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Abstract

We describe the form of the linear mixed-effects and generalized
linear mixed-effects models fit by lmer and give details of the repre-
sentation and the computational techniques used to fit such models.
These techniques are illustrated on several examples.

1 A simple example

The Rail data set from the MEMSS package is described in Pinheiro and
Bates (2000) as consisting of three measurements of the travel time of a type
of sound wave on each of six sample railroad rails. We can examine the
structure of these data with the str function
> str(Rail)

'data.frame': 18 obs. of 2 variables:
$ Rail : Factor w/ 6 levels "A","B","C","D",..: 1 1 1 2 2 2 3 3 3 4 ...
$ travel: num 55 53 54 26 37 32 78 91 85 92 ...

Because there are only three observations on each of the rails a dotplot
(Figure˜1) shows the structure of the data well.
> print(dotplot(reorder(Rail, travel) ~ travel, Rail, xlab = "Travel time (ms)",
+ ylab = "Rail"))

In building a model for these data
> Rail
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Figure 1: Travel time of sound waves in a sample of six railroad rails. There
were three measurements of the travel time on each rail. The order of the
rails is by increasing mean travel time.

Rail travel
1 A 55
2 A 53
3 A 54
4 B 26
5 B 37
6 B 32
7 C 78
8 C 91
9 C 85
10 D 92
11 D 100
12 D 96
13 E 49
14 E 51
15 E 50
16 F 80
17 F 85
18 F 83

we wish to characterize a typical travel time, say µ, for the population of such
railroad rails and the deviations, say bi, i = 1, . . . , 6 of the individual rails
from this population mean. Because these specific rails are not of interest
by themselves as much as the variation in the population we model the bi,
which are called the “random effects” for the rails, as having a normal (also
called “Gaussian”) distribution of the form N (0, σ2

b ). The jth measurement
on the ith rail is expressed as

yij = µ+ bi + εij bi ∼ N (0, σ2
b ), εij ∼ N (0, σ2) i = 1, . . . , 6 j = 1, . . . , 3

(1)
The parameters of this model are µ, σ2

b and σ2. Technically the bi, i =
1, . . . , 6 are not parameters but instead are considered to be unobserved ran-
dom variables for which we form “predictions” instead of “estimates”.
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To express generalizations of models like (1) more conveniently we switch
to a matrix/vector representation in which the 18 observations of the travel
time form the response vector y, the fixed-effect parameter µ forms a 1-
dimensional column vector β and the six random effects bi, i = 1, . . . , 6 form
the random effects vector b. The structure of the data and the values of any
covariates (none are used in this model) are used to create model matrices
X and Z.

Using these vectors and matrices and the 18-dimensional vector ε that
represents the per-observation noise terms the model becomes

y = Xβ +Zb+ ε, ε ∼ N ,
(
0, σ2I

)
, b ∼ N

(
0, σ2Σ

)
and b ⊥ ε (2)

In the general form we write p for the dimension of β, the fixed-effects
parameter vector, and q for the dimension of b, the vector of random ef-
fects. Thus the model matrix X has dimension n × p, the model matrix
Z has dimension n × q and the relative variance-covariance matrix, Σ, for
the random-effects has dimension q × q. The symbol ⊥ indicates indepen-
dence of random variables andN denotes the multivariate normal (Gaussian)
distribution.

We say that matrix Σ is the relative variance-covariance matrix of the
random effects in the sense that it is the variance of b relative to σ2, the
scalar variance of the per-observation noise term ε. Although it size, q, can
be very large, Σ is highly structured. It is symmetric, positive semi-definite
and zero except for the diagonal elements and certain elements close to the
diagonal.

1.1 Fitting the model and examining the results

The maximum likelihood estimates for parameters in model (1) fit to the
Rail data are obtained as
> Rm1ML <- lmer(travel ~ 1 + (1 | Rail), Rail, REML = FALSE, verbose = TRUE)

0: 149.28908: 0.942809
1: 137.53112: 1.94281
2: 132.38870: 2.85077
3: 129.94249: 3.73815
4: 128.94483: 4.52610
5: 128.62895: 5.12723
6: 128.56577: 5.47713
7: 128.56016: 5.60451
8: 128.56004: 5.62581
9: 128.56004: 5.62686
10: 128.56004: 5.62686
11: 128.56004: 5.62686
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In this fit we have set verbose = TRUE indicating that information on the
progress of the iterations should be printed after every iteration. Each line
gives the iteration number, the value of the deviance (negative twice the log-
likelihood) and the value of the parameter s which is the standard deviation
of the random effects relative to the standard deviation of the residuals.

The printed form of the model
> Rm1ML

Linear mixed model fit by maximum likelihood
Formula: travel ~ 1 + (1 | Rail)

Data: Rail
AIC BIC logLik deviance REMLdev

134.6 137.2 -64.28 128.6 122.2
Random effects:
Groups Name Variance Std.Dev.
Rail (Intercept) 511.861 22.6243
Residual 16.167 4.0208
Number of obs: 18, groups: Rail, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 66.500 9.285 7.162

provides additional information about the parameter estimates and some of
the measures of the fit such as the log-likelihood (-64.28), the deviance for
the maximum likelihood criterion (128.6), the deviance for the REML cri-
terion (122.2), Akaike’s Information Criterion (AIC= 132.6) and Schwartz’s
Bayesian Information Criterion (BIC= 134.3).

The transpose of the model matrix Z is stored as a sparse matrix in the Zt

slot of the fitted model. For this model Z is simply the matrix of indicators
of the levels of the Rail.
> Rm1ML@Zt

6 x 18 sparse Matrix of class "dgCMatrix"

[1,] 1 1 1 . . . . . . . . . . . . . . .
[2,] . . . 1 1 1 . . . . . . . . . . . .
[3,] . . . . . . 1 1 1 . . . . . . . . .
[4,] . . . . . . . . . 1 1 1 . . . . . .
[5,] . . . . . . . . . . . . 1 1 1 . . .
[6,] . . . . . . . . . . . . . . . 1 1 1

> as(Rail[["Rail"]], "sparseMatrix")

6 x 18 sparse Matrix of class "dgCMatrix"

A 1 1 1 . . . . . . . . . . . . . . .
B . . . 1 1 1 . . . . . . . . . . . .
C . . . . . . 1 1 1 . . . . . . . . .
D . . . . . . . . . 1 1 1 . . . . . .
E . . . . . . . . . . . . 1 1 1 . . .
F . . . . . . . . . . . . . . . 1 1 1
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The elements represented as ‘.’ in the output are known to be zero and are
not stored explicitly.

