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Abstract

The R package mvord implements composite likelihood estimation in the class of multi-
variate ordinal regression models with probit and logit link. A flexible modeling framework
for ordinal repeated measurements on the same subject is set up, which takes into con-
sideration the dependence among the multiple observations by employing different error
structures. Heterogeneity in the error structure across the subjects can be accounted
for by the package, which allows for covariate dependent error structures. In addition,
regression coefficients and threshold parameters are varying across the multiple response
dimensions in the default implementation. However, constraints can be defined by the
user if a reduction of the parameter space is desired.

Keywords: Composite likelihood, Multivariate ordered logit, Multivariate ordered probit, R
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1. Model Class

Multivariate ordinal regression models are based on cumulative link models (Tutz 2012) which
are amongst the most popular models for univariate ordinal data analysis. In cumulative link
models the observed ordinal outcome Y is assumed to be a coarser (categorized) version of
a latent continuous variable Ỹ . If multiple observations on the same subject are observed,
univariate cumulative link models can be extended to a multivariate framework. These re-
peated measurements for each subject may take place either at the same time yielding a
cross-sectional multivariate ordinal regression model or at different points in time yielding a
longitudinal multivariate ordinal regression model.

1.1. Model formulation

Let Yij denote the ordinal observation and xij be a p-dimensional vector of covariates for
subject i and outcome j, where i = 1, . . . , n and j ∈ Ji, for Ji a subset of all available
outcomes J in the data set. Moreover, we denote by q = |J | and qi = |Ji| the number of
elements in the set J and Ji, respectively. Following the cumulative link modeling approach
(Agresti 2002), the ordinal response Yij is assumed to be a coarser (categorized) version of a

latent continuous variable Ỹij . The observable categorical outcome Yij and the unobservable
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latent variable Ỹij are connected by:

Yij = rij ⇔ θj,rij−1 < Ỹij ≤ θj,rij , rij ∈ {1, . . . ,Kj}

where rij is a category out of Kj ordered categories and θj is a vector of suitable threshold
parameters for outcome j with the following restriction: −∞ < θj,1 < · · · < θj,Kj−1 < ∞.
Note that in this setting binary observations can be treated as ordinal observations with two
categories (Kj = 2).

For the relationship between the latent variable Ỹij and the vector of covariates xij we assume
the following linear model:

Ỹij = βj0 + x>ijβj + εij , (1)

where βj0 is an intercept term, βj = (βj1, . . . , βjp)
> is a vector of regression coefficients,

both corresponding to outcome j, and εij is a mean zero error term. The number of ordered
categories Kj as well as the threshold parameters θj and the regression coefficients βj are
allowed to vary across outcome dimensions j ∈ J to account for possible heterogeneity across
the response variables. We further assume the n subjects to be independent and that the
error terms are uncorrelated with the covariates.

The dependence among the different responses is accounted for by assuming the vector of error
terms for each subject εi = [εij ]j∈Ji to follow a multivariate distribution. The multivariate
distribution functions we consider are the multivariate normal distribution εi ∼ N(0,Σi),
which corresponds to the probit link, and the multivariate logistic distribution εi ∼ L(0,Σi)
yielding the logit link, where the covariance matrix Σi captures the correlation between
the vector of responses for subject i. For the logit link we approximate the multivariate
logistic distribution by a multivariate t-distribution with fixed degrees of freedom (following
the approach of O’Brien and Dunson 2004). More details can be found in Hirk, Hornik, and
Vana (2017).

1.2. Identifiability Issues

As the absolute scale and the absolute location are not identifiable in ordinal models further
restrictions on the parameter set need to be imposed. Assuming Σi is a covariance matrix with
diagonal elements [σ2ij ]j∈Ji , only the quantities βj/σij and (θj,rij − βj0)/σij are identifiable
in the model in Equation 1. The scale can be fixed either by restricting the full variance-
covariance matrix Σi to be a correlation matrix Ri, by fixing two threshold parameters, or the
intercept and a threshold parameter. In order to fix the location either the intercept βj0 or
one threshold parameter has to be set to some value. Hence, in order to obtain an identifiable
model the parameter set is typically constrained in one of the following ways:

� Fixing the intercept βj0 (e.g., to zero), using flexible thresholds θj and fixing σij (e.g.,
to unity) ∀j ∈ Ji, ∀i ∈ {1, . . . , n};

� Leaving the intercept βj0 unrestricted, fixing one threshold parameter (e.g., θj,1 = 0)
and fixing σij (e.g., to unity) ∀j ∈ Ji, ∀i ∈ {1, . . . , n};

� Fixing the intercept βj0 (e.g., to zero), fixing one threshold parameter (e.g., θj,1 = 0)
and leaving σij unrestricted ∀j ∈ Ji, ∀i ∈ {1, . . . , n};
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� Leaving the intercept βj0 unrestricted, fixing two threshold parameters (e.g., θj,1 = 0
and θj,2 = 1) and leaving σij unrestricted ∀j ∈ Ji, ∀i ∈ {1, . . . , n} (note that this
parameterization cannot be applied to the binary case).

Note that the first two options are the most commonly used in the literature. All of these
alternative parameterizations of the models are supported by the mvord package, allowing
the user to choose the most convienient one for each specific application. Table 2.5.2 gives an
overview on all identifiable model parameterizations.

1.3. Error Structures

We mainly distinguish between two different model types with different parameterizations,
one with standardized error variances (correlation error structure) and one with unrestricted
error variances (covariance error structure). For both model types we allow for a factor
dependent error structure and in case of a correlation error structure we additionally allow
for a covariate dependent equicorrelation and AR(1) error structures. For the sake of notation
we assume in the following that the number of repeated measurements is equal for all subjects
and denoted by q. In the case of qi 6= q, the matrices presented below will be subsetted by
picking the rows and columns corresponding to j ∈ Ji.

Correlation error structure

� General correlation structure
In this parameterization we fix the scale by restricting the full variance-covariance to
be a correlation matrix and obtain the following error distribution:

εi = (εi1, εi2, . . . , εiq)
> ∼ Fq

0,


1 ρ12 · · · ρ1q
ρ12 1 · · · ρ2q
...

...
. . .

...
ρ1q ρ2q · · · 1


 . (2)

As absolute location is not identifiable in this model one of the following constraints
need to be imposed for all j ∈ J :

- the intercept βj0 is fixed to some constant c (e.g., the default value is zero), or

- the first threshold θj,1 is fixed to some value.

� Factor dependent correlation structure
In order to account for heterogeneity in the error terms, a first model extension allows
for factor-varying correlation structures. To be more precise, we allow for different
correlation matrices in the errors for each subject i, depending on some factor f(i) which
is assumed to be constant across repeated measurements j. The factor dependent error
structure for a correlation structure has the following form:

εi = (εi1, εi2, . . . , εiq)
> ∼ Fq(0,Rf(i)).

� Covariate dependent equicorrelation structure
We improve the complexity of the model by allowing a covariate dependent equicorrela-
tion structure. In this setting, we assume that correlations are equal across all pairs, but
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differ across subjects i. The correlation parameter ρi of each subject i is assumed to de-
pend on a vector of covariates si. Fisher’s z-transformation allows us to reparameterize
the linear term α0 + s>i α in terms of a correlation parameter for each subject:

1

2
log

(
1 + ρi
1− ρi

)
= α0 + s>i α.

Solving for ρi gives us the following re-transformation:

ρi =
e2(α0+siα) − 1

e2(α0+siα) + 1
.

As a consequence, this transformation allows for subject-varying correlations which
depend on subject-specific covariates that have to be constant across repeated measure-
ments j. We obtain an equicorrelation structure that is able to account for heterogeneity
in the errors:

εi = (εi1, εi2, . . . , εiq)
> ∼ Fq

0,


1 ρi · · · ρi
ρi 1 · · · ρi
...

...
. . .

...
ρi ρi · · · 1


 .

� AR(1) correlation structure
For given consecutive equi-spaced time points t1, . . . , tT we assume an autoregressive
error structure of order one with corr(εitk , εitl) = ρ|tl−tk| for each subject i. In this case
the correlation structure has the following form:

εi = (εit1 , εit2 , . . . , εitT )> ∼ FT

0,


1 ρ|t2−t1| · · · ρ|tT−t1|

ρ|t2−t1| 1 · · · ρ|tT−t2|

...
...

. . .
...

ρ|tT−t1| ρ|tT−t2| · · · 1


 .

This AR(1) correlation structure can be extended to a covariate dependent setting in
analogy to the equicorrelation structure.

Covariance error structure

� General covariance structure
In a further parameterization we leave the variance-covariance matrix unrestricted and
obtain the following error distribution:

εi = (εi1, εi2, . . . , εiq)
> ∼ Fq

0,


σ21 ρ12σ1σ2 · · · ρ1qσ1σq

ρ1σ1σ2 σ22 · · · ρ2qσ2σq
...

...
. . .

...
ρ1qσ1σq ρ2qσ2σq · · · σ2q


 . (3)

In this model we again need further restrictions on the parameter set in order to obtain
an identifiable scale and location. We either fix
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- the first two thresholds θj,1 and θj,2 to some value (e.g., in the default case we set
θj,1 = 0 and θj,2 = 1),

- the first threshold θj,1 and the last threshold θj,Kj−1 to some value, or

- the intercept βj0 and the first threshold θj,1 to some value

for all repeated measurements j ∈ J .

� Factor dependent covariance structure
In order to account for some heterogeneity in the error terms, we allow for different
covariance matrices in the errors for each subject i, depending on some factor f(i). In
this case the factor dependent covariance structure has the following form:

εi = (εi1, εi2, . . . , εiq)
> ∼ Fq(0,Σf(i)).

