
Classes and methods for spatio-temporal

data in R: the spacetime package

1. Das neue IfGI-Logo 1.6 Logovarianten

Logo für den Einsatz in internationalen bzw.

englischsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

ifgi

ifgi

Institute for Geoinformatics
University of Münster

ifgi

Institut für Geoinformatik
Universität Münster

Logo für den Einsatz in nationalen bzw.

deutschsprachigen Präsentationen.

Einsatzbereiche: Briefbogen, Visitenkarte,

Titelblätter etc.

Mindestgröße 45 mm Breite

Dieses Logo kann bei Anwendungen

eingesetzt werden, wo das Logo besonders

klein erscheint.

Einsatzbereiche: Sponsorenlogo,

Power-Point

Größe bis 40 mm Breite

Edzer Pebesma

October 1, 2010

Abstract

This document describes a set of classes and methods for spatio-
temporal data in R. It builds upon the classes and methods for spatial
data are taken from package sp, and the temporal classes in package xts.
The goal is to cover a number of useful representations for spatio-temporal
sensor data, or results from predicting (spatial and/or temporal interpo-
lation or smoothing), aggregating, or subsetting them.

The goals of this package are to explore how spatio-temporal data can
be sensibly represented in classes, and which methods are useful and fea-
sible for the classes implemented. It tries to reuse existing infrastructure
(classes, methods, functions) that is present in packages for spatial data
(sp) and time series data (zoo and xts). Coercion to the appropriate re-
duced spatial and temporal classes is provided, as well as to data.frame

objects in the obvious long or wide format.

Contents

1 Introduction 2

2 Space-time layouts 3
2.1 Full space-time grid . 3
2.2 Partial space-time grid . 3
2.3 Sparse space-time data.frame 6

3 Spatio-temporal full grid data.frames (STFDF) 6
3.1 Class definition . 6
3.2 Coercion to data.frame . 8
3.3 Coercion to xts . 9
3.4 Attribute retrieval and replacement: [[and $ 10
3.5 Selection with [. 11

1

http://www.r-project.org
mailto:edzer.pebesma@uni-muenster.de

4 Space-time partial data.frames (STPDF) 13
4.1 Class definition . 13

5 Spatio-temporal sparse data.frames (STSDF) 14
5.1 Class definition . 14
5.2 Methods . 15

6 Methods: obtaining a snapshot or history 16

7 Coercion 17

8 Spatial footprint or support, time intervals 18

9 Worked examples 18
9.1 Interpolating Iris wind . 18
9.2 Tracking data: trip and ltraj objects 20
9.3 Conversion from and to trip . 20
9.4 Trajectory data: ltraj in adehabitat 22

1 Introduction

Spatio-temporal data are abundant, and easily obtained. Examples are satellite
images of parts of the earth, temperature readings for a number of nearby sta-
tions, election results for voting districts and a number of consecutive elections,
and GPS tracks for people or animals.

Schabenberger and Gotway (2004) argue that analysis of spatio-temporal
data often happens conditionally, meaning that either first the spatial aspect is
analysed, after which the temporal aspects are analysed, or reversed, but not in
a joint, integral modelling approach, where space and time are not separated.
As a possible reason they mention the lack of good software, data classes and
methods to handle, import, export, display and analyse such data. This R
package tries to partially fill this gap.

A possible reason why data are often analysed conditionally is that they are
often either overly abundant in space, or in time, and relatively sparse in the
other. Satellite imagery is typically very abundant in space, giving lots of detail
in high resolution for large areas, but much less abundant in time. Also, repeated
images over time may suffer from problems like difference in light conditions,
errors in georeferencing resulting in spatial mismatch, and changes in obscured
areas due to changed cloud coverage. On the other hand, data from fixed sensors
give often very detailed signals over time, allowing for elaborate modelling, but
relatively sparse detail in space because a very limited number of sensors is
available. The cost of an in situ sensor network typically depends primarily on
its spatial density, and less so on the temporal resolution with which the sensors
register signals.