The L component of this fitted model is a Cholesky factorization of a
matrix A∗(θ) where θ is a parameter vector determining Σ(θ). This matrix
can be factored as Σ = TSST T, where T is a unit, lower triangular matrix
(that is, all the elements above the diagonal are zero and all the elements
on the diagonal are unity) and S is a diagonal matrix with non-negative
elements on the diagonal. The matrix A∗(θ) is

A∗(θ) =

Z∗TZ∗ + I Z∗TX −Z∗Ty
XTZ∗ XTX −XTy
−yTZ∗ −yTX yTy


=

T TS 0 0
0 I 0
0 0 1

A
ST 0 0

0 I 0
0 0 1

+

I 0 0
0 0 0
0 0 0

 .
(3)

For model (1) the matrices T and S are particularly simple, T = I6,
the 6 × 6 identity matrix and S = s1,1I6 where s1,1 = σb/σ is the standard
deviation of the random effects relative to the standard deviation of the per-
observation noise term ε.

The Cholesky decomposition of A∗ is a lower triangular sparse matrix L
> as(Rm1ML@L, "sparseMatrix")
6 x 6 sparse Matrix of class "dtCMatrix"

[1,] 9.797 . . . . .
[2,] . 9.797 . . . .
[3,] . . 9.797 . . .
[4,] . . . 9.797 . .
[5,] . . . . 9.797 .
[6,] . . . . . 9.797

As explained in later sections the matrix L provides all the information
needed to evaluate the ML deviance or the REML deviance as a function
of θ. The components of the deviance are given in the deviance slot of the
fitted model
> Rm1ML@deviance

ML REML ldL2 ldRX2 sigmaML sigmaREML pwrss
128.560037 122.237086 27.385123 -1.673815 4.020779 4.137348 291.000001

disc usqr wrss dev llik NULLdev
195.010579 95.989421 195.010580 NA NA NA

The element labelled ldL2 is the logarithm of the square of the determinant
of the upper left 6 × 6 section of L. This corresponds to log

∣∣Z∗TZ∗ + Iq
∣∣

where Z∗ = ZTS. We can verify that the value 27.38292 can indeed be
calculated in this way.
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> L <- as(Rm1ML@L, "sparseMatrix")
> 2 * sum(log(diag(L)))

[1] 27.38512

The lr2 element of the deviance slot is the logarithm of the penalized
residual sum of squares. It can be calculated as the logarithm of the square
of the last diagonal element in L.
> (RX <- Rm1ML@RX)

[,1]
[1,] 0.4330476

For completeness we mention that the ldRX2 element of the deviance slot
is the logarithm of the product of the squares of the diagonal elements of L
corresponding to columns of X.
> 2 * sum(log(diag(Rm1ML@RX)))

[1] -1.673815

This element is used in the calculation of the REML criterion.
Another slot in the fitted model object is dims, which contains information

on the dimensions of the model and some of the characteristics of the fit.
> (dd <- Rm1ML@dims)

nt n p q s np LMM REML fTyp lTyp vTyp nest useSc
1 18 1 6 1 1 0 0 2 5 1 1 1

nAGQ verb mxit mxfn cvg
1 1 300 900 5

We can reconstruct the ML estimate of the residual variance as the penalized
residual sum of squares divided by the number of observations.
> Rm1ML@deviance["pwrss"]/dd["n"]

pwrss
16.16667

The profiled deviance function

D̃(θ) = log
∣∣∣Z∗TZ∗ + Iq

∣∣∣+ n log

(
1 +

2πr2

n

)
= n

[
1 + log

(
2π

n

)]
+ log

∣∣∣Z∗TZ∗ + Iq

∣∣∣+ n log r2
(4)

is a function of θ only. In this case θ = σ1, the relative standard deviation
of the random effects, is one-dimensional. The maximum likelihood esti-
mate (mle) of θ minimizes the profiled deviance. The mle’s of all the other
parameters in the model can be derived from the estimate of this parameters.

6



σb σ

128.2
128.4
128.6
128.8
129.0

5 10 15

M
L

0
10
20
30
40

ld
L2

3.6
3.8
4.0
4.2
4.4

si
gm

aM
L

290.6
290.8
291.0
291.2
291.4

pw
rs

s

194.6
194.8
195.0
195.2
195.4

di
sc

95.6
95.8
96.0
96.2
96.4

us
qr

Figure 2: The profiled deviance, and those components of the profiled de-
viance that vary with θ, as a function of θ in model Rm1ML for the Rail data.
In this model the parameter θ is the scalar σ1, the standard deviation of
the random effects relative to the standard deviation of the per-observation
noise.

The term n [1 + log (2π/n)] in (4) does not depend on θ. The other two
terms, log

∣∣Z∗TZ∗ + Iq
∣∣ and n log r2, measure the complexity of the model

and the fidelity of the fitted values to the observed data, respectively. We
plot the value of each of the varying terms versus σ1 in Figure˜2.

The component log
∣∣SZTZS + I

∣∣ has the value 0 at σ1 = 0 and increases
as σ1 increases. It is unbounded as σ1 → ∞. The component n log (r2) has
a finite value at σ1 = 0 from which it decreases as σ1 increases. The value at
σ1 = 0 corresponds to the residual sum of squares for the regression of y on
the columns of X.
> 18 * log(deviance(lm(travel ~ 1, Rail)))

[1] 164.8714
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Figure 3: The part of the deviance that varies with σ1 as a function of σ1
near the optimum. The component log

∣∣SZTZS + I
∣∣ is shown at the bottom

of the frame. This is the component of the deviance that increases with
σ1. Added to this component is n log [r2(σ1)] − n log [r2(∞)], the comonent
of the deviance that decreases as σ1 increases. Their sum is minimized at
σ̂1 = 5.626.