1.4. Composite Likelihood Estimation

In order to estimate the model parameters we use a composite likelihood approach, where the
full likelihood is approximated by a pseudo-likelihood which is constructed from lower dimen-
sional marginal distributions, more specifically by “aggregating” the likelihoods corresponding
to pairs of observations (Varin, Reid, and Firth 2011).

For a given parameter vector Γ, which contains the threshold parameters, the regression
coefficients and the correlation (and variance) parameters, the likelihood is given by:

L (Γ|[Xi]i=1:n, Y ) =
n∏
i=1

P(∩j∈JiYij = rij |Γ, Xi)
wi =

n∏
i=1

(∫
Di

fqi(Ỹi|Γ, Xi)d
qiỸi

)wi

,

where Xi is a qi × p matrix of covariates, Di =
∏
j∈Ji(θj,rij−1, θj,rij ] is a Cartesian product,

wi are are subject specific non-negative weights, which are set to one in the default case, and
fqi is the qi-dimensional density of the error terms εi.

We approximate the full likelihood by a pseudolikelihood which is constructed from bivariate
marginal distributions. If the number of observed outcomes for subject i is less than two
(qi < 2), then the univariate marginal distribution enters the likelihood. For the sake of
notation we introduce an n× q binary index matrix Z, where each element zij takes a value
of 1 if j ∈ Ji and 0 otherwise. The pairwise log-likelihood function is obtained by:

p`(Γ|Y ) =
n∑
i=1

wi

[
q−1∑
k=1

q∑
l=k+1

1{zikzil=1} log (P(Yik = rik, Yil = ril|Γ)) +

1{qi=1}

q∑
k=1

1{zik=1} log (P(Yik = rik, |Γ))

]
. (4)

Denoting by Uij = (θj,rij −βj0−x>ijβj)/σij the upper and by Lij = (θj,rij−1−βj0−x>ijβj)/σij
the lower integration bounds, the uni- and bivariate probabilities are given by:

P(Yik = rik, Yil = ril|·) =

∫ Uik

Lik

∫ Uil

Lil

f2(vik, vil|·)dvikdvil,

P(Yik = rik|·) =

∫ Uik

Lik

f1(vik)dvik.



6 mvord: An R Package for Fitting Multivariate Ordinal Regression Models

The maximum pairwise likelihood estimates Γ̂PL are obtained by direct maximization of the
composite likelihood given in Equation 4. The parameters to be estimated are reparametrized
(where needed) such that unconstrained optimization can be performed. First, we reparametrize
the threshold parameters in order to achieve monotonicity. Second, for all unrestricted corre-
lation (and covariance) matrices we use the spherical parameterization of Pinheiro and Bates
(1996). This parameterization has the advantage that it can be easily applied to correlation
matrices. Third, if we assume to have equicorrelated or AR(1) errors, we use the hyperbolic
tangent transformation.

Computation of the standard errors is needed in order to quantify the uncertainty of the
maximum pairwise likelihood estimates. Under certain regularity conditions, the maximum
pairwise likelihood estimates are consistent as the number of responses is fixed and n→∞. In
addition, the maximum pairwise likelihood estimator is asymptotically normal with asymp-
totic mean Γ and a covariance matrix which equals the inverse of the Godambe information
matrix:

G(Γ)−1 = H−1(Γ)V (Γ)H−1(Γ),

where G(Γ) denotes the Godambe information matrix, H(Γ) the Hessian (sensitivity matrix)
and V (Γ) the variability matrix. The Hessian H(Γ) and variability matrix V (Γ) can be
estimated as follows:

V̂ (Γ) =
1

n

n∑
i=1

∂p`i(Γ̂PL|Yi)
∂Γ

(
∂p`i(Γ̂PL|Yi)

∂Γ

)>
, Ĥ(Γ) = − 1

n

n∑
i=1

∂2p`i(Γ̂PL|Yi)
∂Γ∂Γ>

,

where p`i(Γ|Yi) is the component of the pairwise log-likelihood corresponding to subject i.
It is possible to avoid the computation of the second-order derivatives, as the Hessian can be
computed as:

Ĥ(Γ) =
1

n

n∑
i=1

∑
k<l,k,l∈Ji

(
∂p`i(Γ̂PL|Yik, Yil)

∂Γ

)(
∂p`i(Γ̂PL|Yik, Yil)

∂Γ

)>
.

In order to compare different models, the composite likelihood information criterion can be
used: CLIC(Γ) = −2 p`(Γ̂PL|X,Y )+k tr(V̂ (Γ)Ĥ(Γ)−1) (where k = 2 corresponds to CLAIC
and k = log(n) corresponds to CLBIC). A comprehensive overview and further details on the
properties of the maximum composite likelihood estimates is provided in Varin (2008).

2. Implementation

Multivariate ordinal regression models in the R package mvord are fitted using the function
multord()

R> multord(formula,

+ error.structure = corGeneral(~1),

+ link = c("probit", "logit"),

+ data,

+ index = NULL,
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+ response.names = NULL,

+ response.levels = NULL,

+ coef.constraints = NULL,

+ coef.values = NULL,

+ threshold.constraints = NULL,

+ threshold.values = NULL,

+ weights = NULL,

+ se = TRUE,

+ start.values = NULL,

+ solver = "BFGS",

+ control = list(maxit=200000, trace = 1, kkt = FALSE)

+ )

Two link functions and different error structures are implemented in multord(). By default,
threshold parameters and regression coefficients are allowed to be outcome specific. However,
this can be restricted by the user, who can specify constraints on the threshold parameters
and/or on the regression coefficients.

All features are illustrated by means of a simulated data set which corresponds to an appli-
cation in credit risk modeling.

R> head(data_cr_multord, n = 3)

firm_id rater_id rating ICR LR LEV1 LEV2

1 1 R1 D 1.546318 0.2484137 3.782934 0.92053787

2 2 R1 B 8.723779 0.1506502 1.033042 0.05305052

3 3 R1 D 4.726520 0.5187664 8.942818 0.97001785

PR lRSIZE lSYSR BSEC

1 0.2743184 -11.202807 -3.691023 BSEC3

2 0.1182763 -8.815116 -4.270618 BSEC3

3 0.2871493 -9.548691 -3.895642 BSEC6

R> str(data_cr_multord, vec.len = 3)

'data.frame': 4566 obs. of 11 variables:

$ firm_id : Factor w/ 1665 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 ...

$ rater_id: Factor w/ 4 levels "R1","R2","R3",..: 1 1 1 1 1 1 1 1 ...

$ rating : chr "D" "B" "D" ...

$ ICR : num 1.55 8.72 4.73 4.08 ...

$ LR : num 0.248 0.151 0.519 0.168 ...

$ LEV1 : num 3.78 1.03 8.94 2.19 ...

$ LEV2 : num 0.9205 0.0531 0.97 2.8743 ...

$ PR : num 0.2743 0.1183 0.2871 0.0821 ...

$ lRSIZE : num -11.2 -8.82 -9.55 -8.66 ...

$ lSYSR : num -3.69 -4.27 -3.9 -5.13 ...

$ BSEC : Factor w/ 8 levels "BSEC1","BSEC2",..: 3 3 6 4 3 1 6 4 ...
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2.1. Data structure

We use the long format for the input of data, where each row contains a subject index i
(firm_id), a repeated measurement index j (rater_id), an ordinal response (rating) and
all the covariates (ICR, LR, LEV1, LEV2, PR, lRSIZE and lSYSR). This long format data stucture
is internally transformed to a matrix of responses Y (which contains NA in the case of missing
entries) and a list of covariate matrices Xj for all j ∈ J1. In order to construct these objects,
subject index i and the repeated measurement index j should be specified. This can be
performed by an optional argument index, a character vector of length two, specifying the
column names of the subject index and the repeated measurement index in data. In the
credit risk example we set:

R> index <- c("firm_id", "rater_id")

R> index

[1] "firm_id" "rater_id"

The default value of index is NULL assuming that the first column of data contains the subject
index i and the second column the repeated measurement index j. If specific constraints are
imposed on the threshold parameters and/or on the regression coefficients, it is important to
know which level of the repeated measurement index j corresponds to the first dimension,
second dimension and so on. Hence, a well defined index j ∈ J for the repeated measurements
is needed. Therefore, a vector response.names is used to define the index number of the
repeated measurements:

R> response.names <- c("R1", "R2", "R3", "R4")

R> response.names

[1] "R1" "R2" "R3" "R4"

The default value of response.names is NULL giving the natural ordering of the levels of the
factor variable for all the repeated measurements. The ordering of response.names always
specifies the index of the repeated measurement unit j ∈ J . This ordering is essential when
putting constraints on the parameters and when setting response.levels:

R> response.levels <- list(rev(LETTERS[1:6]),

+ rev(LETTERS[1:6]),

+ rev(LETTERS[7:13]),

+ rev(LETTERS[14:15]))

R> names(response.levels) <- response.names

R> response.levels

$R1

[1] "F" "E" "D" "C" "B" "A"

$R2

1In order to avoid numerical instabilities we suggest to standardize the covariates xij .
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[1] "F" "E" "D" "C" "B" "A"

$R3

[1] "M" "L" "K" "J" "I" "H" "G"

$R4

[1] "O" "N"

If the categories differ across repeated measurements (either the number of categories and/or
the category labels) one needs to specify the response.levels explicitly. This is performed
by a list of length J (number of repeated measurements), where each element contains the
names of the levels of the ordered categories in ascending (or if desired descending) order.

