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Abstract

The lme4 package provides R functions to fit and analyze linear
mixed models, generalized linear mixed models and nonlinear mixed
models. In this vignette we describe the formulation of these models
and the computational approach used to evaluate or approximate the
log-likelihood of a model/data/parameter value combination.

1 Introduction

The lme4 package provides R functions to fit and analyze linear mixed models,
generalized linear mixed models and nonlinear mixed models. These models
are called mixed-effects models or, more simply, mixed models because they
incorporate both fixed-effects parameters, which apply to an entire popula-
tion or to certain well-defined and repeatable subsets of a population, and
random effects, which apply to the particular experimental units or obser-
vational units in the study. Such models are also called multilevel models
because the random effects represent levels of variation in addition to the
per-observation noise term that is incorporated in common statistical mod-
els such as linear regression models, generalized linear models and nonlinear
regression models.

The three types of mixed models – linear, generalized linear and nonlinear
– share common characteristics in that the model is specified in whole or
in part by a mixed model formula that describes a linear predictor and a
variance-covariance structure for the random effects. In the next section
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we describe the mixed model formula and the forms of these matrices. The
following section presents a general formulation of the Laplace approximation
to the log-likelihood of a mixed model.

In subsequent sections we describe computational methods for specific
kinds of mixed models. In particular, we should how a profiled log-likelihood
for linear mixed models, and for some nonlinear mixed models, can be eval-
uated exactly.

2 Mixed-model formulas

The right-hand side of a mixed-model formula, as used in the lme4 package,
consists of one or more random-effects terms and zero or more fixed-effects
terms separated by the ‘+’ symbol. The fixed-effects terms generate the fixed-
effects model matrix, X, from the data. The random-effects terms generate
the random-effects model matrix, Z, and determine the structure of the
variance-covariance of the random effects. As described in §2.1, random-
effects terms in the model formula always include the vertical bar symbol,
‘|’, which is sometimes read as“given”or“by”. Any terms that do not include
this symbol are fixed-effects terms.

For linear and generalized linear mixed models, the fixed-effects model
matrix, X, is constructed from the fixed-effects terms in the model formula
and from the data, according to the usual rules for model matrices in the
S language (Chambers and Hastie, 1992, Chapter 2). For nonlinear mixed
models, X is constructed from these terms and the data according to slightly
modified rules, as described in §5.2.

The form of Z and the rules for constructing it from the data and the
random-effects terms in the model formula are described in §2.1.

The model matricesX and Z are of size m×p and m×q, respectively. For
linear and generalized linear mixed models m, the number of rows in X and
Z, is equal to n, the dimension of the response vector, y. For nonlinear mixed
models m is a multiple of n, m = ns, where s is the number of parameters
in the underlying nonlinear model, as described in §5.

The dimension of the fixed-effects parameter vector, β, is p and the di-
mension of the random effects vector, b, is q. Together with the matrices X
and Z these vectors determine the linear predictor

ηb (b,β) = Zb+Xβ (1)
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The notation ηb emphasizes that η is being expressed as a function of b (and
β). In §2.4 we will define orthogonal random effects, u, which are a linear
transformation of b, and the corresponding expression, ηu, for the linear
predictor.

The vector β is a parameter of the model. Strictly speaking, the vector b
is not a parameter — it is a value of the unobserved random variable, B. The
observed responses, y, are the value of the n-dimensional random variable,
Y . In the models we will consider, b and β determine the conditional mean,
µY |B, of Y through the linear predictor, ηb (b,β). That is,

E[Y |B] = µY |B = µ(ηb (b,β)) = µ(Zb+Xβ). (2)

The random variable Y can be continuous or discrete. In both cases we
will write the conditional distribution as fY |B, representing the condition
probability density or the conditional probability mass function, whichever
is appropriate. This conditional distribution depends on the conditional
mean, µY |B, only through a discrepancy function, d(µY |B,y), that defines
a “squared distance” between the conditional mean, µY |B, and the observed
data, y. For linear mixed models and for nonlinear mixed models d(µY |B,y)

is precisely the square of the Euclidean distance, d(µY |B,y) =
∥∥µY |B − y∥∥2

.
The more general form of the discrepancy function used for generalized linear
mixed models is described in §6.

The discrepancy function is related to the deviance between the observed
data and a conditional mean, in that the deviance is the discrepancy for the
current model minus the discrepancy for what is called “the full model” (see
(McCullagh and Nelder, 1989, §2.3) for details). For linear mixed models
and for nonlinear mixed models the discrepancy for the full model is zero so
that the deviance and the discrepancy coincide. For generalized linear mixed
models the discrepancy for the full model can be nonzero. The deviance is
defined in such a way that it must be non-negative and does, in fact, behave
like a squared distance. The discrepancy, on the other hand, can be negative.

Because we will primarily be concerned with minimizing the discrepancy
(or a related quantity, the penalized discrepancy, defined in §2.4), the additive
term that distinguishes the discrepancy from the deviance is not important
to us.

The conditional distribution of Y given B is completely determined by
the conditional mean, µY |B, and, possibly, a variance scale parameter that in
part determines the conditional variance, Var(Y |B), but does not affect the
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conditional mean, µY |B. We will write this variance scale parameter, when
it is used, as σ2.

The general form of the conditional distribution is

fY |B(y|b,β, σ2) = k(y, σ2)e−d(µY |B ,y)/(2σ2). (3)

The quantity k(y, σ2) is the normalizing factor defined so that the
∫
y
fY |B(y|b,β, σ2) dy =

1.
In the models we will consider, the elements of Y are conditionally inde-

pendent, given B. That is, fY |B can be written as a product of n factors,
each involving just one element of y and the corresponding element of µY |B.
Consequently, the discrepancy can be written as a sum of n terms that also
are evaluated component-wise on µY |B and y.

For linear and generalized linear mixed models, where µ and η both have
dimension n, the mean function, µ(η), is also evaluated component-wise.
That is, the ith element of µY |B depends only on the ith element of η. For
nonlinear mixed models, the dimension of η is a multiple, m = ns, of the
dimension of µ. If we convert η to an n×s matrix (using, say, column-major
ordering), then the ith element of µ depends only on the ith row of this
matrix.

Generalized linear mixed models where the independent components of
the conditional distribution, fY |B, have Bernoulli distributions or binomial
distributions or Poisson distributions, do not require a separate scale param-
eter, σ2, for the variance. The underlying scalar distributions are completely
determined by their means. In such cases the conditional distribution, fY |B,
can be written fY |B(y|b,β) = k(y)e−d(µY |B(b,β)),y)/2 and the normalization
factor is k(y).