As σ1 → ∞, n log (r2) approaches the value corresponding to the residual
sum of squares for the regression of y on the columns of X and Z. For this
model that is
> 18 * log(deviance(lm(travel ~ Rail, Rail)))

[1] 94.82145

2 Multiple random effects per level

The sleepstudy data are an example of longitudinal data. That is, they are
repeated measurements taken on the same experimental units over time. A
plot of reaction time versus days of sleep deprivation by subject (Figure˜4)
shows there is considerable variation between subjects in both the intercept
and the slope of the linear trend.

The model
> print(sm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy))
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Figure 4: A lattice plot of the average reaction time versus number of days
of sleep deprivation by subject for the sleepstudy data. Each subject’s data
are shown in a separate panel, along with a simple linear regression line fit
to the data in that panel. The panels are ordered, from left to right along
rows starting at the bottom row, by increasing intercept of these per-subject
linear regression lines. The subject number is given in the strip above the
panel.
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Linear mixed model fit by REML
Formula: Reaction ~ Days + (Days | Subject)

Data: sleepstudy
AIC BIC logLik deviance REMLdev
1756 1775 -871.8 1752 1744
Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 612.090 24.7405

Days 35.072 5.9221 0.066
Residual 654.941 25.5918
Number of obs: 180, groups: Subject, 18

Fixed effects:
Estimate Std. Error t value

(Intercept) 251.405 6.825 36.84
Days 10.467 1.546 6.77

Correlation of Fixed Effects:
(Intr)

Days -0.138

provides for fixed effects for the intercept (the typical reaction time in the
population after zero days of sleep deprivation) and the slope with respect
to Days (the typical change in reaction time per day of sleep deprivation). In
addition there are random effects per subject for both the intercept and the
slope parameters.

With two random effects per subject the matrix Σ for this model is 36×36
with 18 2× 2 diagonal blocks. The matrix A is 39× 39 as is L, the Cholesky
factor of A∗. The structure of A and of L are shown in Figure˜5. For this
model (as for all models with a single random effects expression) the structure
of L is identical to that of the lower triangle of A.

Like the Rail data, the sleepstudy data are balanced in that each sub-
ject’s reaction time is measured the same number of times and at the same
times. One consequence of the balance is that the diagonal blocks in the first
36 rows of A are identical as are those in the first 36 rows of L.
> as(sm1@L, "sparseMatrix")[1:2, 1:2]

2 x 2 sparse Matrix of class "dtCMatrix"

[1,] 3.424491 .
[2,] 3.224066 2.408602

> sm1@RX

[,1] [,2]
[1,] 3.786022 2.301566
[2,] 0.000000 16.555994

The determinant quantities in
> sm1@deviance

10



Column

R
ow

10

20

30

10 20 30

Column

R
ow

10

20

30

10 20 30

Figure 5: Structure of the sparse matrices A (left panel) and L (right panel)
for the model sm1. The non-zero elements as depicted as gray squares with
larger magnitudes shown as darker gray.

ML REML ldL2 ldRX2 sigmaML sigmaREML
1.751986e+03 1.743628e+03 7.595997e+01 8.276128e+00 2.544924e+01 2.559182e+01

pwrss disc usqr wrss dev llik
1.165795e+05 9.888088e+04 1.769928e+04 9.888024e+04 NA NA

NULLdev
NA

are derived from the diagonal elements of L. ldZ is the logarithm of square
of the product of the first 36 elements of the diagonal, ldX is the logarithm
of the square of the product of the 37th and 38th elements and lr2 is the
logarithm of the square of the 39th element.
> sm1@RX

[,1] [,2]
[1,] 3.786022 2.301566
[2,] 0.000000 16.555994

> str(dL <- diag(as(sm1@L, "sparseMatrix")))

num [1:36] 3.42 2.41 3.42 2.41 3.42 ...

> c(ldL2 = sum(log(dL^2)), ldRX2 = sum(log(diag(sm1@RX)^2)), log(sm1@deviance["pwrss"]))

ldL2 ldRX2 pwrss
75.959974 8.276128 11.666329

The 36×36 matrices S, T and Σ = TSST T are block-diagonal consisting
of 18 identical 2 × 2 diagonal blocks. The template for the diagonal blocks
of S and T is stored as a single matrix
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> show(st <- sm1@ST[[1]])

(Intercept) Days
(Intercept) 0.96673294 0.0000000
Days 0.01569071 0.2309095

where the diagonal elements are those of S and the strict lower triangle is
that of T .

The VarCorr generic function extracts the estimates of the variance-covariance
matrices of the random effects. Because model sm1 has a single random-effects
expression there is only one estimated variance-covariance matrix
> show(vc <- VarCorr(sm1))

$Subject
(Intercept) Days

(Intercept) 612.090027 9.604129
Days 9.604129 35.071620
attr(,"stddev")
(Intercept) Days

24.74045 5.92213
attr(,"correlation")

(Intercept) Days
(Intercept) 1.00000000 0.06554996
Days 0.06554996 1.00000000

attr(,"sc")
[1] 25.59182

The "sc" attribute of this matrix is the estimate of σ, the standard deviation
of the per-observation noise term.

We can reconstruct this variance-covariance estimate as
> T <- st
> diag(T) <- 1
> S <- diag(diag(st))
> T

(Intercept) Days
(Intercept) 1.00000000 0
Days 0.01569071 1

> S

[,1] [,2]
[1,] 0.966733 0.0000000
[2,] 0.000000 0.2309095

> T %*% S %*% S %*% t(T) * attr(vc, "sc")^2

(Intercept) Days
(Intercept) 612.090027 9.604129
Days 9.604129 35.071620
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Figure 6: Yield of oats versus applied concentration of nitrogen fertilizer for
three different varieties of oats in 6 different locations.