2.2. Formula

The ordinal responses Y (rating) and the covariates are passed by a formula object. In-
tercepts can be included or excluded in the model depending on the model parameterization
chosen in order to ensure identifiability:

Model without intercept If the intercept should be removed, the formula of a given re-
sponse (rating) and covariates (ICR, LR, LEV1, LEV2, PR, lRSIZE and lSYSR) has the following
form:

R> formula <- rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

Model with intercept If one wants to include an intercept in the model, there are two
equivalent possibilities to set the model formula. Either the intercept is included explicitly
by:

R> formula <- rating ~ 1 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

or by

R> formula <- rating ~ ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

2.3. Link function

We allow for two different link functions, the probit link (link = "probit") and the logit
link (link = "logit"). For the probit link a multivariate normal distribution for the errors
is applied, while for the logit link an approximate multivariate logistic distribution is used.
The normal bivariate probabilities which enter the pairwise log-likelihood are computed with
the R package pbivnorm (Genz and Kenkel 2015). The bivariate t probabilities are computed
using Fortran code from Alan Genz (Genz and Bretz 2009).

2.4. Error structures

We allow for several different error structures depending on the model parameterization:
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� Correlation

– corGeneral

The most common parameterization is the general correlation matrix given in
Equation 2. This error structure is applied by:

R> error.structure <- corGeneral(~ 1)

This paramterization can be extended by allowing a factor dependent correlation
structure, where the correlation of each subject i depends on a given factor f.

R> error.structure = corGeneral(~ f)

The factor f is not allowed to vary across repeated measurements j for the same
subject i and due to numerical constraints only up to maximum 30 levels are
allowed.

– corEqui

A covariate dependent equicorrelation structure, where the correlations are equal
across all q dimensions and depend on some covariates S1, ..., Sm, is used by:

R> error.structure <- corEqui(~ S1 + ... + Sm)

It has to be noted that these covariates S1, ..., Sm as well as the factor f are
not allowed to vary across repeated measurements j for the same subject i.

– corAR1

An autoregressive error structure of order one AR(1) is obtained by:

R> error.structure = corAR1(~ 1)

In order to account for some heterogeneity the AR(1) error structure is allowed to
depend on covariates S1, ..., Sm that are constant over time for each subject i

R> error.structure = corAR1(~ S1 + ... + Sm)

� Covariance

– covGeneral

In case of a full variance-covariance parameterization given in Equation 3 the stan-
dard parameterization with a full variance-covariance is obtained by:

R> error.structure = covGeneral(~ 1)

This parameterization can be extended to the factor dependent covariance struc-
ture, where the covariance of each subject depends on a given factor f:

R> error.structure = covGeneral(~ f)

2.5. Constraints on threshold coefficients

The package supports constraints on the threshold parameters. Firstly, the user can specify
whether the threshold parameters should be equal across some or all response dimensions.
Secondly, the values of some of the threshold parameters can be fixed. This feature is impor-
tant for the users who wish to further restrict the parameter space of the thresholds or who
wish to specify values for the threshold parameters other than the default values used in the
package. Note that fixing some of the thresholds is needed for some of the parameterizations
presented in Table 2.5.2 in order to ensure identifiability of the model.
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error.structure Cov. structure
(Σ)

Corr. structure
(R)

Factor
dependent

Covariate
dependent

corGeneral(~ 1) X
corGeneral(~ f) X X
covGeneral(~ 1) X
covGeneral(~ f) X X
corEqui(~ 1) X
corEqui(~ S) X X
corAR1(~ 1) X
corAR1(~ S) X X

Table 1: This table gives an overview on the error structures in mvord.

Threshold constraints across responses

Such constraints can be imposed by a vector of positive integers threshold.constraints,
where dimensions with equal threshold parameters obtain the same integer. When restricting
two outcome dimensions to be the same, one has to be careful that the number of categories in
the two outcome dimensions must be the same. In our example with q = 4 different outcomes,
if one wishes to restrict the threshold parameters of R1 and R2 to be equal, i.e.:

- θ1 = θ2;

- θ3, θ4 arbitrary.

These constraints on the threshold parameters are specified by:

R> threshold.constraints <- c(1, 1, 2, 3)

R> names(threshold.constraints) <- response.names

R> threshold.constraints

R1 R2 R3 R4

1 1 2 3

Fixing threshold values

Values for the threshold parameters can be specified by the argument threshold.values.
For this purpose the user can pass a list with q elements, where each element is a vector of
length Kj − 1 (where Kj is number of ordered categories for ordinal outcome j). A numeric
value in this vector fixes the corresponding threshold parameter to the specified value while
NA leaves the parameter flexible and indicates it should be estimated.

After specifying the error structure (through the error.structure argument) and whether
an intercept should be estimated or not (in the formula argument), the user can choose
among five possible options for fixing the thresholds:

� leaving all thresholds flexible;

� fixing, for all j ∈ J , the first threshold θj,1 to a constant aj ;
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� fixing, for all outcomes with Kj > 2, the first and second thresholds θj,1 = aj , θj,2 = bj ;

� fixing, for all outcomes with Kj > 2, the first and last thresholds θj,1 = aj , θj,Kj−1 = bj ;

� an extra option is fixing all of the threshold parameters, for all j ∈ J .

Note that the option chosen needs to be consistent across the different outcomes (e.g., it is
not allowed to fix first and last threshold for one outcome and first and second threshold for a
different). Table 2.5.2 provides information about the options available for each combination
error structure and intercept, as well as about the default values in case the user does not
specify any threshold values.

Error
Structure

Intercept

Thresholds
all flexible one fixed two fixed two fixed all fixed

θj,1 = aj θj,1 = aj θj,1 = aj
θj,2 = bj θj,Kj−1 = bj

cor
no X X X X X
yes X X X X

cov
no X X X X
yes X X X

Table 2: This table displays different model parameterizations in the presence of truly ordinal
observations (Kj > 2 ∀j ∈ J). The row cor includes error structures corGeneral, corEqui
and corAR1, while row cov includes the error structure covGeneral. The minimal restrictions
(default) to ensure identifiability are given in green. The default threshold values (in case
threshold.values = NULL) are always aj = 0 and bj = 1.

In the presence of binary observations (Kj = 2) in connection with a covariance error struc-
ture, the intercept has always to be fixed to some value due to identifiability constraints. In
a correlation structure setting no further restrictions are required.

For example, the following restrictions on the threshold parameters

� θ11 = −4 ≤ θ12 ≤ θ13 ≤ θ14 ≤ θ15 ≤ θ16;

� θ21 = −4 ≤ θ22 ≤ θ23 ≤ θ24 ≤ θ25 ≤ θ26;

� θ31 = −5 ≤ θ32 ≤ θ33 ≤ θ34 ≤ θ35 ≤ θ36 ≤ θ37;

� θ41 = 0.

are implemented as:

R> threshold.values <- list(c(-4, NA, NA, NA, NA, NA),

+ c(-4, NA, NA, NA, NA, NA),

+ c(-5, NA, NA, NA, NA, NA, NA),

+ c(0))

R> names(threshold.values) <- response.names

R> threshold.values
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$R1

[1] -4 NA NA NA NA NA

$R2

[1] -4 NA NA NA NA NA

$R3

[1] -5 NA NA NA NA NA NA

$R4

[1] 0

2.6. Constraints on Coefficients

Similar to the threshold parameters, the package supports constraints on the regression coef-
ficients. Firstly, the user can specify whether the regression coefficients should be equal across
some or all response dimensions. Secondly, the values of some of the regression coefficients
can be fixed.

Coefficient constraints across responses

Such constraints can be specified by a vector or a matrix coef.constraints, which can be
either a vector or a matrix of integer values.

If vector constraints of the type βk = βl, are desired, which should hold for all p regression
coefficients corresponding to outcome k and l, the easiest way to specify this is by means of a
vector of integers of dimension q, where outcomes with equal vectors of regression coefficients
get the same integer.

For example, for q = 4, a model where the regression coefficients of the first and second out-
comes are equal (β1 = β2), while the coefficients of outcomes three and four are unrestricted,
can be specified as:

R> coef.constraints <- c(1, 1, 2, 3)

R> names(coef.constraints) <- response.names

R> coef.constraints

R1 R2 R3 R4

1 1 2 3

A more flexible framework allows the user to specify such constraints for each of the regression
coeffiecients of the p covariates, not only for the whole vector. Such constraints will be specified
by means of a matrix of dimension q × p, where each column specifies constraints for one of
the p covariates in the same way presented above. Moreover, a value of NA indicates that the
corresponding coefficient is fixed (as we will show below) and should not be estimated.

The following constraints on the regression coefficients:

- β12 = β22 = β32;
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- β13 = 0, β23 = 0, β33 = 0;

- β14 = β24 = β34, β44 = 0;

- β15 = β25 = β35 = β45 = 2;

give rise to the following model:

Ỹi1 = β11xi1 + β12xi2 + β14xi4+2xi5+β16xi6+β17xi7,

Ỹi2 = β21xi1 + β12xi2 + β14xi4+2xi5+β26xi6+β27xi7,

Ỹi3 = β31xi1 + β12xi2 + β14xi4+2xi5+β36xi6+β37xi7,

Ỹi4 = β41xi1 + β42xi2+β43xi3 +2xi5+β46xi6+β47xi7.

