0.84
metric [10.05] 50 6.07 4.08 0.03 0.84
sum-metric [3.31] 50 6.14 4.09 -0.01 0.84
simple sum-metric [3.31] 50 6.14 4.08 -0.02 0.84

spatio-temporal model would benefit from the observed value nearby at another time instance. In
a completely regular data set, the distance to a spatio-temporal neighbour is at least as large as the
pure spatial distance and hence the correlation is weaker. Furthermore, being able to capture the
covariance structure over space and time might foster a better understanding of the process under
study.

While we see spatio-temporal modelling being a powerful tool, the cross-validation results in
Table 3 show that spatio-temporal kriging will not solve the problem of all poorly spatially captured
phenomena. Further preprocessing steps might be necessary to improve the modelling of this PM10

data set such as for instance a temporal AR-model followed by spatio-temporal residual kriging or
using further covariates in a preceding (linear) modelling step. Providing the best possible model
of PM10 concentrations across Germany was beyond the scope of this paper.

The selection of a spatio-temporal covariance model should not only be made based on the
(weighted) mean squared difference between the empirical and model variogram surfaces (presented
in Table 2), but also on conceptional choices and visual (Figure 3) judgement of the fits. Even
though the function fit.StVariogram provides optimisation routines to fit different spatio-temporal
variogram models, the numerical routines in the background may struggle to find the optimal
parameters. Besides the lower and upper boundaries of the parameter space, the control parameter
parscale of the optim function is a valuable option to improve the convergence of the optimisation.
With passing parscale as entry of the list control a vector of scalars must be passed that controls
the different levels of magnitude of the variogram parameters. In most applications, a change of 1
in the sills will have a stronger influence on the variogram surface than a change of 1 in the ranges.
The problem becomes more difficult with an increasing number of parameters. In our application,
using the simple sum-metric model as starting values for the full sum-metric model improved the
convergence speed of the more complex model. In the presented application, the sum-metric models
turns out to be the same as the simple sum-metric model. While this might at first sight be due
to using the simpler model to generate starting values, different non simplified starting models
converged to the same result.

Generally, it is important to keep in mind the strong interaction of the model parameters. It is
typically not easy to distinguish how much of the spatio-temporal nugget and sill is attributed to
spatial, temporal or joint components. In this paper we considered a joint numerical approach, but
step-wise approaches where the components are estimated separately could as well be considered.
The interested reader is also referred to Nash [2014]. However, all optimisation approaches follow
the premise that the studied process can be approximated with the given model and available data.
If this premise fails, no optimal model can be selected.

An extension towards a restricted maximum likelihood method (REML) to fit the spatio-
temporal variogram model would be desirable, as it overcomes some of the above mentioned draw-
backs of the method of moments based approaches and would additionally provide standard errors
for the parameter estimates. A REML approach would allow to take into account that sample
variogram values are correlated. However, for large datasets (as in the spatio-temporal case), it
is computationally more feasible to use a least squares fitting. To reduce the correlation of the
variogram values, some randomisation could be implemented in large data sets, to calculate the
sample variogram based on partially overlapping or even disjoint sets of observations.

The selected anisotropy as proxy to the relation of spatial and temporal distance in determining
the strongest correlated neighbours might show a distortion for some models when only few neigh-

12



bours are used towards the true set of the most correlated locations. However, this effect vanishes as
soon as the spatio-temporal range of the model is sufficiently represented through the set of nearest
neighbours.

As mentioned by Kyriakidis and Journel [1999], an alternative to space-time kriging might be
co-kriging. However, this is only feasible if the number of time replicates is (very) small, as the
number of cross variograms to be modelled equals the number of pairs of time replicates. Also,
co-kriging can only interpolate for these time slices, and not inbetween or beyond them. It does
however provide prediction error covariances, which can help assessing the significance of estimated
change parameters [Pebesma et al., 2005, Pebesma and Duin, 2005]. Several of the space-time
variograms presented here may be approximated by sets of direct variograms and cross-variograms.

Fitting variogram models to sample space-time variograms is in our implementation done by
stats::optim. Our example script uses method L-BFGS-B and provides upper and lower parameter
boundaries, e.g. to make sure sill parameters do not become negative. There has been a lot of
research in optimization since the methods in optim, some of which has been reported in the special
issue of the Journal of Statistical Software [Varadhan, 2014], and we do see potential to improve
the options in this respect.