Although for example Botts et al. (2007) describe a number of open stan-
dards that allow the interaction with sensor data (describing sensor character-
istics, requesting observed values, planning sensors, and processing raw sensed
data to predefined events), the available statistical or GIS software for this is
in an early stage, and scattered. This paper describes an attempt to combine
available infrastructure in the R statistical environment to a set of useful classes

2

and methods for manipulating, plotting and analysing spatio-temporal data. A
number of case studies from different application areas will illustrate its use.

The current version of the package is experimental, class definitions and
methods are subject to change.

We use xts for time because it has nice tools for reorganizing time and a
very flexible syntax to select time periods. We do not use the xts objects to
store attribute information, as it is restricted to matrix objects, and hence can
only store a single type, and not combine numeric and factor. Instead, as in the
classes of sp, we use data.frame to store measured values.

2 Space-time layouts

In the following we will use spatial location to denote a particular point, (set
of) line(s), (set of) polygon(s), or pixel, for which one or more measurements
are registered at particular moments in time.

Three layouts of space-time data will be implemented, along with conve-
nience methods and coercion methods to get from one to the other.

A full space-time grid1 of observations for spatial location (points, lines, poly-
gons, grid cells) si, i = 1, ..., n and observation time tj , j = 1, ...,m is obtained
when the full set of n×m set of observations zk is stored, with k = 1, ..., nm. We
choose to cycle spatial locations first, so observation k corresponds to location
si, i = ((k − 1) % n) + 1 and with time moment tj , j = ((k − 1)/n) + 1, with /
integer division and % integer division remainder (modulo). The tj need to be
in time order, as xts objects are used to store them.

A partial grid has the same general layout, with measurements laid out on a
space time grid (figure 2), but instead of storing the full grid, only non-missing
valued observations zk are stored. For each k, an index [i, j] is stored that refers
which spatial location i and time point j the value belongs to.

Sparse space-time data are those where time and space points of measured
values can have arbitrary organization: for each measured value the spatial
location and time point is stored. This is equivalent to a partial grid where the
index for observation k is [k, k], and hence can be dropped. For these objects,
n = m and equals the number of records. The next subsections will illustrate
these three classes.

2.1 Full space-time grid

In this data class (figure 1), for each location, the same temporal sequence of
data is sampled. Altenatively one could say that for each moment in time, the
same set of spatial entities is sampled. Unsampled combinations of (space, time)
are stored in this class, but are assigned a missing value NA.

2.2 Partial space-time grid

Partial space-time grids (figure 2) have space and time points layed out on a
grid, but not all grid nodes are stored and an index is kept that relates the
values to the grid nodes: [i, j] refers to spatial location i and time point j.

1note that neither locations nor time points need to be laid out in some regular sequence

3

●

●

●

●

●

●

●

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

1st 3rd 4th

1s
t

2n
d

3r
d

1

2

3

4

5

6

7

8

9

10

11

12

Layout for STFDF

Figure 1: space-time layout of STFDF (F: Full) objects: all space-time com-
binations are stored; numbers refer to the ordering of rows in the data.frame

with measured values: time is kept ordered, space cycles first

4

●

●

●

●

●

●

●

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

1st 2nd 3rd 4th

1s
t

2n
d

3r
d

1[1,1]

2[2,1]

3[3,1]

4[2,2]

5[3,2]

6[1,3]

7[2,4]

Layout for STPDF

Figure 2: space-time layout of STPDF (P: partial) objects: part of the space-
time combinations are stored; numbers refer to the ordering of rows in the
data.frame; an index is kept where [3,4] refers to the third item in the list of
spatial locations and fourth item in the list of temporal points.

5

2.3 Sparse space-time data.frame

Space-time sparse data.frames (STSDF, figure 3) simply store for each value
the spatial location and time point, in time order.

3 Spatio-temporal full grid data.frames (STFDF)

For objects of class STFDF, time representation can be regular or irregular, as it
is of class xts in package xts. Spatial locations need to be of a class deriving
from Spatial in package sp.