These restrictions on the parameter set of the regression coefficients are imposed by:

R> coef.constraints = cbind(c(1, NA, 1, NA),

+ c(NA, NA, NA, 1),

+ c(1, 1, 1, NA),

+ c(1, 2, 3, 4),

+ c(1, 1, 1, 4),

+ c(1, 2, 3, 4),

+ c(NA, NA, NA, 1))

R> rownames(coef.constraints) <- response.names

R> colnames(coef.constraints) <- c("ICR", "LR", "LEV1", "LEV2", "PR",

+ "lRSIZE", "lSYSR")

R> coef.constraints

ICR LR LEV1 LEV2 PR lRSIZE lSYSR

R1 1 NA 1 1 1 1 NA

R2 NA NA 1 2 1 2 NA

R3 1 NA 1 3 1 3 NA

R4 NA 1 NA 4 4 4 1

Specific values of coefficients can be fixed through the coef.values argument, as we will
show in the following.

Fixing coefficient values

In addition, specific values on regression coefficients can be set in the q×pmatrix coef.values.
Again each column corresponds to the regression coefficients of one covariate. This feature is
to be used if some of the covariates have known slopes, but also for excluding covariates from
the mean model of some of the outcomes (by fixing the regression coefficient to zero).

By default, if no coef.values are passed by the user, all the regression coefficients which
receive an NA in coef.constraints will be set to zero. NA in the coef.values matrix indicates
the regression coefficient ought to be estimated. For the example above, we have:
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R> coef.values <- cbind(c(NA, NA, NA, NA),

+ c(NA, NA, NA, NA),

+ c(0, 0, 0, NA),

+ c(NA, NA, NA, 0),

+ c(2, 2, 2, 2),

+ c(NA, NA, NA, NA),

+ c(NA, NA, NA, NA))

R> rownames(coef.values) <- response.names

R> colnames(coef.values) <- c("ICR", "LR", "LEV1", "LEV2", "PR",

+ "lRSIZE", "lSYSR")

R> coef.values

ICR LR LEV1 LEV2 PR lRSIZE lSYSR

R1 NA NA 0 NA 2 NA NA

R2 NA NA 0 NA 2 NA NA

R3 NA NA 0 NA 2 NA NA

R4 NA NA NA 0 2 NA NA

Note on interaction terms and factor covariates When constraints on the regression
coefficients should be specified in models with interaction terms or factor covariates, the
coef.constraints matrix has to be constructed appropriately. If the order of the terms in
the covariate matrix is not clear to the user, it is helpful to call the function model.matrix()

before constructing the coef.constraints and coef.values matrices. The command

R> formula <- rating ~ 0 + ICR : LR + LEV1 + LEV2 + PR + lRSIZE * lSYSR

R> colnames(model.matrix(formula, data = data_cr_multord))

[1] "LEV1" "LEV2" "PR" "lRSIZE"

[5] "lSYSR" "ICR:LR" "lRSIZE:lSYSR"

will give the names of each column in the covariate matrix and should be used when setting
up the coefficient constraints.

2.7. Additional arguments

Weights

Weights on each subject i can be chosen in a way that they are constant across repeated
measurements. Weights should be part of the data. The column name of the weights in data

should be passed to this argument. Negative weights are not allowed.

Solver

All general-purpose optimizers of the R package optimx can be used for maximization of the
composite log-likelihood. These are "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "nlm",

"nlminb", "spg", "ucminf", "newuoa", "bobyqa", "nmkb", "hjkb", "Rcgmin" and
"Rvmmin" (Nash and Varadhan 2011; Nash 2014). The default is the "BFGS" solver. However,
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also the "newuoa" solver performed very well in terms of convergence in our experiments.
Moreover, if the user desires a specific solver which is not implemented in the R package
optimx, other applicable solvers can be used by using a wrapper function with arguments
starting.values, objFun, control of the following form:

R> solver = function(starting.values, objFun, control){

+ optRes <- solver.function(...)

+ list(optpar = , optRes$optpar, # a vector of length equal to number of parameters to optimize

+ objvalue = optRes$objvalue) # value of objective function

+ }

The output of the solver.function has to be a list of vector of length of the
starting.values (threshold parameters, regression coefficients and error structure parame-
ters) and value of the objective function.

Standard errors

If se = TRUE standard errors are computed using the Godambe information matrix (see Sec-
tion 1.4).

Starting values

A list of starting values for threshold as well as regression coefficients can be passed by
the argument start.values. This list contains a list (with a vector of starting values for
each dimension) theta of all flexible threshold parameters and a list beta of all flexible
regression parameters. All fixed values need to be excluded and in case of constraints on
a whole dimension (e.g., threshold.constraints = c(1,1,2,3) or coef.constraints =

c(1,1,2,3)), the element can be either skipped or a vector of length zero can be set. Starting
values for Example 1 in Section 3 are for example:

R> start.values = list(theta = list(c(-3,-1,0,0.5,2.5),

+ c(-3,-1,0,0.5,2,3.5),

+ c(0)),

+ beta = list(c(0.05,-0.05,-0.8,1,0.2),

+ c(-0.5,0.2),

+ c(-0.3,0.3),

+ c(0.5,-1.1,0.7,0.3,-1.2)))

2.8. Methods for class ”multord”

Several methods are implemented for the class "multord". These methods include a
summary() and a print() function to represent the estimation results, a coef() function
to extract the regression coefficients, a thresholds() function to extract the threshold co-
efficients and a function get.error.struct() to extract the estimated parameters of the
correlation/covariance structure of the errors. In addition, the pairwise log-likelihood can be
extracted by logPL() as well as information critera like CLAIC by claic() and CLBIC by
clbic().
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2.9. Output

The function multord returns an object of class "multord", which is a list containing the
following components:

beta a named matrix of regression coefficients
theta a named list of threshold parameters
error.struct a named list of correlation (covariance) matrices, or a vector of coef-

ficients in the corEqui or corAR1 setting
sebeta a named matrix of the standard errors of the regression coefficients
setheta a named list of the standard errors of the threshold parameters
seerror.struct a named list of the standard errors of the correlation (covariance)

matrices, or a vector of the standard errors of the coefficients in the
corEqui or corAR1 setting

rho a list of all objects that are used in multord

2.10. Implementation multord2()

Additionally, a second function multord2() is implemented, for the setting where the covari-
ates do not vary between the repeated measurements (xi1 = · · · = xiq):

R> multord2(formula,

+ error.structure = corGeneral(~1),

+ data,

+ link = c("probit", "logit"),

+ coef.constraints = NULL,

+ coef.values = NULL,

+ threshold.constraints = NULL,

+ threshold.values = NULL,

+ weights = NULL,

+ se = TRUE,

+ start.values = NULL,

+ solver = "BFGS",

+ control = list(maxit = 200000, trace = 1, kkt = FALSE))

This function uses a slightly simplified data structure, where the repeated ordinal observations
as well as the covariates are stored as columns in a data.frame. Each subject i corresponds
to one row of the data frame, where all outcomes Yi1, . . . , Yiq (with missing observations set
to NA) and all the covariates xi1, . . . , xip are stored in different columns. Each outcome must
be of type Ord.factor.

R> head(data_cr_multord2, n = 3)

firm_id R1 R2 R3 R4 ICR LR LEV1 LEV2

1 1 D <NA> K N 1.546318 0.2484137 3.782934 0.92053787

2 2 B <NA> <NA> N 8.723779 0.1506502 1.033042 0.05305052

3 3 D <NA> <NA> N 4.726520 0.5187664 8.942818 0.97001785

PR lRSIZE lSYSR BSEC

1 0.2743184 -11.202807 -3.691023 BSEC3
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2 0.1182763 -8.815116 -4.270618 BSEC3

3 0.2871493 -9.548691 -3.895642 BSEC6

In order to specify the mean model we use a multivariate formula object of the form:

R> formula <- cbind(R1, R2, R3) ~ 0 + X1 + ... + Xp

The error.structure and the constraints on the regression and threshold parameters are
set in analogy to multord(), however, the ordering of the responses is given by the ordering
in the model formula. In addition, the link, subject weights, se and the solver are chosen
in the same way as in multord().

3. Examples

The motivation of this package lies in a credit risk application, where multiple credit ratings
are assigned by various credit rating agencies (CRAs) to firms over several years. CRAs have
an important role in financial markets, as they deliver (subjective) assessments or opinions of
an entity’s (typically firm or sovereign) creditworthiness, which are then used by other players
on the market, such as investors and regulators, in their decision making process. Entities
are assigned to rating classes by CRAs on an ordinal scale by using both quantitative and
qualitative criteria. This setting is an example of an application where correlated ordinal data
arises naturally. On the one hand, multiple ratings for one firm at the same point in time can
be assumed to be correlated and on the other hand, given the longitudinal dimension of the
data, for each rater, there is serial dependence in the ratings assigned over several periods.

The data set used in the original credit risk application cannot be made available due to
proprietary reasons. We therefore resort to the simulation of data sets which have a similar
structure to the original data.

3.1. Example 1 – ratings assigned by multiple raters to a cross-section of
firms

The first example presents a multivariate ordinal logit regression model with a general cor-
relation error structure (corGeneral(~ 1)). The simulated data set contains the credit risk
measure rating (ratings assigned by raters R1, R2, R3 and R4) and 8 covariates for a cross-
section of 1665 firms. The number of firm-ratings is 4566.

R> head(data_cr_multord, n = 3)

firm_id rater_id rating ICR LR LEV1 LEV2

1 1 R1 D 1.546318 0.2484137 3.782934 0.92053787

2 2 R1 B 8.723779 0.1506502 1.033042 0.05305052

3 3 R1 D 4.726520 0.5187664 8.942818 0.97001785

PR lRSIZE lSYSR BSEC

1 0.2743184 -11.202807 -3.691023 BSEC3

2 0.1182763 -8.815116 -4.270618 BSEC3

3 0.2871493 -9.548691 -3.895642 BSEC6
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R> str(data_cr_multord, vec.len = 3)

'data.frame': 4566 obs. of 11 variables:

$ firm_id : Factor w/ 1665 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 ...