3 A model with two nested grouping factors

The Oats data from the nlme package came from an experiment in which fields
in 6 different locations (the Block factor) were each divided into three plots
and each of these 18 plots was further subdivided into four subplots. Three
varieties of oats were assigned randomly to the three plots in each block and
four concentrations of fertilizer (measured as nitrogen concentration) were
randomly assigned to the subplots in each plot. The yield on each subplot is
the response shown in Figure˜6.

The fitted model Om1
> print(Om1 <- lmer(yield ~ nitro + Variety + (1 | Block/Variety),
+ Oats), corr = FALSE)

Linear mixed model fit by REML
Formula: yield ~ nitro + Variety + (1 | Block/Variety)

Data: Oats
AIC BIC logLik deviance REMLdev

592.9 608.8 -289.4 601.3 578.9
Random effects:
Groups Name Variance Std.Dev.
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Figure 7: Structure of the sparse matrices A (left panel) and L (right panel)
for the model Om1.

Variety:Block (Intercept) 108.94 10.438
Block (Intercept) 214.48 14.645
Residual 165.56 12.867
Number of obs: 72, groups: Variety:Block, 18; Block, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 82.400 8.058 10.226
nitro 73.667 6.781 10.863
VarietyMarvellous 5.292 7.079 0.748
VarietyVictory -6.875 7.079 -0.971

provides fixed effects for the nitrogen concentration and for the varieties
(coded as differences relative to the reference variety “Golden Rain”) and
random effects for each block and for each plot within the block. In this
case a plot can be indexed by the combination of variety and block, denoted
Variety:Block in the output. Notice that there are 18 levels of this grouping
factor corresponding to the 18 unique combinations of variety and block.

A given plot occurs in one and only one block. We say that the plot
grouping factor is nested within the block grouping factor. The structure of
the matrices A and L for this model (Figure˜7) In the matrix A the first 18
rows and columns correspond to the 18 random effects (1 random effect for
each of the 18 levels of this grouping factor). The next 6 rows and columns
correspond to the 6 random effects for block (6 levels and 1 random effect
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per level). The off-diagonal elements in rows 19 to 24 and columns 1 to 18
indicate which plots and blocks are observed simultaneously. Because the
plot grouping factor is nested within the block grouping factor there will be
exactly one nonzero in the rows 19 to 24 for each of the columns 1 to 18.

For this model the fixed-effects specification includes indicator vectors
with systematic zeros. These appear as systematic zeros in rows 27 and 28 of
A and L. The statistical analysis of model Om1 indicates that the systematic
effect of the Variety factor is not significant and we could omit it from the
model, leaving us with
> print(Om1a <- lmer(yield ~ nitro + (1 | Block/Variety), Oats),
+ corr = FALSE)

Linear mixed model fit by REML
Formula: yield ~ nitro + (1 | Block/Variety)

Data: Oats
AIC BIC logLik deviance REMLdev
603 614.4 -296.5 604.3 593
Random effects:
Groups Name Variance Std.Dev.
Variety:Block (Intercept) 121.10 11.005
Block (Intercept) 210.42 14.506
Residual 165.56 12.867
Number of obs: 72, groups: Variety:Block, 18; Block, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 81.872 6.945 11.79
nitro 73.667 6.781 10.86

with matrices A and L whose patterns are shown in Figure˜8.
In Figures˜7 and 8 the pattern in L is different from that of the lower

triangle of A but only because a permutation has been applied to the rows
and columns ofA∗ before computing the Cholesky decomposition. The effect
of this permutation is to isolate connected blocks of rows and columns close
to the diagonal.

The isolation of connected blocks close to the diagonal is perhaps more
obvious when the model multiple random-effects expressions based on the
same grouping factor. This construction is used to model independent ran-
dom effects for each level of the grouping factor.

For example, the random effect for the intercept and the random effect for
the slope in the sleep-study data could reasonably be modeled as independent,
as in the model
> print(sm2 <- lmer(Reaction ~ Days + (1 | Subject) + (0 + Days |
+ Subject), sleepstudy), corr = FALSE)
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Figure 8: Structure of the sparse matrices A (left panel) and L (right panel)
for the model Om1a.

Linear mixed model fit by REML
Formula: Reaction ~ Days + (1 | Subject) + (0 + Days | Subject)

Data: sleepstudy
AIC BIC logLik deviance REMLdev
1754 1770 -871.8 1752 1744
Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 627.568 25.0513
Subject Days 35.858 5.9882
Residual 653.584 25.5653
Number of obs: 180, groups: Subject, 18

Fixed effects:
Estimate Std. Error t value

(Intercept) 251.405 6.885 36.51
Days 10.467 1.559 6.71

The structures of the matrices A and L for this model are shown in
Figure˜9.

The first 18 elements of b are the random effects for the intercept for each
of the 18 subjects followed by the random effects for the slopes for each of
the 18 subjects. The (0-based) permutation vector applied to the rows and
columns of A∗ before taking the decomposition is
> str(sm2@L@perm)

int [1:36] 0 18 1 19 2 20 3 21 4 22 ...
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Figure 9: Structure of the sparse matrices A (left panel) and L (right panel)
for the model sm2.

This means that, in the 1-based indexing system used in R, the permutation
will pair up the first and 19th rows and columns, the 2nd and 20th rows and
columns, etc. resulting in the pattern for L shown in Figure˜9

Figure˜6 indicates that the slope of yield versus nitrogen concentration
may depend on the block but not the plot within the block. We can fit such
a model as
> print(Om2 <- lmer(yield ~ nitro + (1 | Variety:Block) + (nitro |
+ Block), Oats), corr = FALSE)
Linear mixed model fit by REML
Formula: yield ~ nitro + (1 | Variety:Block) + (nitro | Block)

Data: Oats
AIC BIC logLik deviance REMLdev

606.8 622.7 -296.4 604.1 592.8
Random effects:
Groups Name Variance Std.Dev. Corr
Variety:Block (Intercept) 121.069 11.0031
Block (Intercept) 177.455 13.3212

nitro 15.876 3.9844 1.000
Residual 164.659 12.8319
Number of obs: 72, groups: Variety:Block, 18; Block, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 81.872 6.535 12.53
nitro 73.667 6.956 10.59

The structures of the matricesA andL for this model are shown in Figure˜10.
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Figure 10: Structure of the sparse matricesA (left panel) and L (right panel)
for the model Om2.