3.1 Class definition

> library(spacetime)

> showClass("ST")

Class "ST" [package "spacetime"]

Slots:

Name: sp time

Class: Spatial xts

Known Subclasses:

Class "STP", directly

Class "STS", directly

Class "STF", directly

Class "STPDF", by class "STP", distance 2

Class "STSDF", by class "STS", distance 2

Class "STFDF", by class "STF", distance 2

> showClass("STFDF")

Class "STFDF" [package "spacetime"]

Slots:

Name: data sp time

Class: data.frame Spatial xts

Extends:

Class "STF", directly

Class "ST", by class "STF", distance 2

> sp = cbind(x = c(0,0,1), y = c(0,1,1))

> row.names(sp) = paste("point", 1:nrow(sp), sep="")

> sp = SpatialPoints(sp)

> time = xts(1:4, as.POSIXct("2010-08-05")+3600*(10:13))

> m = c(10,20,30) # means for each of the 3 point locations

> mydata = rnorm(length(sp)*length(time),mean=rep(m, 4))

> IDs = paste("ID",1:length(mydata), sep = "_")

6

●

●

●

●

●

Time points

S
pa

ce
 lo

ca
tio

ns

1st 2nd 3rd,4th 5th

1s
t,4

th
2n

d
3r

d
5t

h

1

2

3

4

5

Layout for STSDF

Figure 3: space-time layout of STSDF (S: Sparse) objects: each observation has
its spatial location and time stamp stored; in this example, time point 3 and
spatial location 1 are duplicated, so they appear twice.

7

> mydata = data.frame(values = signif(mydata,3), ID=IDs)

> stfdf = STFDF(sp, time, mydata)

> str(stfdf)

Formal class 'STFDF' [package "spacetime"] with 3 slots

..@ data:'data.frame': 12 obs. of 2 variables:

.. ..$ values: num [1:12] 9.3 19.5 29.8 10.1 19.6 30.7 10.6 20.9 30.5 9.42 ...

.. ..$ ID : Factor w/ 12 levels "ID_1","ID_10",..: 1 5 6 7 8 9 10 11 12 2 ...

..@ sp :Formal class 'SpatialPoints' [package "sp"] with 3 slots

..@ coords : num [1:3, 1:2] 0 0 1 0 1 1

..- attr(*, "dimnames")=List of 2

..$: chr [1:3] "point1" "point2" "point3"

..$: chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 0 0 1 1

..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "x" "y"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

..@ projargs: chr NA

..@ time:An ‘xts’ object from 2010-08-05 10:00:00 to 2010-08-05 13:00:00 containing:

Data: int [1:4, 1] 1 2 3 4

Indexed by objects of class: [POSIXt,POSIXct] TZ:

xts Attributes:

NULL

3.2 Coercion to data.frame

The following coercion function creates a data.frame using both the S3 (to set
row.names) and S4 “as()” method. It gives data in the long format, meaning
that time and space are replicated appropriately:

> as.data.frame(stfdf, row.names = IDs)

X1 X2 sp.ID time values ID

ID_1 0 0 point1 2010-08-05 10:00:00 9.30 ID_1

ID_2 0 1 point2 2010-08-05 10:00:00 19.50 ID_2

ID_3 1 1 point3 2010-08-05 10:00:00 29.80 ID_3

ID_4 0 0 point1 2010-08-05 11:00:00 10.10 ID_4

ID_5 0 1 point2 2010-08-05 11:00:00 19.60 ID_5

ID_6 1 1 point3 2010-08-05 11:00:00 30.70 ID_6

ID_7 0 0 point1 2010-08-05 12:00:00 10.60 ID_7

ID_8 0 1 point2 2010-08-05 12:00:00 20.90 ID_8

ID_9 1 1 point3 2010-08-05 12:00:00 30.50 ID_9

ID_10 0 0 point1 2010-08-05 13:00:00 9.42 ID_10

ID_11 0 1 point2 2010-08-05 13:00:00 20.50 ID_11

ID_12 1 1 point3 2010-08-05 13:00:00 30.40 ID_12

> as(stfdf, "data.frame")[1:4,]

X1 X2 sp.ID time values ID

1 0 0 point1 2010-08-05 10:00:00 9.3 ID_1

8

2 0 1 point2 2010-08-05 10:00:00 19.5 ID_2

3 1 1 point3 2010-08-05 10:00:00 29.8 ID_3

4 0 0 point1 2010-08-05 11:00:00 10.1 ID_4

Note that sp.ID denotes the ID of the spatial location; coordinates are shown
for point, pixel or grid cell centre locations; in case locations refer to lines or
polygons, the line’s start coordinate and coordinate centre of weight are given,
respectively, as the coordinate values.