The marginal distribution ofB is the multivariate Gaussian (or“normal”)
distribution

B ∼ N
(
0, σ2Σ(θ)

)
, (4)

where σ2 is the same variance scale parameter used in (3). The q × q sym-
metric, positive-semidefinite matrix Σ(θ) is the relative variance-covariance
matrix of B. The form of Σ(θ) and the parameter, θ, that determines it are
described in §2.2. (The condition that Σ(θ) is positive-semidefinite means
that v′Σ(θ)v ≥ 0,∀v ∈ Rq.)
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2.1 Random-effects terms

A simple random-effects term is of the form ‘(formula |factor )’ where for-
mula is a linear model formula and factor is an expression that can be
evaluated as a factor. This factor is called the grouping factor for the term
because it partitions the elements of the conditional mean, µY |B, into non-
overlapping groups and isolates the effect of some elements of the random
effects vector, b, to a specific group.

A random-effects term is typically enclosed in parentheses so that the
extent of formula is clearly defined. As stated earlier, it is the presence of
the vertical bar, ‘|’, that distinguishes a random-effects term from a fixed-
effects term.

Let k be the number of random-effects terms in the formula and ni, i =
1, . . . , k, be the number of levels in the ith grouping factor, fi.

The linear model formula in the ith random-effects term determines an
m × qi model matrix, Zi, according to the usual rules for model matrices,
in the case of linear or generalized linear models, and according to slightly
modified rules, as described in §5.2, for nonlinear mixed models.

Together fi andZi determine an indicator interaction matrix, Z̃i, which is
the horizontal concatenation of qi matrices, each representing the interaction
of the indicators of fi with a column of Zi. That is, the m× niqi matrix Z̃i

consists of qi vertical blocks, each of size m × ni, whose nonzeros are in the
form of the indicator columns for fi. The nonzeros in the jth vertical block
in Z̃i (exactly one nonzero per row) correspond to the jth column of Zi.

Finally, the m× q matrix Z is the horizontal concatenation of the Z̃i, i =
1, . . . , k. Thus q, the number of columns in Z, is

q =
k∑
i=1

niqi. (5)

In the not-uncommon case of a random effects term of the form (1|fac-

tor ), where the formula ‘1’ designates the “Intercept” column only, qi = 1,
Zi = 1m, the m× 1 matrix all of whose elements are unity, and Z̃i becomes
the m× ni matrix of indicators of the levels of fi.

For example, suppose we wish to model data where three observations
have been recorded on each of four subjects. A data frame containing just a
“subject” factor, subj, could be constructed as

> dat <- data.frame(subj = gl(4, 3, labels = LETTERS[1:4]))
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The first few rows of dat are

> head(dat, n = 5)

subj
1 A
2 A
3 A
4 B
5 B

and a summary of the structure of dat is

> str(dat)

'data.frame': 12 obs. of 1 variable:
$ subj: Factor w/ 4 levels "A","B","C","D": 1 1 1 2 2 2 3 3 3 4 ...

The 12 × 1 model matrix Zi for the random-effects term (1|subj) can be
generated and stored (as Zi) by

> Zi <- model.matrix(~1, dat)

The transpose of Zi is

> t(Zi)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
(Intercept) 1 1 1 1 1 1 1 1 1 1

[,11] [,12]
(Intercept) 1 1
attr(,"assign")
[1] 0

and the corresponding indicator interaction matrix, Z̃i, is

12 x 4 sparse Matrix of class "dgCMatrix"
A B C D

[1,] 1 . . .
[2,] 1 . . .
[3,] 1 . . .
[4,] . 1 . .
[5,] . 1 . .
[6,] . 1 . .
[7,] . . 1 .
[8,] . . 1 .
[9,] . . 1 .

[10,] . . . 1
[11,] . . . 1
[12,] . . . 1
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As stated earlier, Z̃i for the random-effects term (1|subj) is simply the
matrix of indicator columns for the levels of subj.

In the lme4 package the transposes of sparse model matrices like Z̃i are
stored as compressed column matrices (Davis, 2006, ch. 2) of class "dgCMa-

trix". When a matrix of this class is printed, the systematic zeros are shown
as ‘.’.

The transpose of the indicator matrix can be generated by coercing the
factor to the virtual class "sparseMatrix"

> as(dat$subj, "sparseMatrix")

4 x 12 sparse Matrix of class "dgCMatrix"

A 1 1 1 . . . . . . . . .
B . . . 1 1 1 . . . . . .
C . . . . . . 1 1 1 . . .
D . . . . . . . . . 1 1 1

This display shows explicitly that rows of the transpose of the indicator
matrix are associated with levels of the grouping factor.

For a more general example, assume that each subject is observed at times
1, 2 and 3. We can insert a time variable in the data frame as

> dat$time <- rep(1:3, 4)

so the first few rows of the data frame become

> head(dat, n = 5)

subj time
1 A 1
2 A 2
3 A 3
4 B 1
5 B 2

The term (time|Subject) (which is equivalent to (1+time|Subject) because
linear model formulas have an implicit intercept term) generates a model
matrix, Zi, with qi = 2 columns, and whose first few rows are

> head(Zi <- model.matrix(~time, dat), n = 5)

(Intercept) time
1 1 1
2 1 2
3 1 3
4 1 1
5 1 2
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The transpose of the indicator interaction matrix could be constructed as

> tt <- ii <- as(dat$subj, "sparseMatrix")
> tt@x <- as.numeric(dat$time)
> rBind(ii, tt)

8 x 12 sparse Matrix of class "dgCMatrix"

A 1 1 1 . . . . . . . . .
B . . . 1 1 1 . . . . . .
C . . . . . . 1 1 1 . . .
D . . . . . . . . . 1 1 1
A 1 2 3 . . . . . . . . .
B . . . 1 2 3 . . . . . .
C . . . . . . 1 2 3 . . .
D . . . . . . . . . 1 2 3

2.2 The relative variance-covariance matrix

The elements of the random-effects vector b are partitioned into groups in
that same way that the columns of Z are partitioned. That is, b is divided
into k groups, corresponding to the k random-effects terms, and the ith of
these groups is subdivided into qi groups of ni elements. The qi groups
correspond to the qi columns of the model matrix, Zi, and the ni elements
in each group correspond to the ni levels of the ith grouping factor.

This partitioning determines the structure of the variance-covariance ma-
trix, Var(B) = σ2Σ(θ), because random effects corresponding to different
terms are assumed to be uncorrelated, as are random effects corresponding
to different levels of the same term. Furthermore, the variance-covariance
structure of each of the ni groups of qi possibly dependent elements within
the ith “outer” group are identical.