We see that the only difference in the structure of the A matrices from
models Om1a and Om2 is that rows and columns 19 to 24 from model Om1a have
been replicated. Thus the 1× 1 blocks on the diagonal of A in positions 19
to 24 for model Om1a become 2× 2 blocks in model Om2.

This replication of rows associated with levels of the Block factor carries
over to the matrix L.

The property of being nested or not is often attributed to random effects.
In fact, nesting is a property of the grouping factors with whose levels the ran-
dom effects are associated. In both models Om1a and Om2 the Variety:Block

factor is nested within Block. If the grouping factors in the random effects
terms in a model form a nested sequence then the matrixA∗ and its Cholesky
decomposition L will have the property that the number of nonzeros in L
is the same as the number of nonzeros in the lower triangle of A∗. That is,
there will be no “fill-in” generating new nonzero positions when forming the
Cholesky decomposition.

To check this we can examine the number of nonzero elements in A and
L for these models. Because the matrix A is stored as a symmetric matrix
with only the non-redundant elements being stored explicitly, the number of
stored nonzeros in these two matrices are identical.
> length(tcrossprod(Om2@A)@x)

[1] 72
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> length(Om2@L@x)

[1] 72

4 Non-nested grouping factors

When grouping factors are not nested they are said to be “crossed”. Some-
times we will distinguish between partially crossed grouping factors and
completely crossed grouping factors. When two grouping factors are com-
pletely crossed, every level of the first factor occurs at least once with every
level of the second factor - creating matrices A and L with dense off-diagonal
blocks.

In observational studies it is more common to encounter partially crossed
grouping factors. For example, the ScotsSec data in the mlmRev package
provides the attainment scores of 3435 students in Scottish secondary schools
as well as some demographic information on the students and an indicator
of which secondary school and which primary school the student attended.
> str(ScotsSec)

'data.frame': 3435 obs. of 6 variables:
$ verbal : num 11 0 -14 -6 -30 -17 -17 -11 -9 -19 ...
$ attain : num 10 3 2 3 2 2 4 6 4 2 ...
$ primary: Factor w/ 148 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ sex : Factor w/ 2 levels "M","F": 1 2 1 1 2 2 2 1 1 1 ...
$ social : num 0 0 0 20 0 0 0 0 0 0 ...
$ second : Factor w/ 19 levels "1","2","3","4",..: 9 9 9 9 9 9 1 1 9 9 ...

If we use both primary and second as grouping factors for random effects
in a model the only possibility for these factors to form a nested sequence is to
have primary nested within second (because there are 148 levels of primary

and 19 levels of second). We could check if these are nested by doing a
cross-tabulation of these factors but it is easier to fit an initial model
> print(Sm1 <- lmer(attain ~ verbal * sex + (1 | primary) + (1 |
+ second), ScotsSec), corr = FALSE)

Linear mixed model fit by REML
Formula: attain ~ verbal * sex + (1 | primary) + (1 | second)

Data: ScotsSec
AIC BIC logLik deviance REMLdev

14882 14925 -7434 14843 14868
Random effects:
Groups Name Variance Std.Dev.
primary (Intercept) 0.275453 0.52484
second (Intercept) 0.014747 0.12144
Residual 4.253114 2.06231
Number of obs: 3435, groups: primary, 148; second, 19

Fixed effects:
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Estimate Std. Error t value
(Intercept) 5.914728 0.076783 77.03
verbal 0.158356 0.003787 41.81
sexF 0.121552 0.072413 1.68
verbal:sexF 0.002593 0.005388 0.48

and examine the "nest" element of the dims slot.
> Sm1@dims

nt n p q s np LMM REML fTyp lTyp vTyp nest useSc
2 3435 4 167 1 2 0 1 2 5 1 0 1

nAGQ verb mxit mxfn cvg
1 0 300 900 4

We see that these grouping factors are not nested. That is, some of the
elementary schools sent students to more than one secondary school.

Now that we know the answer we can confirm it by checking the first few
rows of the cross-tabulation
> head(xtabs(~primary + second, ScotsSec))

second
primary 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 8 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 0 1 0
2 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0
5 53 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 1 0 1 0 52 0 0 0 0 0 1 0 0 0 0 0 0 0 0

We see that primary schools 1, 4 and 6 each occurred with multiple secondary
schools.

For non-nested grouping factors like these, the structure of A and L,
shown in Figure˜11 is more complex than for nested grouping factors. The
matrix A has a 148×148 diagonal block in the upper left, corresponding the
the 148 levels of the primary factor, followed on the diagonal by a 19 × 19
diagonal block corresponding to the 19 levels of the second factor. However,
the off-diagonal block in rows 149 to 167 and columns 1 to 148 does not have
a simple structure. There is an indication of three groups of primary and
secondary schools but even those groups are not exclusive.

With non-nested grouping factors such as these there can be fill-in. That
is, the number of nonzeros in L is greater than the number of non-redundant
nonzeros in A.
> c(A = length(tcrossprod(Sm1@A)@x), L = length(Sm1@L@x))

A L
470 594
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Figure 11: Structure of the sparse matricesA (left panel) and L (right panel)
for the model Sm1.

The permutation applied to the rows and columns of A is a “fill-reducing”
permutation chosen to reduce the amount of fill-in during the Cholesky de-
composition. The approximate minimal degree (AMD) algorithm (Davis,
2006) is used to select this permutation when non-nested grouping factors
are detected. It is followed by a “post-ordering” permutation that isolates
connected blocks on the diagonal.

5 Structure of Σ and Z

The columns of Z and the rows and columns of Σ are associated with the
levels of one or more grouping factors in the data. For example, a common
application of linear mixed models is the analysis of students’ scores on the
annual state-wide performance tests mandated by the No Child Left Behind
Act. A given score is associated with a student, a teacher, a school and a
school district. These could all be grouping factors in a model.