For a single attribute, we can obtain a data.frame object if we properly
unstack the column, giving the data in both its wide formats when in addition
we apply transpose t():

> unstack(stfdf)

point1 point2 point3

2010-08-05 10:00:00 9.30 19.5 29.8

2010-08-05 11:00:00 10.10 19.6 30.7

2010-08-05 12:00:00 10.60 20.9 30.5

2010-08-05 13:00:00 9.42 20.5 30.4

> t(unstack(stfdf))

2010-08-05 10:00:00 2010-08-05 11:00:00 2010-08-05 12:00:00

point1 9.3 10.1 10.6

point2 19.5 19.6 20.9

point3 29.8 30.7 30.5

2010-08-05 13:00:00

point1 9.42

point2 20.50

point3 30.40

> unstack(stfdf, which = 2)

point1 point2 point3

2010-08-05 10:00:00 ID_1 ID_2 ID_3

2010-08-05 11:00:00 ID_4 ID_5 ID_6

2010-08-05 12:00:00 ID_7 ID_8 ID_9

2010-08-05 13:00:00 ID_10 ID_11 ID_12

3.3 Coercion to xts

We can coerce an object of class STFDF to an xts if we select a single numeric
attribute:

> as(stfdf, "xts")

point1 point2 point3

2010-08-05 10:00:00 9.30 19.5 29.8

2010-08-05 11:00:00 10.10 19.6 30.7

2010-08-05 12:00:00 10.60 20.9 30.5

2010-08-05 13:00:00 9.42 20.5 30.4

9

3.4 Attribute retrieval and replacement: [[and $

We can define the [[and $ retrieval and replacement methods for all classes
deriving from ST at once. Here are some examples:

> stfdf[[1]]

[1] 9.30 19.50 29.80 10.10 19.60 30.70 10.60 20.90 30.50 9.42 20.50 30.40

> stfdf[["values"]]

[1] 9.30 19.50 29.80 10.10 19.60 30.70 10.60 20.90 30.50 9.42 20.50 30.40

> stfdf[["newVal"]] <- rnorm(12)

> stfdf$ID

[1] ID_1 ID_2 ID_3 ID_4 ID_5 ID_6 ID_7 ID_8 ID_9 ID_10 ID_11 ID_12

Levels: ID_1 ID_10 ID_11 ID_12 ID_2 ID_3 ID_4 ID_5 ID_6 ID_7 ID_8 ID_9

> stfdf$ID = paste("OldIDs", 1:12, sep = "")

> stfdf$NewID = paste("NewIDs", 12:1, sep = "")

> stfdf

An object of class "STFDF"

Slot "data":

values ID newVal NewID

1 9.30 OldIDs1 -0.64040307 NewIDs12

2 19.50 OldIDs2 0.02855101 NewIDs11

3 29.80 OldIDs3 0.62963889 NewIDs10

4 10.10 OldIDs4 -2.63563424 NewIDs9

5 19.60 OldIDs5 -1.21542158 NewIDs8

6 30.70 OldIDs6 0.18013697 NewIDs7

7 10.60 OldIDs7 0.53430039 NewIDs6

8 20.90 OldIDs8 1.00768797 NewIDs5

9 30.50 OldIDs9 -0.12293866 NewIDs4

10 9.42 OldIDs10 -1.28290292 NewIDs3

11 20.50 OldIDs11 -1.14995225 NewIDs2

12 30.40 OldIDs12 -0.89028515 NewIDs1

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

10

3.5 Selection with [

The idea behind the [method for classes in sp was that objects would behave
as much as possible similar to a matrix or data.frame – this is one of the
stronger intuitive areas of R syntax. A construct like a[i,j] selects row(s) i
and column(s) j. In sp, rows were taken as the spatial entities (points, lines,
polygons, pixels) and rows as the attributes. This convention was broken for
objects of class SpatialGridDataFrame, where a[i,j,k] would select the k-th
attribute of the spatial grid selection with spatial grid row(s) i and column(s)
j.