$ rater_id: Factor w/ 4 levels "R1","R2","R3",..: 1 1 1 1 1 1 1 1 ...

$ rating : chr "D" "B" "D" ...

$ ICR : num 1.55 8.72 4.73 4.08 ...

$ LR : num 0.248 0.151 0.519 0.168 ...

$ LEV1 : num 3.78 1.03 8.94 2.19 ...

$ LEV2 : num 0.9205 0.0531 0.97 2.8743 ...

$ PR : num 0.2743 0.1183 0.2871 0.0821 ...

$ lRSIZE : num -11.2 -8.82 -9.55 -8.66 ...

$ lSYSR : num -3.69 -4.27 -3.9 -5.13 ...

$ BSEC : Factor w/ 8 levels "BSEC1","BSEC2",..: 3 3 6 4 3 1 6 4 ...

The panel of ratings is unbalanced:

R> nfirms <- length(unique(data_cr_multord$firm_id))

R> table(data_cr_multord$rater_id)/nfirms

R1 R2 R3 R4

0.9459459 0.1387387 0.6576577 1.0000000

We observe that rater R1 rates 95% of the firms, rater R2 rates only 14% of the firms, rater R3
rates 66% of the firms and rater R4 rates all the firms in the sample.

The distribution of the ratings classes for the four raters is:

R> by(data_cr_multord, data_cr_multord$rater_id,

+ function(x) table(x$rating))

data_cr_multord$rater_id: R1

A B C D E F

89 450 605 281 89 61

------------------------------------------------

data_cr_multord$rater_id: R2

A B C D E F

12 74 79 51 9 6

------------------------------------------------

data_cr_multord$rater_id: R3

G H I J K L M

40 163 169 209 404 88 22

------------------------------------------------

data_cr_multord$rater_id: R4
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N O

1067 598

We include 7 financial ratios as covariates in a model without intercept by the formula:

R> formula <- rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

R> formula

rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

The subject index i is stored in the column firm_id and the multiple measurement index j,
which indicates the rater, is given by rater_id:

R> index <- c("firm_id", "rater_id")

R> index

[1] "firm_id" "rater_id"

An optional vector response.names is used to specify all the raters to be included in the
model. The ordering of this vector is essential when constraints on the parameter set want
to be imposed:

R> response.names <- c("R1", "R2", "R3", "R4")

R> response.names

[1] "R1" "R2" "R3" "R4"

Due to the fact that the categories differ across raters we specify the response.levels by:

R> response.levels <- list(rev(LETTERS[1:6]),

+ rev(LETTERS[1:6]),

+ rev(LETTERS[7:13]),

+ rev(LETTERS[14:15]))

R> names(response.levels) <- response.names

R> response.levels

$R1

[1] "F" "E" "D" "C" "B" "A"

$R2

[1] "F" "E" "D" "C" "B" "A"

$R3

[1] "M" "L" "K" "J" "I" "H" "G"

$R4

[1] "O" "N"
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If no response.levels are passed, the natural ordering is used and could lead to an incorrect
labeling. The rating classes assigned by the raters are here in order from worst to best
indicating that lower values of the latent variables indicate lower creditworthiness or increased
credit risk.

We fit a model to these data which:

� assumes that R1 and R2 use the same rating scale by setting the following constraints
on the threshold parameters:

R> threshold.constraints <- c(1,1,2,3)

R> names(threshold.constraints) <- response.names

R> threshold.constraints

R1 R2 R3 R4

1 1 2 3

� assumes that some covariates are equal for some raters. For example, we assume that
the coefficient of ICR is equal for R1 and R3, or that the coeffiecients of LEV1 and PR are
the same for the raters R1, R2 and R3. In addition, some of the regression coefficients
are set to zero like ICR for R1 and R3, or lSYSR for the raters R1, R2 and R3. All
the constraints above and some additional constraints are performed by the following
restrictions on the regression coefficients by using the advanced method:

R> coef.constraints = cbind(c(1,NA,1,NA),

+ c(NA,NA,NA,1),

+ c(1,1,1,NA),

+ c(1,2,3,4),

+ c(1,1,1,4),

+ c(1,2,3,4),

+ c(NA,NA,NA,1))

R> rownames(coef.constraints) <- response.names

R> colnames(coef.constraints) <- c("ICR", "LR", "LEV1", "LEV2",

+ "PR", "lRSIZE", "lSYSR")

R> coef.constraints

ICR LR LEV1 LEV2 PR lRSIZE lSYSR

R1 1 NA 1 1 1 1 NA

R2 NA NA 1 2 1 2 NA

R3 1 NA 1 3 1 3 NA

R4 NA 1 NA 4 4 4 1

The NAs in coef.constraints have to be fixed to some value. If no matrix coef.values

is provided, the coefficients are set by default to zero automatically. This automatically
generated coef.values matrix, looks like:

R> coef.values <- cbind(c(NA, 0, NA, 0),

+ c(0, 0, 0, NA),

+ c(NA, NA, NA, NA),
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+ c(NA, NA, NA, 0),

+ c(NA, NA, NA, NA),

+ c(NA, NA, NA, NA),

+ c(0, 0, 0, NA))

R> rownames(coef.values) <- response.names

R> colnames(coef.values) <- c("ICR", "LR", "LEV1", "LEV2",

+ "PR", "lRSIZE", "lSYSR")

R> coef.values

ICR LR LEV1 LEV2 PR lRSIZE lSYSR

R1 NA 0 NA NA NA NA 0

R2 0 0 NA NA NA NA 0

R3 NA 0 NA NA NA NA 0

R4 0 NA NA 0 NA NA NA

The specified coef.constraints together with coef.values give the following model:

Ỹ1 = β11ICR+ β13LEV1+β14LEV2 + β15PR+β16lRSIZE,

Ỹ2 = β13LEV1+β24LEV2 + β15PR+β26lRSIZE,

Ỹ3 = β11ICR+ β13LEV1+β34LEV2 + β15PR+β36lRSIZE,

Ỹ4 = β42LR+ β44LEV2 + β45PR +β46lRSIZE + β47lSYSR.

As a link function we choose the logit link:

R> link <- "logit"

For simplicity, we use a general correlation structure which is constant for all subjects:

R> error.structure <- corGeneral(~ 1)

R> error.structure

$type

[1] "corGeneral"

$formula

~1

In order to avoid numerical instabilities, we standardize our data for each rater:

R> covar_names <- c("ICR", "LR","LEV1","LEV2", "PR","lRSIZE","lSYSR")

R> data_cr_multord_scaled <- do.call("rbind.data.frame",

+ by(data_cr_multord, data_cr_multord$rater_id,

+ function(x){x[, covar_names] <- scale(x[, covar_names]); x}))

The estimation can now be performed by the function multord():
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R> res_cor_logit <- multord(

+ formula = rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR,

+ error.structure = corGeneral(~ 1),

+ link = "logit",

+ data = data_cr_multord_scaled,

+ index = c("firm_id", "rater_id"),

+ response.names = c("R1", "R2", "R3", "R4"),

+ response.levels = list(rev(LETTERS[1:6]),

+ rev(LETTERS[1:6]),

+ rev(LETTERS[7:13]),

+ rev(LETTERS[14:15])),

+ coef.constraints = cbind(c(1,NA,1,NA),

+ c(NA,NA,NA,1),

+ c(1,1,1,NA),

+ c(1,2,3,4),

+ c(1,1,1,4),

+ c(1,2,3,4),

+ c(NA,NA,NA,1)),

+ threshold.constraints = c(1,1,2,3))

The results are displayed either by the function summary():

R> summary(res_cor_logit, call = FALSE)

Formula: rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

link threshold nsubjects ndim logPL CLAIC CLBIC fevals

logit flexible 1665 4 -7995.33 16121.2 16474.83 358

Threshold parameters:

Estimate Std. Error z value Pr(>|z|) signif

R1 F|E -4.84882521 0.21246069 -22.8222224 2.759174e-115 ***

R1 E|D -3.19261718 0.13597584 -23.4792974 6.638998e-122 ***

R1 D|C -1.10858835 0.07317162 -15.1505243 7.516458e-52 ***

R1 C|B 0.94717024 0.06555248 14.4490366 2.542168e-47 ***

R1 B|A 3.38129642 0.12803640 26.4088682 1.083763e-153 ***

R3 M|L -6.14130711 0.32082572 -19.1421908 1.124414e-81 ***

R3 L|K -3.18193062 0.14945190 -21.2906663 1.385443e-100 ***

R3 K|J 0.02328815 0.07060703 0.3298277 7.415302e-01

R3 J|I 1.06403373 0.07516952 14.1551230 1.736338e-45 ***

R3 I|H 2.05389139 0.08979632 22.8727781 8.673229e-116 ***

R3 H|G 3.96195911 0.17336527 22.8532459 1.356722e-115 ***

R4 O|N -0.98345892 0.08487255 -11.5874799 4.769600e-31 ***

Coefficients:

Estimate Std. Error z value Pr(>|z|) signif

ICR R1 0.3542920 0.03839647 9.227203 2.777908e-20 ***
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ICR R2 0.0000000 0.00000000 NA NA <NA>