We write the grouping factors as fi, i = 1, . . . k. The number of levels of
the ith factor, fi, is ni and the number of random effects associated with each
level is qi. For example, if f1 is “student” then n1 is the number of students
in the study. If we have a simple additive random effect for each student
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then q1 = 1. If we have a random effect for both the intercept and the slope
with respect to time for each student then q1 = 2. The qi, i = 1, . . . , k are
typically very small whereas the ni, i = 1, . . . , k can be very large.

In the statistical model we assume that random effects associated with
different grouping factors are independent, which implies that Σ is block
diagonal with k diagonal blocks of sizes niqi × niqi, i = 1, . . . , k. That is

Σ =


Σ1 0 . . . 0
0 Σ2 . . . 0
...

...
. . .

...
0 0 . . . Σk

 (5)

Furthermore, random effects associated with different levels of the same
grouping factor are assumed to be independent and identically distributed,
which implies that Σi is itself block diagonal in ni blocks and that each of
these blocks is a copy of a qi × qi matrix Σ̃i. That is

Σi =


Σ̃i 0 . . . 0

0 Σ̃i . . . 0
...

...
. . .

...

0 0 . . . Σ̃i

 = Ini
⊗ Σ̃i i = 1, . . . , k (6)

where ⊗ denotes the Kronecker product.
The condition that Σ is positive semi-definite holds if and only if the

Σ̃i, i = 1, . . . , k are positive semi-definite. To ensure that the Σ̃i are positive
semi-definite, we express them as

Σ̃i = T̃iS̃iS̃iT̃
T
i , i = 1, . . . , k (7)

where T̃i is a qi× qi unit lower-triangular matrix (i.e. all the elements above
the diagonal are zero and all the diagonal elements are unity) and S̃i is a
qi × qi diagonal matrix with non-negative elements on the diagonal.

This is the “LDL” form of the Cholesky decomposition of positive semi-
definite matrices except that we express the diagonal matrix D, which is on
the variance scale, as the square of the diagonal matrix S, which is on the
standard deviation scale. The profiled deviance behaves more like a quadratic
on the standard deviation scale than it does on the variance scale so the use
of the standard deviation scale enhances convergence.
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The niqi×niqi matrices Si,Ti, i = 1, . . . , k and the q× q matrices S and
T are defined analogously to (6) and (5). In particular,

Si = Ini
⊗ S̃i, i = 1, . . . , k (8)

Ti = Ini
⊗ T̃i, i = 1, . . . , k (9)

Note that when qi = 1, T̃i = I and hence Ti = I. Furthermore, Si is a
multiple of the identity matrix in this case.

The parameter vector θi, i = 1, . . . , k consists of the qi diagonal elements
of S̃i, which are constrained to be non-negative, followed by the qi(qi − 1)/2
elements in the strict lower triangle of T̃i (in column-major ordering). These
last qi(qi − 1)/2 elements are unconstrained. The θi are combined as

θ =


θ1
θ2
...
θk

 .
Each of the q × q matrices S, T and Σ in the decomposition Σ = TSST T

is a function of θ.
As a unit triangular matrix T is non-singular. That is, T−1 exists and is

easily calculated from the T̃−1
i , i = 1, . . . , k. When θ is not on the bound-

ary defined by the constraints, S is a diagonal matrix with strictly positive
elements on the diagonal, which implies that S−1 exists and that Σ is non-
singular with Σ−1 = T−TS−1S−1T−1.

When θ is on the boundary the matrices S and Σ exist but are not
invertible. We say that Σ is a degenerate variance-covariance matrix in the
sense that one or more linear combinations of the vector b are defined to
have zero variance. That is, the distribution of these linear combinations is
a point mass at 0.

The maximum likelihood estimates of θ (or the restricted maximum like-
lihood estimates, defined below) can be located on the boundary. That is,
they can correspond to a degenerate variance-covariance matrix and we must
be careful to allow for this case. However, to begin we consider the non-
degenerate case.
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6 Methods for non-singular Σ

When θ is not on the boundary we can define a standardized random effects
vector

b∗ = S−1T−1b (10)

with the properties

E[b∗] = S−1T−1E[b] (11)

Var[b∗] = 0 = E[b∗b∗T]

= S−1T−1Var[b]T−TS−1

= σ2S−1T−1ΣT−TS−1

= σ2S−1T−1TSST TT−TS−1

= σ2I.

(12)

Thus, the unconditional distribution of the q elements of b∗ is b∗ ∼ N (0, σ2I),
like that of the n elements of ε.

Obviously the transformation from b∗ to b is

b = TSb∗ (13)

and the n× q model matrix for b∗ is

Z∗ = ZTS (14)

so that
Z∗b∗ = ZTSS−1T−1b = Zb. (15)

Notice that Z∗ can be evaluated even when θ is on the boundary. Also,
if we have a value of b∗ in such a case, we can evaluated b from b∗.

Given the data y and values of θ and β, the mode of the conditional
distribution of b∗ is the solution to a penalized least squares problem

b̃∗(θ,β|y) = arg min
b∗

[
‖y −Xβ −Z∗b∗‖2 + b∗Tb∗

]
= arg min

b∗

∥∥∥∥[y0
]
−
[
Z∗ X
I 0

] [
b∗

β

]∥∥∥∥2 . (16)

In fact, if we optimize the penalized least squares expression in (16) with

respect to both b and β we obtain the conditional estimates β̂(θ|y) and the
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conditional modes b̃∗(θ, β̂(θ)|y)) which we write as b̂∗(θ). That is,[
b̂∗(θ)

β̂(θ)

]
= arg min

b∗,β

∥∥∥∥∥∥
[
Z∗ X −y
I 0 0

]b∗β
1

∥∥∥∥∥∥
2

= arg min
b∗,β

b∗β
1

T

A∗(θ)

b∗β
1


(17)

where the matrix A∗(θ) is as shown in (3) and

A =

 ZTZ ZTX −ZTy
XTZ XTX −XTy
−yTZ −yTX yTy

 . (18)

Note that A does not depend upon θ. Furthermore, the nature of the model
matrices Z and X ensures that the pattern of nonzeros in A∗(θ) is the same
as that in A.