Although this description may seem complicated, the structures are rea-
sonably straightforward. The matrix Σ has the form

Σ =


Σ̃1 0 . . . 0

0 Σ̃2 . . . 0
...

...
. . .

...

0 0 . . . Σ̃k.

 (6)
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and the ith diagonal block, Σ̃i, has the form

Σ̃i =


σ1,1Ini

σ1,2Ini
. . . σ1,qiIni

σ1,2Ini
σ2,2Ini

. . . σ2,qiIni

...
...

. . .
...

σ1,qiIni
σ2,qiIni

. . . σqi,qiIni

 = Σi ⊗ Ini
, (7)

where

Σi =


σ1,1 σ1,2 . . . σ1,qi

σ1,2 σ2,2 . . . σ2,qi
...

...
. . .

...
σ1,qi σ2,qi . . . σqi,qi

 (8)

is a qi× qi symmetric matrix. (The symbol ⊗ denotes the Kronecker product
of matrices, which is a convenient shorthand for a structure like that shown
in (7).)

The ith diagonal block, Σ̃i, of size niqi × niqi is the relative variance-
covariance of Bi, the elements of B that are multiplied by Z̃i in the linear
predictor. The elements of Bi are ordered first by the column of Zi then by
the level of fi. It may be easier to picture the structure of Σ̃i if we permute
the elements of Bi so the ordering is first by level of fi then by column of
Zi. Let Pi be the matrix representing this permutation. Then

PiΣ̃iP
′
i =


Σi 0 . . . 0
0 Σi . . . 0
...

...
. . .

...
0 0 . . . Σi

 = Ini
⊗Σi. (9)

The matrix Σ will be positive-semidefinite if and only if all the symmetric
matrices Σi, i = 1, . . . , k, are positive-semidefinite. This occurs if and only if
each of the Σi has an Cholesky factorization of the “LDL′” form, where the
left factor “L” is a unit lower triangular matrix and “D” is a diagonal matrix
with non-negative diagonal elements.

Because we want to allow for Σi to be semidefinite and we also want to be
able to write a “square root” of Σi (i.e. a matrix K such that Σi = KK ′),
we write the factorization as

Σi = TiSiSiT
′
i , i = 1, . . . , k (10)
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where Ti is a unit lower triangular matrix of size qi × qi and Si is a diagonal
qi × qi matrix with non-negative diagonal elements. This is the “LDL′” form
except that the diagonal elements of Si are the square roots of the diagonal
elements of the “D” factor in the “LDL′” form (and we have named the left,
unit lower triangular factor Ti instead of “L”).

If all of the diagonal elements of Si are positive then Σi is positive-definite
(i.e. v′Σ(θ)v > 0, ∀v ∈ Rq,v 6= 0). If all the Σi, i = 1, . . . , k are positive-
definite then Σ is positive-definite.

We parameterize Σi according to the factorization (10). We define θi to
be the vector of length qi(qi + 1)/2 consisting of the diagonal elements of Si
followed by the elements (in row-major order) of the strict lower triangle of
Ti. Finally, let θ be the concatenation of the θi, i = 1, . . . , k.

The unit lower-triangular and non-negative diagonal factors, T (θ) and
S(θ), of Σ(θ) are constructed from the Ti, Si and ni, i = 1, . . . , k according
to the pattern for Σ(θ) illustrated in (6) and (7). That is, T (θ) (respec-
tively S(θ)) is block-diagonal with ith diagonal block T̃i(θ) = T (θ) ⊗ Ini

(respectively S̃i(θ) = S(θ)⊗ Ini
).

Although the number of levels of the ith factor, ni, can be very large, the
number of columns in Zi, qi, is typically very small. Hence the dimension of
the parameter θi, which depends on qi but not on ni, is also small and the
structure of Ti and Si is often very simple.

In general, for a random-effects term (1|factor ), qi = 1 and Ti, which is
a 1 × 1 unit lower triangular matrix, must be I1, the 1 × 1 identity matrix.
Hence T̃i = Ini

and the factorization Σ̃i = T̃iS̃iS̃iT̃
′
i reduces to Σ̃i = S̃iS̃i.

Furthermore, Si is a 1× 1 matrix [θi], subject to θi ≥ 0, and

S̃i = θiIni

while
Σ̃i = S̃iS̃i = θ2

i Ini
.

We see that the standard deviations of the elements of Bi are all equal
to θiσ, where, for linear mixed models and nonlinear mixed models, σ is
the standard deviation of elements of fY |B. Similarly, the variance of the
elements ofBi, relative to the diagonal of the conditional variance, Var(Y |B),
is θ2

i .
For the random-effects term like (time|subj), for which qi = 2, let us
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write the 2(2 + 1)/2 = 3-dimensional θi as [a, b, c]′. Then

Si =

[
a 0
0 b

]
so that

S̃i =

[
aIni

0
0 bIni

]
and

Ti =

[
1 0
c 1

]
so that

T̃i =

[
Ini

0
cIni

Ini

]
.

The constraints on θi are a ≥ 0 and b ≥ 0.

2.3 The fill-reducing permutation matrix, P

We saw in §2.1 that the random-effects model matrix, Z, is typically quite
sparse (i.e. it is mostly zeros). Because S(θ) is diagonal and because the
pattern in T (θ) is generated from the same partitioning of the elements of b
that generates the pattern of the columns of Z, the matrix

V (θ) = ZT (θ)S(θ), (11)

is also quite sparse. (In fact, the number and positions of the nonzeros in
V (θ) are the same as those for Z, whenever θ is not on the boundary.) We
store Z and V (θ) as sparse matrices. (To be more precise, we store Z ′ and
V (θ)′ as compressed column matrices (Davis, 2006, ch. 2).)

As we will see in later sections, our techniques for determining the max-
imum likelihood estimates of the parameters, in any of the three kinds of
mixed models we are considering, require evaluation of the Cholesky decom-
position of sparse, symmetric, positive-definite matrices of the form

A(u,β,θ,y) = V (θ)′W (u,β,θ,y)V (θ) + Iq (12)

where W (u,β,θ,y) is a q × q diagonal matrix of positive weights and u is
the orthogonal random-effects vector defined in the next section.

11



Evaluation of the Cholesky decomposition of A(u,β,θ,y) may be re-
quired for hundreds or even thousands of different combinations of u, β and
θ during iterative optimization of the parameter estimates. Furthermore, the
dimension, q, of A(u,β,θ,y) can be in the tens or hundreds of thousands
for some of the data sets and models that are encountered in practice. Thus
it is crucial that these Cholesky decompositions be evaluated efficiently.