ICR R3 0.3542920 0.03839647 9.227203 2.777908e-20 ***

ICR R4 0.0000000 0.00000000 NA NA <NA>

LR R1 0.0000000 0.00000000 NA NA <NA>

LR R2 0.0000000 0.00000000 NA NA <NA>

LR R3 0.0000000 0.00000000 NA NA <NA>

LR R4 -0.3808375 0.06241727 -6.101476 1.050931e-09 ***

LEV1 R1 -0.1795457 0.04588253 -3.913160 9.109630e-05 ***

LEV1 R2 -0.1795457 0.04588253 -3.913160 9.109630e-05 ***

LEV1 R3 -0.1795457 0.04588253 -3.913160 9.109630e-05 ***

LEV1 R4 0.0000000 0.00000000 NA NA <NA>

LEV2 R1 -1.3901375 0.07034796 -19.760878 6.466964e-87 ***

LEV2 R2 -1.0021188 0.09383600 -10.679471 1.269931e-26 ***

LEV2 R3 -1.4644950 0.08241302 -17.770189 1.202840e-70 ***

LEV2 R4 -1.7185313 0.12278884 -13.995827 1.652955e-44 ***

PR R1 0.5546747 0.05009754 11.071895 1.717304e-28 ***

PR R2 0.5546747 0.05009754 11.071895 1.717304e-28 ***

PR R3 0.5546747 0.05009754 11.071895 1.717304e-28 ***

PR R4 2.1770281 0.12171745 17.885917 1.518342e-71 ***

lRSIZE R1 0.2522814 0.05161464 4.887787 1.019756e-06 ***

lRSIZE R2 0.4092883 0.09066342 4.514371 6.350495e-06 ***

lRSIZE R3 0.4750829 0.05675575 8.370656 5.729847e-17 ***

lRSIZE R4 0.1652422 0.07448297 2.218523 2.651922e-02 *

lSYSR R1 0.0000000 0.00000000 NA NA <NA>

lSYSR R2 0.0000000 0.00000000 NA NA <NA>

lSYSR R3 0.0000000 0.00000000 NA NA <NA>

lSYSR R4 -0.1985668 0.06601729 -3.007801 2.631458e-03 **

Error Structure:

Estimate Std. Error z value Pr(>|z|) signif

corr R1 R2 0.9035414 0.02189504 41.266946 0.000000e+00 ***

corr R1 R3 0.6929071 0.02182114 31.753936 2.801830e-221 ***

corr R1 R4 0.4933093 0.03841571 12.841340 9.619454e-38 ***

corr R2 R3 0.7340554 0.04366159 16.812382 1.980517e-63 ***

corr R2 R4 0.5983776 0.10503523 5.696923 1.219892e-08 ***

corr R3 R4 0.7702408 0.03152657 24.431478 7.919559e-132 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

or by the function print():

R> print(res_cor_logit, call = FALSE)

Threshold parameters:

$R1

F|E E|D D|C C|B B|A

-4.8488252 -3.1926172 -1.1085883 0.9471702 3.3812964
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$R2

F|E E|D D|C C|B B|A

-4.8488252 -3.1926172 -1.1085883 0.9471702 3.3812964

$R3

M|L L|K K|J J|I I|H

-6.14130711 -3.18193062 0.02328815 1.06403373 2.05389139

H|G

3.96195911

$R4

O|N

-0.9834589

Coefficients:

ICR LR LEV1 LEV2 PR lRSIZE

R1 0.354292 0.0000000 -0.1795457 -1.390137 0.5546747 0.2522814

R2 0.000000 0.0000000 -0.1795457 -1.002119 0.5546747 0.4092883

R3 0.354292 0.0000000 -0.1795457 -1.464495 0.5546747 0.4750829

R4 0.000000 -0.3808375 0.0000000 -1.718531 2.1770281 0.1652422

lSYSR

R1 0.0000000

R2 0.0000000

R3 0.0000000

R4 -0.1985668

Sigma:

R1 R2 R3 R4

R1 1.0000000 0.9035414 0.6929071 0.4933093

R2 0.9035414 1.0000000 0.7340554 0.5983776

R3 0.6929071 0.7340554 1.0000000 0.7702408

R4 0.4933093 0.5983776 0.7702408 1.0000000

An extended summary, where all thresholds and regression coefficients are shown, even though
they are duplicated, can be obtained by:

R> summary(res_cor_logit, short = FALSE, call = FALSE)

Formula: rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

link threshold nsubjects ndim logPL CLAIC CLBIC fevals

logit flexible 1665 4 -7995.33 16121.2 16474.83 358

Threshold parameters:

Estimate Std. Error z value Pr(>|z|) signif

R1 F|E -4.84882521 0.21246069 -22.8222224 2.759174e-115 ***
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R1 E|D -3.19261718 0.13597584 -23.4792974 6.638998e-122 ***

R1 D|C -1.10858835 0.07317162 -15.1505243 7.516458e-52 ***

R1 C|B 0.94717024 0.06555248 14.4490366 2.542168e-47 ***

R1 B|A 3.38129642 0.12803640 26.4088682 1.083763e-153 ***

R2 F|E -4.84882521 0.21246069 -22.8222224 2.759174e-115 ***

R2 E|D -3.19261718 0.13597584 -23.4792974 6.638998e-122 ***

R2 D|C -1.10858835 0.07317162 -15.1505243 7.516458e-52 ***

R2 C|B 0.94717024 0.06555248 14.4490366 2.542168e-47 ***

R2 B|A 3.38129642 0.12803640 26.4088682 1.083763e-153 ***

R3 M|L -6.14130711 0.32082572 -19.1421908 1.124414e-81 ***

R3 L|K -3.18193062 0.14945190 -21.2906663 1.385443e-100 ***

R3 K|J 0.02328815 0.07060703 0.3298277 7.415302e-01

R3 J|I 1.06403373 0.07516952 14.1551230 1.736338e-45 ***

R3 I|H 2.05389139 0.08979632 22.8727781 8.673229e-116 ***

R3 H|G 3.96195911 0.17336527 22.8532459 1.356722e-115 ***

R4 O|N -0.98345892 0.08487255 -11.5874799 4.769600e-31 ***

Coefficients:

Estimate Std. Error z value Pr(>|z|) signif

ICR R1 0.3542920 0.03839647 9.227203 2.777908e-20 ***

ICR R2 0.0000000 0.00000000 NA NA <NA>

ICR R3 0.3542920 0.03839647 9.227203 2.777908e-20 ***

ICR R4 0.0000000 0.00000000 NA NA <NA>

LR R1 0.0000000 0.00000000 NA NA <NA>

LR R2 0.0000000 0.00000000 NA NA <NA>

LR R3 0.0000000 0.00000000 NA NA <NA>

LR R4 -0.3808375 0.06241727 -6.101476 1.050931e-09 ***

LEV1 R1 -0.1795457 0.04588253 -3.913160 9.109630e-05 ***

LEV1 R2 -0.1795457 0.04588253 -3.913160 9.109630e-05 ***

LEV1 R3 -0.1795457 0.04588253 -3.913160 9.109630e-05 ***

LEV1 R4 0.0000000 0.00000000 NA NA <NA>

LEV2 R1 -1.3901375 0.07034796 -19.760878 6.466964e-87 ***

LEV2 R2 -1.0021188 0.09383600 -10.679471 1.269931e-26 ***

LEV2 R3 -1.4644950 0.08241302 -17.770189 1.202840e-70 ***

LEV2 R4 -1.7185313 0.12278884 -13.995827 1.652955e-44 ***

PR R1 0.5546747 0.05009754 11.071895 1.717304e-28 ***

PR R2 0.5546747 0.05009754 11.071895 1.717304e-28 ***

PR R3 0.5546747 0.05009754 11.071895 1.717304e-28 ***

PR R4 2.1770281 0.12171745 17.885917 1.518342e-71 ***

lRSIZE R1 0.2522814 0.05161464 4.887787 1.019756e-06 ***

lRSIZE R2 0.4092883 0.09066342 4.514371 6.350495e-06 ***

lRSIZE R3 0.4750829 0.05675575 8.370656 5.729847e-17 ***

lRSIZE R4 0.1652422 0.07448297 2.218523 2.651922e-02 *

lSYSR R1 0.0000000 0.00000000 NA NA <NA>

lSYSR R2 0.0000000 0.00000000 NA NA <NA>

lSYSR R3 0.0000000 0.00000000 NA NA <NA>

lSYSR R4 -0.1985668 0.06601729 -3.007801 2.631458e-03 **
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Error Structure:

Estimate Std. Error z value Pr(>|z|) signif

corr R1 R2 0.9035414 0.02189504 41.266946 0.000000e+00 ***

corr R1 R3 0.6929071 0.02182114 31.753936 2.801830e-221 ***

corr R1 R4 0.4933093 0.03841571 12.841340 9.619454e-38 ***

corr R2 R3 0.7340554 0.04366159 16.812382 1.980517e-63 ***

corr R2 R4 0.5983776 0.10503523 5.696923 1.219892e-08 ***

corr R3 R4 0.7702408 0.03152657 24.431478 7.919559e-132 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The threshold coefficients can be extracted by the function thresholds():

R> thresholds(res_cor_logit)

$R1

F|E E|D D|C C|B B|A

-4.8488252 -3.1926172 -1.1085883 0.9471702 3.3812964

$R2

F|E E|D D|C C|B B|A

-4.8488252 -3.1926172 -1.1085883 0.9471702 3.3812964

$R3

M|L L|K K|J J|I I|H

-6.14130711 -3.18193062 0.02328815 1.06403373 2.05389139

H|G

3.96195911

$R4

O|N

-0.9834589

The regression coefficients are obtained by the function coef():

R> coef(res_cor_logit)