Let the q×q permutation matrix PZ represent a fill-reducing permutation
forZTZ and PX , of size p×p, represent a fill-reducing permutation forXTX.
These could be determined, for example, using the approximate minimal
degree (AMD) algorithm described in Davis (2006) and Davis (1996) and
implemented in both the Csparse (Davis, 2005b) and the CHOLMOD (Davis,
2005a) libraries of C functions. (In many cases XTX is dense, but of small
dimension compared to ZTZ, and ZTX is nearly dense so PX can be Ip,
the p× p identity matrix.)

Let the permutation matrix P be

P =

PZ 0 0
0 PX 0
0 0 1

 (19)

and L(θ) be the sparse Cholesky decomposition of A∗(θ) relative to this
permutation. That is, L(θ) is a sparse lower triangular matrix with the
property that

L(θ)L(θ)T = PA∗(θ)P T (20)

For L(θ) to exist we must ensure that A∗(θ) is positive definite. Exami-
nation of (17) shows that this will be true if X is of full column rank and y
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does not lie in the column span of X (or, in statistical terms, if we can’t fit
y perfectly using only the fixed effects).

Let r > 0 be the last element on the diagonal of L. Then the minumum
penalized residual sum of squares in (17) is r2 and it occurs at b̂∗(θ) and
β̂(θ), the solutions to the sparse triangular system

L(θ)TP

b̂∗(θ)

β̂(θ)
1

 =

0
0
r

 (21)

(Technically we should not write the 1 in the solution; it should be an un-
known. However, for L lower triangular with r as the last element on the
diagonal and P a permutation that does not move the last row, the solution
for this “unknown” will always be 1.) Furthermore, log |Z∗TZ + I| can be
evaluated as the sum of the logarithms of the first q diagonal elements of
L(θ).

The profiled deviance function, D̃(θ), which is negative twice the log-

likelihood of model (2) evaluated at Σ(θ), β̂(θ) and σ̂2(θ), can be expressed
as

D̃(θ) = log
∣∣∣Z∗TZ∗ + I

∣∣∣+ n

(
1 + log

2πr2

n

)
. (22)

Notice that it is not necessary to solve for β̂(θ) or b̂∗(θ) or b̂(θ) to be
able to evaluate d(θ). All that is needed is to update A to form A∗ from
which the sparse Cholesky decomposition L(θ) can be calculated and D̃(θ)
evaluated.

Once θ̂ is determined we can solve for β̂(θ̂) and b̂∗(θ) using (21) and for

σ̂2(θ̂) =
r2(θ̂)

n
. (23)

Furthermore, b̂(θ̂) = ST b̂∗(θ̂).

7 Methods for singular Σ

When θ is on the boundary, corresponding to a singular Σ, some of the
columns of Z∗ are zero. However, the matrixA∗ is non-singular and elements
of b∗ corresponding to the zeroed columns in Z∗ approach zero smoothly as
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θ approaches the boundary. Thus r(θ) and
∣∣Z∗TZ + I

∣∣ are well-defined, as

are D̃(θ) and the conditional modes b̂(θ).
In other words, (3) and (20) can be used to define D̃(θ) whether or not

θ is on the boundary.

8 REML estimates

It is common to estimate the per-observation noise variance σ2 in a fixed-
effects linear model as σ̂2 = r2/(n− p) where r2 is the (unpenalized) residual
sum-of-squares, n is the number of observations and p is the number of fixed-
effects parameters. This is not the maximum likelihood estimate of σ2, which
is r2/n. It is the “restricted” or “residual” maximum likelihood (REML) esti-
mate, which takes into account that the residual vector y−ŷ is constrained to
a linear subspace of dimension n− p in the response space. Thus its squared
length, ‖y − ŷ‖2 = r2, has only n− p degrees of freedom associated with it.

The profiled REML deviance for a linear mixed model can be expressed
as

D̃R(θ) = log
∣∣∣Z∗TZ∗ + I

∣∣∣+ log |LX |2 + (n− p)
(

1 + log
2πr2

n− p

)
. (24)

9 Generalized linear mixed models

9.1 Generalized linear models

As described in McCullagh and Nelder (1989), a generalized linear model is a
statistical model in which the linear predictor for the ith response, ηi = xiβ
where xi is the ith row of the n× p model matrix X derived from the form
of the model and the values of any covariates, is related to the expected value
of the response, µi, through an invertible link function, g. That is

xiβ = ηi = g(µi) i = 1, . . . , n (25)

and
µi = g−1(ηi) = g−1(xiβ) i = 1, . . . , n (26)

When the distribution of yi given µi is from the exponential family there
exist a natural link function for the family (McCullagh and Nelder, 1989).
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For a binomial response the natural link is the logit link defined as

ηi = g(µi) = log

(
µi

1− µi

)
i = 1, . . . , n (27)

with inverse link

µi = g−1(ηi) =
1

1 + exp(−ηi)
i = 1, . . . , n (28)

Because µi is the probability of the ith observation being a “success”, ηi is
the log of the odds ratio.

The parameters β in a generalized linear model are generally estimated by
iteratively reweighted least squares (IRLS). At each iteration in this algorithm
the current parameter estimates are replaced by the parameter estimates of
a weighted least squares fit with model matrix X to an adjusted dependent
variable. The weights and the adjusted dependent variable are calculated
from the link function and the current parameter values.