Permuting (i.e. reordering) the columns of V (θ) can affect, sometimes
dramatically, the number of nonzero elements in the Cholesky factor of
A(u,β,θ,y) and, consequently, the time required to perform the factor-
ization. The number of nonzeros in the factor will always be at least as
large as the number of nonzeros in the lower triangle of A, but it can be
larger — in which case we say that the factor has been “filled-in” relative
to A. Determining a fill-minimizing column permutation of V (θ) is an ex-
tremely difficult and time-consuming operation when q is large. However,
some heuristics, such as the approximate minimal degree ordering algorithm
(Davis, 1996), can be used to rapidly determine a near-optimal, fill-reducing
permutation. (See Davis (2006, ch. 7) for details.)

The symbolic analysis of the nonzero pattern in V (θ) need only be done
once (at θ(0)) because the pattern of nonzeros in A(u,β,θ,y) depends only
on the nonzero pattern of V (θ), which is the same for all values of θ not
on the boundary. We will express the permutation as the q × q permutation
matrix, P , which is formed by applying the permutation to the rows of Iq,
and which has the property P ′P = PP ′ = Iq. The transpose, P ′, is also a
permutation matrix. It represents the inverse to the permutation represented
by P .

2.4 Orthogonal random effects

For a fixed value of θ we express the random variable B as

B = T (θ)S(θ)P ′U (13)

where U is q-dimensional random variable representing orthogonal random
effects having distribution U ∼ N (0, σ2I) for which the density function,
fU , is

fU (u|σ2) = (2πσ2)−q/2e−u
′u/(2σ2). (14)

(When a generalized linear mixed model does not include the variance scale
factor, σ2, the distribution of U is the standard q-variate Gaussian distribu-
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tion N (0, Iq) with density fU (u) = (2π)−q/2e−u
′u/2.) The random effects U

are “orthogonal” in the sense of being uncorrelated.
We note that (13) provides the desired distribution B ∼ N (0, σ2Σ) be-

cause B, as a linear transformation of B, has a multivariate Gaussian dis-
tribution with mean

E[B] = E[T (θ)S(θ)P ′U ] = T (θ)S(θ)P ′E[U ] = 0

and variance-covariance matrix

Var(B) = E[BB′] = T (θ)S(θ)P ′E[UU ′]PS(θ)T (θ)′

= T (θ)S(θ)P ′Var(U )PS(θ)T (θ)′

= σ2T (θ)S(θ)P ′PS(θ)T (θ)′

= σ2T (θ)S(θ)S(θ)T (θ)′

= σ2Σ(θ).

Because T (θ) is a unit lower triangular matrix its determinant, |T (θ)|,
which is the product of the diagonal elements in the case of a triangular
matrix, is unity. Hence T−1(θ) always exists. When θ is not on the boundary
of its constraint region, so that all the diagonal elements of S(θ) are positive,
then S−1(θ) exists, as does

Σ−1(θ) = T−1(θ)′S−1(θ)S−1(θ)T−1(θ). (15)

That is, when θ is not on the boundary Σ(θ) will be non-singular and we
can express U as

U = PS−1(θ)T−1(θ)B. (16)

When θ is on the boundary, meaning that one or more of the diagonal
elements of the Si, i = 1, . . . , k is zero, Σ(θ) is said to be a singular, or
degenerate, variance-covariance matrix. In such cases there will be non-trivial
linear combinations, v′B where v 6= 0, such that Var(v′B) = σ2v′Σ(θ)v = 0.

Because the conditional mean, µY |B, depends on b only through the
linear predictor, ηb(b,β), and because we can rewrite the linear predictor as
a function of β and u

Xβ +Zb = Xβ +ZT (θ)S(θ)P ′u = Xβ + V (θ)P ′u = ηu(β,θ,u) (17)

we can form the conditional mean,

µY |U (u,β,θ) = µ(ηu(u,β,θ)), (18)
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with discrepancy, d(µ(ηu(u,β,θ),y). The conditional distribution of Y
given U is

fY |U (y|u,β,θ, σ2) = k(y, σ2)e−d(µ(ηu(u,β,θ),y)/(2σ2). (19)

3 Evaluating the likelihood

If the distribution of Y is continuous, the likelihood of the parameters, β, θ
and σ2, is equal to the marginal density of Y , which depends on β, θ and σ2,
evaluated at the observed data, y. If the distribution of Y is discrete, the
likelihood is equal to the marginal probability mass function of Y evaluated
at y.

Just as in (3), where we wrote the conditional density or the condi-
tional probability mass function of Y given B, whichever is appropriate,
as fY |B(y|b,β, σ2), we will write the unconditional (or marginal) density of
Y or the unconditional probability mass function of Y , whichever is appro-
priate, as fY (y|β,θ, σ2). We can obtain fY by integrating fY |B with respect
to the marginal density fB or by integrating fY |U with respect to fU . Thus
the likelihood can be expressed as

L(β,θ, σ2|y) = fY (y|β,θ, σ2)

=

∫
b

fY |B(y|b,β, σ2) fB(b|θ, σ2) db

=

∫
u

fY |U (y|u,β,θ, σ2) fU (u|σ2) du

= k(y, σ2)

∫
u

e−(d(µ(ηu(u,β,θ)),y)+u′u)/(2σ2)

(2πσ2)q/2
du

= k(y, σ2)

∫
u

(
2πσ2

)−q/2
e−δ(u|β,θ,y)/(2σ2) du.

(20)

where
δ(u|β,θ,y) = d(µ(ηu(u,β,θ)),y) + u′u (21)

is the penalized discrepancy function. It is composed of a “squared distance”
between the conditional mean, µY |U = µ(ηu(β,θ,u)), and the observed
data, y, plus a “penalty”, u′u, on the size of u.

Note that the penalized discrepancy (21) and the likelihood (20) can be
evaluated even when θ on the boundary (and, hence, Σ−1(θ) does not exist).
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It is important to be able to evaluate the likelihood for values of θ on the
boundary because the maximum likelihood estimates of θ can (and do) occur
on the boundary.

3.1 The Laplace approximation

In later sections we will see that, for the models that we are considering,
it is relatively straightforward to determine the minimizer of the penalized
discrepancy

ũ(β,θ,y) = arg min
u
δ(u|β,θ,y), (22)

either directly, as the solution to a penalized linear least squares problem, or
through an iterative algorithm in which each iteration requires the solution
of a penalized linear least squares problem. Because the value that minimizes
the penalized discrepancy will maximize the conditional density of U , given
Y ,

fU |Y (u|y,β,θ, σ2) ∝ k(y, σ2)(2πσ2)−q/2e−δ(u|β,θ,y)/(2σ2), (23)

ũ(β,θ,y) is called the conditional mode of u given the data, y, and the pa-
rameters, β and θ. (The conditional density (23) depends on σ2, in addition
to the other parameters and the data, but the conditional mode (22) does
not.)