ICR LR LEV1 LEV2 PR lRSIZE

R1 0.354292 0.0000000 -0.1795457 -1.390137 0.5546747 0.2522814

R2 0.000000 0.0000000 -0.1795457 -1.002119 0.5546747 0.4092883

R3 0.354292 0.0000000 -0.1795457 -1.464495 0.5546747 0.4750829

R4 0.000000 -0.3808375 0.0000000 -1.718531 2.1770281 0.1652422

lSYSR

R1 0.0000000

R2 0.0000000

R3 0.0000000

R4 -0.1985668
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The error structure is displayed by the function get.error.struct():

R> get.error.struct(res_cor_logit)

R1 R2 R3 R4

R1 1.0000000 0.9035414 0.6929071 0.4933093

R2 0.9035414 1.0000000 0.7340554 0.5983776

R3 0.6929071 0.7340554 1.0000000 0.7702408

R4 0.4933093 0.5983776 0.7702408 1.0000000

Fitting the model with the function multord2()

Due to the fact that the covariates do not change across the repeated measurements (the
covariates are firm specific and do not vary across raters), we can alternatively fit the model
by the function multord2(). In multord2(), a slightly different format of data is used and
the ordering of the responses is defined by a multivariate formula object. The repeated
measurements are stored in different columns as ordered factors:

R> head(data_cr_multord2, n = 3)

firm_id R1 R2 R3 R4 ICR LR LEV1 LEV2

1 1 D <NA> K N 1.546318 0.2484137 3.782934 0.92053787

2 2 B <NA> <NA> N 8.723779 0.1506502 1.033042 0.05305052

3 3 D <NA> <NA> N 4.726520 0.5187664 8.942818 0.97001785

PR lRSIZE lSYSR BSEC

1 0.2743184 -11.202807 -3.691023 BSEC3

2 0.1182763 -8.815116 -4.270618 BSEC3

3 0.2871493 -9.548691 -3.895642 BSEC6

R> str(data_cr_multord2, vec.len = 2)

'data.frame': 1665 obs. of 13 variables:

$ firm_id: Factor w/ 1665 levels "1","2","3","4",..: 1 2 3 4 5 ...

$ R1 : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<..: 3 5 3 1 5 ...

$ R2 : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<..: NA NA NA NA NA ...

$ R3 : Ord.factor w/ 7 levels "M"<"L"<"K"<"J"<..: 3 NA NA 1 NA ...

$ R4 : Ord.factor w/ 2 levels "O"<"N": 2 2 2 1 2 ...

$ ICR : num 1.55 8.72 ...

$ LR : num 0.248 0.151 ...

$ LEV1 : num 3.78 1.03 ...

$ LEV2 : num 0.9205 0.0531 ...

$ PR : num 0.274 0.118 ...

$ lRSIZE : num -11.2 -8.82 ...

$ lSYSR : num -3.69 -4.27 ...

$ BSEC : Factor w/ 8 levels "BSEC1","BSEC2",..: 3 3 6 4 3 ...

Again, we standardize the data to avoid numerical instabilities:
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R> data_cr_multord2[, covar_names] <- scale(data_cr_multord2[, covar_names])

The estimation is performed by calling the function multord2():

R> res_cor_logit <- multord(

+ formula = cbind(R1, R2, R3, R4) ~ 0 + ICR + LR + LEV1 + LEV2 + PR +

+ lRSIZE + lSYSR,

+ error.structure = corGeneral(~ 1),

+ link = "logit",

+ data = data_cr_multord_scaled,

+ coef.constraints = cbind(c(1,NA,1,NA),

+ c(NA,NA,NA,1),

+ c(1,1,1,NA),

+ c(1,2,3,4),

+ c(1,1,1,4),

+ c(1,2,3,4),

+ c(NA,NA,NA,1)),

+ threshold.constraints = c(1,1,2,3))

yielding equivalent results to the fit of multord().

3.2. Example 2 – ratings assigned by one rater to a panel of firms

In a second example we present a longitudinal multivariate ordinal probit regression model
with a covariate dependent AR(1) error structure. The simulated data set contains the credit
risk measure rating (ratings assigned by rater R1) and 8 covariates for a panel of 1665 firms
over ten years. The number of firm-year observations is 11431:

R> str(data_cr_panel, vec.len = 3)

'data.frame': 11431 obs. of 11 variables:

$ firm_id: Factor w/ 1665 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 ...

$ year : Factor w/ 10 levels "year1","year2",..: 1 1 1 1 1 1 1 1 ...

$ rating : Ord.factor w/ 6 levels "F"<"E"<"D"<"C"<..: 3 5 3 1 5 3 4 5 ...

$ ICR : num 1.55 8.72 4.73 4.08 ...

$ LR : num 0.248 0.151 0.519 0.168 ...

$ LEV1 : num 3.78 1.03 8.94 2.19 ...

$ LEV2 : num 0.9205 0.0531 0.97 2.8743 ...

$ PR : num 0.2743 0.1183 0.2871 0.0821 ...

$ lRSIZE : num -11.2 -8.82 -9.55 -8.66 ...

$ lSYSR : num -3.69 -4.27 -3.9 -5.13 ...

$ BSEC : Factor w/ 8 levels "BSEC1","BSEC2",..: 3 3 6 4 3 1 6 4 ...

R> head(data_cr_panel, n = 3)

firm_id year rating ICR LR LEV1 LEV2

1 1 year1 D 1.546318 0.2484137 3.782934 0.92053787
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2 2 year1 B 8.723779 0.1506502 1.033042 0.05305052

3 3 year1 D 4.726520 0.5187664 8.942818 0.97001785

PR lRSIZE lSYSR BSEC

1 0.2743184 -11.202807 -3.691023 BSEC3

2 0.1182763 -8.815116 -4.270618 BSEC3

3 0.2871493 -9.548691 -3.895642 BSEC6

The panel is highly unbalanced. The distribution of the number of ratings per firm assigned
by rater R1 over the 10 years is given by:

R> summary(rowSums(with(data_cr_panel, table(firm_id, year))))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 4.000 8.000 6.865 10.000 10.000

Per year the number of ratings decreases:

R> with(data_cr_panel, table(year))

year

year1 year2 year3 year4 year5 year6 year7 year8 year9

1665 1487 1377 1250 1135 1048 948 888 832

year10

801

We include the 7 financial ratios as covariates in a model without intercept by the formula:

R> formula <- rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

R> formula

rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

The subject index+i is stored in the column firm_id while the repeated measurement index j
is given in the column year:

R> index <- c("firm_id", "year")

R> index

[1] "firm_id" "year"

If we wish to estimate the model only for the last eight years of the sample, this can be done
by specifing the names of each dimension ordered response which should enter the model:

R> response.names <- paste0("year", 3:10)

R> response.names

[1] "year3" "year4" "year5" "year6" "year7" "year8"

[7] "year9" "year10"
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The rating classes assigned by rater R1 are:

R> levels(data_cr_panel$rating)

[1] "F" "E" "D" "C" "B" "A"

with the sixth rating class F being the worst class and the first rating class A being the best
rating class. We specify the response levels, in the order from worst to best, for each of the 10
outcome dimensions through the response.level argument. Ordering the classes from worst
to best indicates that lower values of the latent variables indicate lower creditworthiness or
increased credit risk. The rating classes and labels do not change over the ten years:

R> response.levels <- rep(list(levels(data_cr_panel$rating)),

+ length(response.names))

R> names(response.levels) <- response.names

R> response.levels

$year3

[1] "F" "E" "D" "C" "B" "A"

$year4

[1] "F" "E" "D" "C" "B" "A"

$year5

[1] "F" "E" "D" "C" "B" "A"

$year6

[1] "F" "E" "D" "C" "B" "A"

$year7

[1] "F" "E" "D" "C" "B" "A"

$year8

[1] "F" "E" "D" "C" "B" "A"

$year9

[1] "F" "E" "D" "C" "B" "A"

$year10

[1] "F" "E" "D" "C" "B" "A"

Additionally, the model has the following features:

� we assume the rating agencies do not change their methodology over the sample period.
This means the threshold parameters are constant over the years. This can be specified
through the argument threshold.constraints:
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R> threshold.constraints <- rep(1, length(response.names))

R> names(threshold.constraints) <- response.names

R> threshold.constraints

year3 year4 year5 year6 year7 year8 year9 year10

1 1 1 1 1 1 1 1

� we assume there is a breakpoint in the regression coefficients after year5 in the sample
(this could correspond to the beginning of a crisis in a real case application). Hence, we
use one set of regression coefficients for years year3, year4 and year5 and a different set
for year6, year7, year8, year9, year10. This can be specified through the argument
coef.constraints:

R> coef.constraints = c(rep(1, 3), rep(2, 5))

R> names(coef.constraints) <- response.names

R> coef.constraints

year3 year4 year5 year6 year7 year8 year9 year10

1 1 1 2 2 2 2 2

� allows for different correlation parameters in the AR(1) structure for the different busi-
ness sectors.