The approximate selection of the most correlated neighbours solves the lack of a natural notion
of a joint distance across space and time. However, other sampling properties might introduce a
bias in the prediction. The prediction at an unobserved location with a cluster of observations at
one side will be biased towards this cluster and neglect the locations towards the other directions.
Similar as the quadrant search in the pure spatial case an octant wise search strategy for the local
neighbourhood would solve this limitation. A simpler stepwise approach to define an n-dimensional
neighbourhood might already be sufficient in which at first ns spatial neighbours and then from
each spatial neighbour nt time instances are selected, such that ns · nt ≈ n.

The presented example considers stationary random fields that are isotropic in space. Further
extensions towards more sophisticated variogram estimations allowing also for spatial geometric
anisotropy are desirable. One could for instance plot variogram maps for spatial separation in
North and South direction for each temporal lag. However, the current implementation does not
allow to use the anisotropy parameter anis of the pure spatial variogram definition. Nevertheless,
a preliminary rescaling of coordinates would be a possible workaround. This route has for instance
been taken by Gasch et al. [2015] performing 3D+T kriging . The soil profiles in their study show a
clear difference in horizontal and vertical variography. To correct for this, the depth dimension of the
data has been rescaled to correspond with the dimensions of the horizontal distances before hand.
In the subsequent study, these pseudo 3D coordinates have been used to fit the spatio-temporal
variograms and perform kriging.

The code in model definitions is meant to be kept both flexible and simple. This is based on
i) re-producing the notion of the geostatistical models in the R code and in ii) reusing existing
definitions and functions of the pure spatial cases that have been available for many years in gstat.
The data handling benefits to a large degree from the implementations in the spacetime R package.

5 Conclusions

The spatio-temporal extensions to gstat allow to model a set of spatio-temporal covariance func-
tions. The implemented functionality eases estimation, visualisation and understanding of spatio-
temporal covariance functions. The extension and reuse of already available function structures and
nomenclature facilitates an easy translation of spatial workflows to handle spatio-temporal data.
The numerical estimation of the variogram parameters might be tricky and needs a large degree
of the users attention. It is advised to carefully check the outcome of the optim routine after opti-
misation. Spatio-temporal kriging predictions can be made in a global and a local neighbourhood
set-up, while the latter will be the preferred solution for most spatio-temporal data sets and common
computer hardware configurations.

Spatio-temporal covariance structures carry valuable information, but a spatio-temporal model
is not guaranteed to outperform pure spatial predictions. The benefit in terms of prediction quality
of spatio-temporal kriging becomes only apparent if sufficiently strong correlated locations are added
with the temporal dimension (i.e., if the model permits strong correlation across time). Nevertheless,
the spatio-temporal covariance model might be of interest in itself.

Besides some publications where the authors of this paper were involved in, such as Kilibarda
et al. [2014], the software presented here has proven useful in several independent publications,
examples of which are [Marek et al., 2015, Biondi, 2013, Hu et al., 2015, Yoon et al., 2014].
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Appendix

Derivation of the separable covariance and variogram identities

The separable covariance and variogram identity is readily available through

Csep(h, u) = Cs(h)Ct(u) = sill · c̄s(h)c̄t(u)

γsep(h, u) = Csep(0, 0)− Csep(h, u)

= sill
(

1− c̄s(h) · c̄t(u)
)

= sill
(

1−
(

1− γ̄s(h)
)(

1− γ̄t(u)
))

= sill
(

1−
(

1− γ̄s(h)− γ̄t(u) + γ̄s(h)γ̄t(u)
))

= sill
(
γ̄s(h) + γ̄t(u)− γ̄s(h)γ̄t(u)

)
where c̄ and γ̄ are normalised correlation and correlogram functions respectively.

Derivation of the product-sum covariance and variogram identities

The product-sum covariance and variogram identity is readily available through:

Cps(h, u) = k · Cs(h)Ct(u) + Cs(h) + Ct(u)

γps(h, u) = Cps(0, 0)− Cps(h, u)

= k · Cs(0)Ct(0) + Cs(0) + Ct(0)

−
(
k · Cs(h)Ct(u) + Cs(h) + Ct(u)

)
= k · sills · sillt + sills + sillt

−k ·
[(

sills − γs(h)
)(

sillt − γt(u)
)]
−
(

sills − γs(h)
)
−
(

sillt − γt(u)
)

= k · sills · sillt + sills + sillt

−k ·
[
sills · sillt − sills · γt(u)− sillt · γs(h) + γs(h)γt(u)

]
−sills + γs(h)− sillt + γt(u)

= k · silltγs(h) + k · sillsγt(u)− kγs(h)γt(u) + γs(h) + γt(u)

= (k · sillt + 1)γs(h) + (k · sills + 1)γt(u)− kγs(h)γt(u)
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