Near the conditional mode, the quadratic approximation to the penalized
discrepancy is

δ(u|β,θ,y) ≈ δ(ũ|β,θ,y) + (u− ũ)′
∇2
uδ(u|β,θ,y)|u=ũ

2
(u− ũ) (24)

where ∇2
uδ(u|β,θ,y) denotes the symmetric q × q Hessian matrix of the

scalar function δ(u|β,θ,y). The (j, k)th element of ∇2
uδ(u|β,θ,y) is

∂2δ(u|β,θ,y)

∂uj∂uk
. (25)

One of the conditions for ũ(β,θ,y) to be the minimizer of the penalized
discrepancy is that the Hessian at ũ, ∇2

uδ(u|β,θ,y)|u=ũ, must be positive-
definite. We can, therefore, evaluate the Cholesky factor L(β,θ,y), which is
the q × q lower triangular matrix with positive diagonal elements satisfying

L(β,θ,y)L(β,θ,y)′ =
∇2
uδ(u|β,θ,y)|u=ũ(β,θ,y)

2
. (26)
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Substituting the quadratic approximation (24) into expression (20) for
the likelihood, L(β,θ, σ2|y), results in an integral in which the only part of
the integrand that depends on u is the quadratic term in the exponent. To
evaluate the non-constant part of the integral, which we can write as

I =

∫
u

e−(u−ũ)′L(β,θ,y)L(β,θ,y)′(u−ũ)/(2σ2)

(2πσ2)q/2
du,

we change the variable of integration from u to v = L(β,θ,y)′(u − ũ)/σ.
The determinant of the Jacobian of this transformation is∣∣∣∣dvdu

∣∣∣∣ =
|L(β,θ,y)|

σq
,

implying that the differential, du, is

du = |L(β,θ,y)|−1 σqdv.

After the change of variable, I becomes a multiple of the integral of the
standard q-variate Gaussian density

I = |L(β,θ,y)|−1

∫
v

e−v
′v/2

(2π)q/2
dv. (27)

Finally, I = |L(β,θ,y)|−1 because the integral of a probability density over
all v ∈ Rq must be unity.

Returning to expression (20), we can now express the Laplace approxima-
tion to the likelihood function or, as more commonly used as the optimization
criterion when determining maximum likelihood estimates, the log-likelihood,

`(β,θ, σ2|y) = logL(β,θ, σ2|y). (28)

(Because the logarithm function is monotonic, the maximizer of the log-
likelihood also maximizes the likelihood. Generally the quadratic approxi-
mation to the log-likelihood is a better approximation than is the quadratic
approximation to the likelihood.)

On the deviance scale (twice the negative log-likelihood) the Laplace ap-
proximation is

−2`(β,θ, σ2|y) ≈ −2 log[k(y, σ2)] +
δ(ũ|β,θ,y)

σ2
+ 2 log |L(β,θ,y)|. (29)

Expression (29) will be an exact evaluation of the log-likelihood, not just
an approximation, whenever the penalized discrepancy, δ(u|β,θ,y), is a
quadratic function of u.
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4 Linear mixed models

A linear mixed model can be expressed as

Y = Xβ+ZB+ε, ε ∼ N
(
0, σ2I

)
, B ∼ N

(
0, σ2Σ(θ)

)
, ε ⊥ b (30)

where the symbol ⊥ denotes independence of random variables. The condi-
tional distribution of Y given B is

fY |B(y|b,β, σ2) =
(
2πσ2

)−n/2
e−‖Zb+Xβ−y‖

2/(2σ2) (31)

with conditional mean µY |B(b,β) = Zb+Xβ = ηb(b,β).
We say that the conditional distribution of the response, Y , given the ran-

dom effects, B, is a “spherical” Gaussian, Y |B ∼ N (µY |B, σ
2I), producing

the discrepancy function and normalizing factor

d(µ,y) = ‖µ− y‖2 (32)

k(σ2) =
(
2πσ2

)−n/2
. (33)

(A distribution of the formN (µ, σ2I) is called a“spherical Gaussian”because
contours of its density are spheres in Rn.)

Furthermore, µY |B is exactly the linear predictor, ηb(b,β). That is, the
“mean function”, µ(η), mapping the linear predictor, η, to the conditional
mean, µY |B, is the identity, µ(η) = η.

The penalized discrepancy for this model is

δ(u|β,θ,y)

= d (µ(ηu(β,θ,u)),y) + u′u

= ‖ηu(β,θ,u)− y‖2 + u′u

= ‖V P ′u+Xβ − y‖2 + u′u

=

∥∥∥∥∥∥[V P ′ X y
]  uβ
−1

∥∥∥∥∥∥
2

+ u′u

=
[
u′ β′ −1

] PV ′V P ′ + I PV ′X PV ′y
X ′V P ′ X ′X X ′y
y′V P ′ y′X y′y

 uβ
−1

 .
(34)
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(To save space we suppressed the dependence of V (θ) on θ and wrote it as
V .) In (34) it is obvious that δ(u|β,θ,y) is a quadratic function of u, which
means that expression (29) provides an exact evaluation of the log-likelihood.
Furthermore, the Hessian

∇2
uδ(u|β,θ,y) = 2 (PV (θ)′V (θ)P ′ + Iq) = 2P (V (θ)′V (θ) + Iq)P

′,
(35)

is positive definite and depends only on θ. The Cholesky factor L(β,θ,y),
defined in (26) and used in the log-likelihood evaluation (29), becomes L(θ)
and is the sparse lower triangular matrix with positive diagonal elements
satisfying

L(θ)L(θ)′ = P (V (θ)′V (θ) + Iq)P
′. (36)

Note that V (θ)′V (θ)+Iq is positive-definite, even when θ is on the boundary,
and thus the diagonal elements of L(θ) are all positive, for any θ. The log-
determinant, 2 log |L(θ)| = log |V (θ)′V (θ) + Iq|, required to evaluate (29),
is simply twice the sum of the logarithms of these positive diagonal elements
of L(θ).

Determining the conditional mode, ũ(β,θ,y), as the solution to

L(θ)L(θ)′ũ(β,θ,y) = V (θ)′ (y −Xβ) (37)

is straightforward once the Cholesky factor, L(θ), has been determined,
thereby providing all the information needed to evaluate the log-likelihood
from (29).