R> error.structure = corAR1(~ BSEC)

R> error.structure

$type

[1] "corAR1"

$formula

~BSEC

The estimation is performed by calling the function multord(): As before, we standardize
our covariates on a yearly basis:

R> data_cr_panel_scaled <- do.call("rbind.data.frame",

+ by(data_cr_panel, data_cr_panel$year,

+ function(x){x[, covar_names] <- scale(x[, covar_names]); x}))

R> res_AR1_probit <- multord(

+ formula = rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR,

+ index = c("firm_id", "year"),

+ data = data_cr_panel_scaled,

+ response.levels = rep(list(levels(data_cr_panel$rating)), 8),

+ response.names = paste0("year", 3:10),

+ link = "probit",

+ error.structure = corAR1(~ BSEC),

+ coef.constraints = c(rep(1, 3), rep(2, 5)),

+ threshold.constraints = rep(1, 8),

+ solver = "BFGS")
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The results are displayed either by the function summary():

R> summary(res_AR1_probit, short = TRUE, call = FALSE, digits = 6)

Formula: rating ~ 0 + ICR + LR + LEV1 + LEV2 + PR + lRSIZE + lSYSR

link threshold nsubjects ndim logPL CLAIC CLBIC fevals

probit flexible 1392 8 -52751.13 105820.97 106655.76 222

Threshold parameters:

Estimate Std. Error z value Pr(>|z|) signif

year3 F|E -4.0902846 0.0994663 -41.12230 0.00000e+00 ***

year3 E|D -1.0098087 0.0325721 -31.00229 5.02033e-211 ***

year3 D|C 0.0203523 0.0278756 0.73011 4.65323e-01

year3 C|B 1.0260948 0.0326125 31.46328 2.76294e-217 ***

year3 B|A 3.0498425 0.0695938 43.82347 0.00000e+00 ***

Coefficients:

Estimate Std. Error z value Pr(>|z|) signif

ICR year3 0.1663783 0.0137447 12.10492 9.94626e-34 ***

ICR year6 0.0919790 0.0120313 7.64495 2.09024e-14 ***

LR year3 0.0242913 0.0132655 1.83116 6.70774e-02 .

LR year6 -0.1887875 0.0127358 -14.82340 1.03408e-49 ***

LEV1 year3 -0.0906768 0.0135194 -6.70715 1.98461e-11 ***

LEV1 year6 -0.2941070 0.0126544 -23.24156 1.73168e-119 ***

LEV2 year3 -0.7025465 0.0217684 -32.27375 1.63368e-228 ***

LEV2 year6 -1.6211075 0.0340118 -47.66310 0.00000e+00 ***

PR year3 0.2732929 0.0140069 19.51129 8.80340e-85 ***

PR year6 0.4133250 0.0141526 29.20498 1.67643e-187 ***

lRSIZE year3 0.1104956 0.0134466 8.21734 2.08064e-16 ***

lRSIZE year6 0.5331242 0.0154265 34.55895 1.04576e-261 ***

lSYSR year3 -0.0309864 0.0132937 -2.33091 1.97583e-02 *

lSYSR year6 -0.1976489 0.0126467 -15.62843 4.66113e-55 ***

Error Structure:

Estimate Std. Error z value Pr(>|z|) signif

(Intercept) 1.3700044 0.0668721 20.486921 2.81652e-93 ***

BSECBSEC2 -0.6047990 0.0851659 -7.101423 1.23478e-12 ***

BSECBSEC3 0.1152617 0.0794137 1.451408 1.46666e-01

BSECBSEC4 0.1429737 0.0764200 1.870892 6.13600e-02 .

BSECBSEC5 0.0194572 0.0928413 0.209575 8.34000e-01

BSECBSEC6 -0.4795777 0.0878203 -5.460901 4.73724e-08 ***

BSECBSEC7 -0.9067004 0.0852025 -10.641714 1.90590e-26 ***

BSECBSEC8 -0.5922317 0.1110170 -5.334602 9.57544e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

or by the function print():
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R> print(res_AR1_probit, call = FALSE, digits = 4)

Threshold parameters:

$year3

F|E E|D D|C C|B B|A

-4.09028 -1.00981 0.02035 1.02609 3.04984

$year4

F|E E|D D|C C|B B|A

-4.09028 -1.00981 0.02035 1.02609 3.04984

$year5

F|E E|D D|C C|B B|A

-4.09028 -1.00981 0.02035 1.02609 3.04984

$year6

F|E E|D D|C C|B B|A

-4.09028 -1.00981 0.02035 1.02609 3.04984

$year7

F|E E|D D|C C|B B|A

-4.09028 -1.00981 0.02035 1.02609 3.04984

$year8

F|E E|D D|C C|B B|A

-4.09028 -1.00981 0.02035 1.02609 3.04984

$year9

F|E E|D D|C C|B B|A

-4.09028 -1.00981 0.02035 1.02609 3.04984

$year10

F|E E|D D|C C|B B|A

-4.09028 -1.00981 0.02035 1.02609 3.04984

Coefficients:

ICR LR LEV1 LEV2 PR lRSIZE lSYSR

year3 0.16638 0.02429 -0.09068 -0.7025 0.2733 0.1105 -0.03099

year4 0.16638 0.02429 -0.09068 -0.7025 0.2733 0.1105 -0.03099

year5 0.16638 0.02429 -0.09068 -0.7025 0.2733 0.1105 -0.03099

year6 0.09198 -0.18879 -0.29411 -1.6211 0.4133 0.5331 -0.19765

year7 0.09198 -0.18879 -0.29411 -1.6211 0.4133 0.5331 -0.19765

year8 0.09198 -0.18879 -0.29411 -1.6211 0.4133 0.5331 -0.19765

year9 0.09198 -0.18879 -0.29411 -1.6211 0.4133 0.5331 -0.19765

year10 0.09198 -0.18879 -0.29411 -1.6211 0.4133 0.5331 -0.19765

alpha parameters error.structure:
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(Intercept) BSECBSEC2 BSECBSEC3 BSECBSEC4 BSECBSEC5

1.37000 -0.60480 0.11526 0.14297 0.01946

BSECBSEC6 BSECBSEC7 BSECBSEC8

-0.47958 -0.90670 -0.59223

An extended summary, where all thresholds and regression coefficients are shown, even though
they are duplicated, can be obtained by:

R> summary(res_AR1_probit, short = FALSE, call = FALSE)

The threshold coefficients can be extracted by the function thresholds():

R> thresholds(res_AR1_probit)

$year3

F|E E|D D|C C|B B|A

-4.09028458 -1.00980868 0.02035227 1.02609482 3.04984253

$year4

F|E E|D D|C C|B B|A

-4.09028458 -1.00980868 0.02035227 1.02609482 3.04984253

$year5

F|E E|D D|C C|B B|A

-4.09028458 -1.00980868 0.02035227 1.02609482 3.04984253

$year6

F|E E|D D|C C|B B|A

-4.09028458 -1.00980868 0.02035227 1.02609482 3.04984253

$year7

F|E E|D D|C C|B B|A

-4.09028458 -1.00980868 0.02035227 1.02609482 3.04984253

$year8

F|E E|D D|C C|B B|A

-4.09028458 -1.00980868 0.02035227 1.02609482 3.04984253

$year9

F|E E|D D|C C|B B|A

-4.09028458 -1.00980868 0.02035227 1.02609482 3.04984253

$year10

F|E E|D D|C C|B B|A

-4.09028458 -1.00980868 0.02035227 1.02609482 3.04984253

The regression coefficients are obtained by the function coef():
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R> coef(res_AR1_probit)

ICR LR LEV1 LEV2 PR

year3 0.16637829 0.02429127 -0.0906768 -0.7025465 0.2732929

year4 0.16637829 0.02429127 -0.0906768 -0.7025465 0.2732929

year5 0.16637829 0.02429127 -0.0906768 -0.7025465 0.2732929

year6 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250

year7 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250

year8 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250

year9 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250

year10 0.09197896 -0.18878750 -0.2941070 -1.6211075 0.4133250

lRSIZE lSYSR

year3 0.1104956 -0.03098645

year4 0.1104956 -0.03098645

year5 0.1104956 -0.03098645

year6 0.5331242 -0.19764887

year7 0.5331242 -0.19764887

year8 0.5331242 -0.19764887

year9 0.5331242 -0.19764887

year10 0.5331242 -0.19764887

The error structure is displayed by the function get.error.struct():

R> get.error.struct(res_AR1_probit)

(Intercept) BSECBSEC2 BSECBSEC3 BSECBSEC4 BSECBSEC5

1.37000442 -0.60479901 0.11526167 0.14297368 0.01945718

BSECBSEC6 BSECBSEC7 BSECBSEC8

-0.47957770 -0.90670039 -0.59223175

In addition, the correlation parameters ρi for each firm are obtained by:

R> head(get.error.struct(res_AR1_probit, type = "corr"), n = 3)

Correlation

1 0.9024499

2 0.9024499

3 0.7116044

Moreover, the correlation matrices for each specific firm are obtained by:

R> head(get.error.struct(res_AR1_probit, type = "sigmas"), n = 1)

$`1`

year3 year4 year5 year6 year7

year3 1.0000000 0.9024499 0.8144159 0.7349696 0.6632733

year4 0.9024499 1.0000000 0.9024499 0.8144159 0.7349696
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year5 0.8144159 0.9024499 1.0000000 0.9024499 0.8144159

year6 0.7349696 0.8144159 0.9024499 1.0000000 0.9024499

year7 0.6632733 0.7349696 0.8144159 0.9024499 1.0000000

year8 0.5985709 0.6632733 0.7349696 0.8144159 0.9024499

year9 0.5401803 0.5985709 0.6632733 0.7349696 0.8144159

year10 0.4874857 0.5401803 0.5985709 0.6632733 0.7349696

year8 year9 year10

year3 0.5985709 0.5401803 0.4874857

year4 0.6632733 0.5985709 0.5401803

year5 0.7349696 0.6632733 0.5985709

year6 0.8144159 0.7349696 0.6632733

year7 0.9024499 0.8144159 0.7349696

year8 1.0000000 0.9024499 0.8144159

year9 0.9024499 1.0000000 0.9024499

year10 0.8144159 0.9024499 1.0000000
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