9.2 Generalized linear mixed models

In a generalized linear mixed model (GLMM) the n-dimensional vector of
linear predictors, η, incorporates both fixed effects, β, and random effects,
b, as

η = Xβ +Zb (29)

where X is an n× p model matrix and Z is an n× q model matrix.
As for linear mixed models, we model the distribution of the random

effects as a multivariate normal (Gaussian) distribution with mean 0 and
q × q variance-covariance matrix Σ. That is,

b ∼ N (0,Σ(θ)) . (30)

The maximum likelihood estimates β̂ and θ̂ maximize the likelihood of
the parameters, β and θ, given the observed data, y. This likelihood is
numerically equivalent to the marginal density of y given β and θ, which is

f(y|β,θ) =

∫
b

p(y|β, b)f(b|Σ(θ)) db (31)

where p(y|β, b) is the probability mass function of y, given β and b, and
f(b|Σ) is the (Gaussian) probability density at b.
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Unfortunately the integral in (31) does not have a closed-form solution
when p(y|β, b) is binomial. However, we can approximate this integral quite
accurately using a Laplace approximation. For given values of β and θ we
determine the conditional modes of the random effects

b̃(β,θ) = arg max
b
p(y|β, b)f(b|Σ(θ)), (32)

which are the values of the random effects that maximize the conditional
density of the random effects given the data and the model parameters. The
conditional modes can be determined by a penalized iteratively reweighted
least squares algorithm (PIRLS, see §9.3) where the contribution of the fixed
effects parameters, β, is incorporated as an offset, Xβ, and the contribution
of the variance components, θ, is incorporated as a penalty term in the
weighted least squares fit.

At the conditional modes, b̃, we evaluate the second order Taylor series
approximation to the log of the integrand (i.e. the log of the conditional
density of b) and use its integral as an approximation to the likelihood.

It is the Laplace approximation to the likelihood that is optimized to ob-
tain approximate values of the mle’s for the parameters and the corresponding
conditional modes of the random effects vector b.

9.3 Details of the PIRLS algorithm

Recall from (32) that the conditional modes of the random effects b̃(β,θ,y)
maximize the conditional density of b given the data and values of the param-
eters β and θ. The penalized iteratively reweighted least squares (PIRLS)
algorithm for determining these conditional modes combines characteristic
of the iteratively reweighted least squares (IRLS) algorithm for generalized
linear models˜(McCullagh and Nelder, 1989, §2.5) and the penalized least
squares representation of a linear mixed model˜(?).

At the rth iteration of the IRLS algorithm the current value of the vector
of random effects. b(r) (we use parenthesized superscripts to denote the
iteration) produces a linear predictor

η(r) = Xβ +Zb(r) (33)

with corresponding mean vector µ(r) = g−1η(r). (The vector-valued link and
inverse link functions, g and g−1, apply the scalar link and inverse link, g
and g−1, componentwise.) A vector of weights and a vector of derivatives of
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the form dη/dµ are also evaluated. For convenience of notation we express
these as diagonal matrices, W (r) and G(r), although calculations involving
these quantities are performed component-wise and not as matrices.

The adjusted dependent variate at iteration r is

z(r) = η(r) +G(r)
(
y − µ(r)

)
(34)

from which the updated parameter, b(r+1), is determined as the solution to

ZTW (r)Zb(r+1) = ZTW (r)z(r). (35)

McCullagh and Nelder (1989, §2.5) show that the IRLS algorithm is equiv-
alent to the Fisher scoring algorithm for any link function and also equivalent
to the Newton-Raphson algorithm when the link function is the natural link
for a probability distribution in the exponential family. That is, IRLS will
minimize − log p(y|β, b) for fixed β. However, we wish to determine

b̃(β,θ) = arg max
b
p(y|β, b)f(b|Σ(θ))

= arg min
b

[
− log p(y|β, b) +

bTΣ−1(θ)b

2

]
.

(36)

As shown in Bates and DebRoy (2004) we can incorporate the contribution
of the Gaussian distribution by adding q “pseudo-observations”with constant
unit weights, observed values of 0 and predicted values of ∆(θ)b where ∆ is
any q × q matrix such that ∆T∆ = Σ−1(θ).

Thus the update in the penalized iteratively reweighted least squares
(PIRLS) algorithm for determining the conditional modes, b̃(β,θ,y), ex-
presses b(r+1) as the solution to the penalized weighted least squares problem(

ZTW (r)Z + Σ−1
)
b(r+1) = ZTW (r)z(r). (37)

or the equivalent problem(
Z∗TW (r)Z∗ + I

)
b∗(r+1) = Z∗TW (r)z(r). (38)

The sequence of iterates b∗(0), b∗(1), . . . is considered to have converged to the
conditional modes b̃∗(β,θ,y) when the relative change in the linear predic-
tors ‖η(r+1) − η(r)‖/‖η(r)‖ falls below a threshold. The variance-covariance
matrix of b∗, conditional on β and θ, is approximated as

Var (b|β,θ,y) ≈D ≡
(
Z∗TW (r)Z∗ + I

)−1

. (39)
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This approximation is analogous to using the inverse of Fisher’s information
matrix as the approximate variance-covariance matrix for maximum likeli-
hood estimates.

9.4 Details of the Laplace approximation

The Laplace approximation to the likelihood L(β,θ|y) is obtained by replac-
ing the logarithm of the integrand in (31) by its second-order Taylor series
at the conditional maximum, b̃(β,θ). On the scale of the deviance (negative
twice the log-likelihood) the approximation is

−2`(β,θ|y) = −2 log

{∫
b

p(y|β, b)f(b|Σ(θ)) db

}
≈ 2 log

{∫
b

exp

{
−1

2

[
d(β, b̃,y) + b̃Tb̃∗ + +bTD−1b

]}
db

}
= d(β, b̃,y) + b̃∗Tb̃∗ + log |D|

(40)
where d(β, b,y) is the deviance function from the linear predictor only. That
is, d(β, b,y) = −2 log p(y|β, b). This quantity can be evaluated as the sum
of the deviance residuals˜(McCullagh and Nelder, 1989, §2.4.3).
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A Notation

A.1 Random variables

� Y- the n-dimensional random variable of responses. The observed re-
sponses are the n-vector y.

� B - The q-dimensional vector of random effects. This vector is not ob-
served directly. It has the properties E[B] = 0 and Var([B]) = σ2Σ(θ),
where the scalar σ is the common scale factor (if used in the model)
and Σ is a q × q symmetric, positive semi-definite relative variance-
covariance matrix determined by the variance parameter vector θ.

� U - a q-dimensional unit vector of random effects with distribution
U ∼ N (0, σ2Iq).

A.2 Dimensions
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