However, we can take advantage of the fact that δ(u|β,θ,y) is a quadratic
function of both u and β to minimize δ with respect to u and β simultane-
ously. Given θ we, in effect, evaluate a Cholesky factor forP (V (θ)′V (θ) + I)P ′ PV ′X PV (θ)′y

X ′V (θ)P ′ X ′X X ′y
y′V (θ)P ′ y′X y′y

 .
Because this factorization will involve combinations of sparse and dense ma-
trices, we do it in stages, beginning with the evaluation of the sparse Cholesky
factor, L(θ), from (36). Next, solve for the q × p dense matrix RV X(θ) and
the q-vector rV y(θ) in

L(θ)RV X(θ) = PV (θ)′X (38)

L(θ)rV y(θ) = PV (θ)′y, (39)
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followed by the p×p upper triangular dense Cholesky factorRX(θ) satisfying

RX(θ)′RX(θ) = X ′X −RV X(θ)′RV X(θ) (40)

and the p-vector rXy(θ) satisfying

RX(θ)′rXy(θ) = X ′y −RV X(θ)rV y(θ). (41)

Finally, evaluate the scalar

r(θ) =
√
‖y‖2 − ‖rXy(θ)‖2 − ‖rV y(θ)‖2. (42)

(The astute reader may have noticed that the six steps, (36), (38), (39), (40)),
(41) and (42), for evaluation of the log-likelihood, can be reduced to three,
(36), (38) and (39), if we begin with the n× (p+ 1) matrix [X : y] in place
of the n× p matrix X. We do so.)

Using these factors we can write

δ(u|β,θ,y)

=

∥∥∥∥∥∥
L(θ)′ RV X(θ) rV y(θ)

0 RX(θ) rXy(θ)
0 0 r(θ)

 uβ
−1

∥∥∥∥∥∥
2

= r2(θ) + ‖RX(θ)β − rXy(θ)‖2 + ‖L(θ)′u+RV X(θ)β − rV y(θ)‖2

= r2(θ) +
∥∥∥RX(θ)

(
β − β̂(θ)

)∥∥∥2

+ ‖L(θ)′ (u− û(θ))‖2

(43)

where β̂(θ), the conditional estimate of β given θ, and û(θ), the conditional

mode of u given θ and β̂(θ), are the solutions to

RX(θ)β̂(θ) = rXy(θ) (44)

L(θ)′û(θ) = rV y(θ)−RV X(θ)′β̂(θ). (45)

Furthermore, the minimum of the penalized discrepancy, conditional on θ, is

min
u
δ(u|β̂(θ),θ,y) = r2(θ). (46)

The deviance function, −2`(β,θ, σ2|y), evaluated at the conditional es-

timate, β̂(θ), is

−2`(β̂(θ),θ, σ2|y) = n log
(
2πσ2

)
+
r2(θ)

σ2
+ 2 log |L(θ)|. (47)
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Differentiating −2`(β̂(θ),θ, σ2|y) as a function of σ2 and setting the deriva-
tive to zero provides the conditional estimate

σ̂2(θ) =
r2(θ)

n
. (48)

Substituting this estimate into (47) provides the profiled deviance function

−2`(β̂(θ),θ, σ̂2(θ)|y) = n log

(
2πr2(θ)

n

)
+ n+ 2 log |L(θ)|

= n [1 + log (2π/n)] + n log r2(θ) + 2 log |L(θ)|.
(49)

That is, the maximum likelihood estimate (mle) of θ is

θ̂ = arg min
θ

{
n [1 + log (2π/n)] + n log r2(θ) + 2 log |L(θ)|

}
. (50)

The mle’s of the other parameters are determined from θ̂ using (48) and (44).

The conditional modes of the orthogonal random effects, û(θ̂), evaluated
using (45), and the corresponding conditional modes of the untransformed
random effects,

b̂(θ̂) = T (θ̂)S(θ̂)P ′û(θ̂), (51)

are called the empirical Best Linear Unbiased Predictors (eBLUPs) of the
random effects.

The three terms in the objective function being minimized in (50) are,
respectively, a constant, n [1 + log (2π/n)], a measure of the fidelity of the
fitted values to the observed data, n log r2(θ), and a measure of model com-
plexity, 2 log |L(θ)|. Thus we can consider maximum likelihood estimation of
the parameters in a linear mixed model to be balancing fidelity to the data
against model complexity by an appropriate choice of θ.

4.1 REML estimates

The maximum likelihood estimate of σ2, σ̂2 = r2/n, is the penalized residual
sum of squares divided by the number of observations. It has a form like
the maximum likelihood estimate of the variance from a single sample, σ̂2 =∑n

i=1(yi−ȳ)2/n or the maximum likelihood estimate of the variance in a linear

regression model with p coefficients in the predictor, σ̂2 =
∑n

i=1(yi − ŷi)2/n.

20



Generally these variance estimates are not used because they are biased
downward. This is, on average they will underestimate the variance in the
model. Instead we use σ̂2

R =
∑n

i=1(yi− ȳ)2/(n−1) for the variance estimate

from a single sample or σ̂2
R =

∑n
i=1(yi−ŷi)2/(n−p) for the variance estimate

in a linear regression model. These estimates are based on the residuals,
yi− ŷi, i = 1, . . . , n which satisfy p linear constraints and thus are constrained
to an (n − p)-dimensional subspace of the n-dimensional sample space. In
other words, the residuals have only n− p degrees of freedom.

In a linear mixed model we often prefer to estimate the variance compo-
nents, σ2 and Σ, according to the residual maximum likelihood (REML) cri-
terion (sometimes called the restricted maximum likelihood criterion) which
compensates for the estimation of the fixed-effects parameters when estimat-
ing the random effects.

The REML criterion can be expressed as

LR(θ, σ2|y) =

∫
β

L(β,θ, σ2|y) dβ

=
e−r

2(θ)/(2σ2)

|L(θ)|(2πσ2)(n−p)/2

∫
β

e−(β−bβ)′R′XRX(β−bβ)/(2σ2)

(2πσ2)p/2
dβ

=
e−r

2(θ)/(2σ2)

|L(θ)||RX(θ)|(2πσ2)(n−p)/2

(52)

or, on the deviance scale,

−2`R(θ, σ2|y) = (n− p) log
(
2πσ2

)
+
r2(θ)

σ2
+ 2|L(θ)|+ 2|RX(θ)| (53)

from which we can see that the REML estimate of σ2 is

σ̂R(θ) =
r2(θ)

n− p
(54)

and the profiled REML deviance is

− 2`R(θ, σ̂2(θ)|y) = (n− p) [1 + log (2π/(n− p))] + (n− p) log r2(θ)

+ 2 log |L(θ)|+ 2 log |RX(θ)|. (55)
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5 Nonlinear mixed models

The nonlinear mixed model can be expressed as

Y = µ(ηb(B,β)) + ε, ε ∼ N (0, σ2I), B ∼ N (0, σ2Σ(θ)), ε ⊥ B,
(56)

which is very similar to the linear mixed model (30). In fact, these two types
of mixed models differ only in the form of the mean function, µ(η).

The discrepancy function, d(µY |B,y), and the normalizing factor, k(σ2),
are the same as those for a linear mixed model, (32) and (33), respectively.
However, for a nonlinear mixed model, the mean function, µ(η), is not the
identity. In the nonlinear model each element of µ is the value of a scalar
nonlinear model function, g(x,φ), that depends on the observed values of
some covariates, x, and on a parameter vector, φ, of length s. This model
function, g(x,φ), can be nonlinear in some or all of the elements of φ.

When estimating the parameters in a model, the values of the covariates
at each observation are known so we can regard the ith element of µY |B as
a function of φi only and write

µ = g(Φ) (57)

where Φ is the n × s matrix with ith row φi, i = 1, . . . , n and the vector-
valued function, g, applies the scalar function g(x,φ) to the rows of Φ and
the corresponding covariates xi, i = 1, . . . , n.

The linear predictor, η, is

η = vec(Φ) = Zb+Xβ = V (θ)P ′u+Xβ. (58)

(The vec operator concatenates the columns of a matrix to form a vector.)
The matrix Φ is n × s, hence the dimension of vec(Φ) is m = ns, so X is
ns× p while Z and V (θ) are ns× q. Because the ith element of µ depends
only on the ith row of Φ, the n× ns gradient matrix,

W (u,β,θ) =
dµ

dη′
, (59)

is the horizontal concatenation of s diagonal n×n matrices. The ith diagonal
element in the jth diagonal block of W is

{W (u,β,θ)}i,i+(j−1)n =
∂g(x,φ)

∂φj

∣∣∣∣
x=xi,φ=φi

.

All other elements in W are zero.
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5.1 Optimizing the penalized discrepancy

As for a linear mixed model, the problem of determining ũ(β,θ), the opti-
mizer of the penalized discrepancy function, can be written as a penalized
least squares problem

ũ(β,θ) = arg min
u
δ(u|β,θ,y)

= arg min
u

(
‖µ(ηu(u,β,θ))− y‖2 + u′u

)
.

(60)

Generally (60) is a penalized nonlinear least squares problem requiring an
iterative solution, not a penalized linear least squares problem like (37) with
a direct solution.

To describe the general case of an iterative solution to (60) we will use
parenthesized superscripts to denote the number of the iteration at which a
quantity is evaluated. At u(i), the value of the u at the ith iteration, the
linear approximation to µ as a function of u is

µ(ηu(u,β,θ)) ≈µ(ηu(u(i),β,θ)) +
∂µ

∂u′

∣∣∣∣
u=u(i)

(u− u(i))

= µ(i) +W (u(i),β,θ)V (θ)P ′(u− u(i))

= µ(i) +M (i)P ′(u− u(i))

(61)

where µ(i) = µ(ηu(u(i),β,θ)) and the n× q matrix

M (i) = W (u(i),β,θ)V (θ). (62)

As described in §5.3, for some nonlinear models the conditional mean
µY |U is a linear function of u (but a nonlinear function of one or more
components of β, so that the model cannot be written as a linear mixed
model). For these conditionally linear mixed models (61) is exact and M
does not depend upon u.

In the general case, the proposed increment, δ(i) = u(i+1)−u(i), minimizes
the approximate penalized discrepancy obtained from (61). That is,

δ(i) = arg min
δ

∥∥µ(i) +M (i)P ′δ − y
∥∥2

+ (δ + u(i))′(δ + u(i))

= arg min
δ

∥∥∥∥[M (i)P ′δ
δ + u(i)

]
−
[
y − µ(i)

0

]∥∥∥∥2

= arg min
δ

∥∥∥∥[M (i)P ′

Iq

]
δ −

[
y − µ(i)

−u(i+1)

]∥∥∥∥2

,

(63)
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which implies that δ(i) satisfies the “normal equations”

P
(
M (i)′M (i) + Iq

)
P ′δ(i) = PM (i)′ (y − µ(i)

)
− u(i). (64)

Let the Cholesky factor L(u(i),β,θ,y), which we will write as L(i), be
the sparse, lower triangular matrix satisfying

L(i)L(i)′ = P
(
M (i)′M (i) + Iq

)
P ′. (65)

The increment δ(i) is evaluated by successively solving the two sparse trian-
gular systems in

L(i)L(i)′δ(i) = PM (i)′ (y − µ(i)
)
− u(i). (66)

5.1.1 Step factor and convergence criterion

Some examination of the penalized least squares problem (63) will show that
is it possible to write a penalized least squares problem for the updated ran-
dom effects, u(i+1) = u(i) +δ(i), directly. We prefer to write the conditions in
terms of the increment and to calculate the proposed increment, δ(i), using
(66) for two reasons: to allow us to incorporate a step factor (Bates and
Watts, 1988, §2.2.1) easily and to evaluate the relative offset convergence cri-
terion, which is based on the extent to which the residual vector is orthogonal
to the columns of the gradient matrix.

With highly nonlinear models it can happen that applying the proposed
increment, δ(i), actually increases the penalized discrepancy rather than de-
creasing it. In these cases we use only a fraction, h, of the proposed step,
δ(i), where 0 < hmin ≤ h ≤ 1 and hmin is a prespecified minimum step factor.
We evaluate the penalized discrepancy at u = u−1 + hδ(i) for successively
smaller values of h until we obtain a decrease in the penalized discrepancy
or the minimum step factor is reached. Generally a simple strategy such as
setting h = 1 at the beginning of each iteration and successively halving h if
necessary is sufficient.

We continue iterating until the increments become negligible whereupon
we declare convergence. To design an algorithm, however, we must decide
how to measure the size of the increment and when to declare that this size
is “negligible”.

As described in Bates and Watts (1988, §2.2.3) the numerical uncertainty
in the value of the conditional mode, ũ(β,θ,y, relative to the statistical
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uncertainty, can be assessed as the ratio of the length of two orthogonal
components of the residual vector, evaluated at the current value of u, β
and θ. This “relative offset” or orthogonality convergence criterion is

‖L(i)′δ(i)‖/√q
‖PM (i)′ (y − µ(i))− u(i)‖/

√
n− q

when the increment is calculated using (66).
Convergence is declared when this criterion drops below a threshold, typ-

ically a value on the order of 0.001. It is desirable to use a convergence
criterion such as this relative offset because it is a true convergence criterion,
not simply an indicator that the iterations are no longer making progress. In
other words, this criterion depends only not the current position and not on
the path taken by the algorithm to this position. See Bates and Watts (1988,
§2.2.3) for details and McCullough (1999) for comparison of the behavior of
software that uses this criterion (S-PLUS, in this comparison) versus other
commercial software. The software using this criterion was one of only two
packages that did not declare convergence to a spurious optimum on at least
one of the problems in the test suite. (The convergence criterion used by the
nls function in S-PLUS is misstated in McCullough (1999). That function
uses the relative offset criterion.)

5.1.2 The Laplace approximation for nonlinear mixed models

At convergence the Laplace approximation to the deviance is

−2`(β,θ, σ2|y) = n log
(
2πσ2

)
+
δ(ũ|β,θ,y)

σ2
+ 2 log |L(β,θ,y)| (67)

where L(β,θ,y) is the Cholesky factor ofM ′M+Iq evaluated at ũ(β,θ,y),
β, θ and y. As for the linear mixed model we can form the conditional
estimate of σ2

σ̂2(β,θ,y) =
δ(ũ|β,θ,y)

n
. (68)

Substituting this estimate into (67) produces the Laplace approximation to
the profiled deviance

−2`(β,θ, σ̂2(β,θ,y)|y) = n [1 + log (2π/n)]

+ n log δ(ũ|β,θ,y) + 2 log |L(ũ,β,θ,y)|.
(69)
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5.2 Constructing model matrices for nonlinear mixed
models

In our previous example involving three measurements at times 1, 2 and
3 on each of five subjects, the conditional mean µ(β, b) was linear in the
parameters β and the in random effects b and also linear with respect to
time. Suppose instead that we felt that the trajectory of each subject’s
response with respect to time was more appropriately modelled as

φ1

(
1− e−φ2xi,j

)
i = 1, . . . , 4; j = 1, . . . , 3 (70)

where xi,j is the time of the jth observation on the ith subject while φ1

and φ2 are subject-specific parameters representing the asymptotic value for
subject i (i.e. the value predicted for large values of the time, x) and the
rate constant for subject i, respectively.

The model formula used in the nlmer function is a three-part formula
in which the left hand side determines the response, the middle part is the
expression of the nonlinear model involving the parameters φ and any co-
variates and the right hand side is a mixed model formula that can (in fact,
must) involve the names of parameters from the nonlinear model.

In our example, if subject-specific parameters are modelled as population
means, β = [β1, β2]

′ plus a subject-specific random effect for each parameter,
and allowing for correlation of the random effects within each subject, the
formula would be written

y ~ A * (1 - exp(-rc * time)) ~ (A + rc | subj)

The vec of the 12× 2 parameter matrix Φ is a vector of length 24 where
the first 12 elements are values of A and the last 12 elements are values of rc.
In the mixed-model formula the names A and rc represent indicator variables
for the first 12 and the last 12 positions, respectively. In the general case of a
nonlinear model with s parameters there will be s indicator variables named
according to the model parameters and determining the positions in vec(Φ)
that correspond to each parameter.

For the model matrices X and Z the implicit intercept term generated
by the standard S language rules for model matrices would not make sense.
In the random-effects terms the intercept is always removed. In the fixed
effects it is replaced by the sum of the parameter name indicators. Thus the
formula shown above is equivalent to

y ~ A * (1 - exp(-rc * time)) ~ A + rc + (A + rc - 1 | subj)
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The matrix X will be 24 × 2 with the two columns being the indicator
for A and the indicator for rc.

5.3 Random effects for conditionally linear parameters
only

There is a special case of a nonlinear mixed model where the Laplace ap-
proximation is the deviance and where the iterative algorithm to determine
ũ(β,θ,y) will converge in one iteration. Frequently some of the elements of
the parameter vector φ occur linearly in the nonlinear model g(x,φ). These
elements are said to be conditionally linear parameters because, conditional
on the values of the other parameters, the model function is a linear function
of these.

If the random effects determine only conditionally linear parameters then
µ is linear in u and the matrix M depends on β and θ but not on u. We
can rewrite the mean function as

µ (ηu(u,β,θ)) = µ(u,β,θ) = µ0(β) +M (β,θ,y)u (71)

where µ0(β) = µY |U (0,β,θ) = µ (Xβ). The penalized least squares prob-
lem (??) for the updated u can be rewritten as

ũ (β,θ,y) = min
u

∥∥∥∥[y − µ0(β)
0

]
−
[
M(β,θ)
Iq

]
u

∥∥∥∥2

. (72)

That is, ũ(β,θ,y) is the solution to

(M(β,θ)′M (β,θ) + Iq) ũ = L(β,θ)L(β,θ)′ũM (β,θ)′ (y − µ0(β)) (73)

6 Generalized linear mixed models

A generalized linear mixed model differs from a linear mixed model in the
form of the conditional distribution of y given β, b and, possibly, σ2, which
determines the discrepancy function d(µ,y), and in the mapping from the
linear predictor, η, to the conditional mean, µ. This mapping between η and
µ is assumed to be one-to-one and to enforce any constraints on the elements
of µ, such as the mean of a Bernoulli or binomial random variable being in the
range 0 ≤ {µ}k ≤ 1, k = 1, . . . , n or the mean of a Poisson random variable
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being positive. By convention, it is the mapping from µ to η = g (µ) that
is called the link function, so the inverse mapping, µ = g−1 (η), is called the
inverse link.

Although we have written the link and the inverse link as functions of
vectors, they are defined in terms of scalar functions, so that

ηk = {η}k = {g(η)}k = g ({η}) = g(µk) k = 1, . . . , n

µk = {µ}k =
{
g−1(µ)

}
k

= g−1 ({µ}) k = 1, . . . , n.
(74)

where g(µ) and g−1(η) are the scalar link and inverse link functions, re-
spectively. Furthermore, the elements of y are assumed to be conditionally
independent, given µ, and for k = 1, . . . , n the distribution of yk depends
only on µk and, possibly, sigma2. That is, the discrepancy function can be
written

d(µ,y) =
n∑
k=1

r2
D(µk, yk) (75)

where rD is the deviance residual function. For many models the discrepancy
defines

6.1 Examples of deviance residual and link functions

If the yk, k = 1, . . . , n are binary responses (i.e. each yk is either 0 or 1) and
they are conditionally independent given µ, then the conditional distribution
of y given µ has probability mass function

fY |µ(y,µ) =
n∏
k=1

µyk

k (1− µk)(1−yk) (76)

Because the distribution of yk is completely determined by µk there is no
need for a separate scale factor, σ2, and expression (3) for the conditional
density in terms of the discrepancy can be written

fY |µ(y|µ) = ke−d(µ,y)/2. (77)

Thus the discrepancy function must be

d(µ,y) = (78)
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