For spatio-temporal data, a[i,j,k] selects spatial entity/entities i, temporal
entity/entities j, and attribute(s) k:

example:

> stfdf[,1] # SpatialPointsDataFrame:

coordinates values ID newVal NewID

1 (0, 0) 9.3 OldIDs1 -0.64040307 NewIDs12

2 (0, 1) 19.5 OldIDs2 0.02855101 NewIDs11

3 (1, 1) 29.8 OldIDs3 0.62963889 NewIDs10

> stfdf[,,1]

An object of class "STFDF"

Slot "data":

values

1 9.30

2 19.50

3 29.80

4 10.10

5 19.60

6 30.70

7 10.60

8 20.90

9 30.50

10 9.42

11 20.50

12 30.40

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

11

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

> stfdf[1,,1] # xts

values

2010-08-05 10:00:00 9.30

2010-08-05 11:00:00 10.10

2010-08-05 12:00:00 10.60

2010-08-05 13:00:00 9.42

> stfdf[,,"ID"]

An object of class "STFDF"

Slot "data":

ID

1 OldIDs1

2 OldIDs2

3 OldIDs3

4 OldIDs4

5 OldIDs5

6 OldIDs6

7 OldIDs7

8 OldIDs8

9 OldIDs9

10 OldIDs10

11 OldIDs11

12 OldIDs12

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

> stfdf[1,,"values", drop=FALSE] # stays STFDF:

An object of class "STFDF"

Slot "data":

values

1 9.30

4 10.10

12

7 10.60

10 9.42

Slot "sp":

SpatialPoints:

x y

point1 0 0

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

2010-08-05 11:00:00 2

2010-08-05 12:00:00 3

2010-08-05 13:00:00 4

> stfdf[,1, drop=FALSE] #stays STFDF

An object of class "STFDF"

Slot "data":

values ID newVal NewID

1 9.3 OldIDs1 -0.64040307 NewIDs12

2 19.5 OldIDs2 0.02855101 NewIDs11

3 29.8 OldIDs3 0.62963889 NewIDs10

Slot "sp":

SpatialPoints:

x y

point1 0 0

point2 0 1

point3 1 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 10:00:00 1

Clearly, unless drop=FALSE, selecting a single time or single location object
results in an object that is no longer spatio-temporal; see also section 6.

4 Space-time partial data.frames (STPDF)

Space-time partial data.frames have a layout over a grid, meaning that partic-
ular times and locations are typically present more than once, but only the data
for the time/location combinations are stored. An index keeps the link between
the measured values in the data entries (rows), and the locations and times.

4.1 Class definition

> showClass("STPDF")

13

Class "STPDF" [package "spacetime"]

Slots:

Name: data index sp time

Class: data.frame matrix Spatial xts

Extends:

Class "STP", directly

Class "ST", by class "STP", distance 2

In this class, index is an n× 2 matrix. If in this index row i has entry [j, k], it
means that data[i,] corresponds to location j and time k.

5 Spatio-temporal sparse data.frames (STSDF)

Space-time sparse data.frames store for each data record the location and time.
No index is kept. Location and time need not be organized. Data are stored
such that time is ordered (as it is an xts object).

5.1 Class definition

> showClass("STSDF")

Class "STSDF" [package "spacetime"]

Slots:

Name: data sp time

Class: data.frame Spatial xts

Extends:

Class "STS", directly

Class "ST", by class "STS", distance 2

> sp = expand.grid(x = 1:3, y = 1:3)

> row.names(sp) = paste("point", 1:nrow(sp), sep="")

> sp = SpatialPoints(sp)

> time = xts(1:9, as.POSIXct("2010-08-05")+3600*(11:19))

> m = 1:9 * 10 # means for each of the 9 point locations

> mydata = rnorm(length(sp), mean=m)

> IDs = paste("ID",1:length(mydata))

> mydata = data.frame(values = signif(mydata,3),ID=IDs)

> stsdf = STSDF(sp, time, mydata)

> stsdf

An object of class "STSDF"

Slot "data":

values ID

1 10.8 ID 1

14

2 20.3 ID 2

3 29.1 ID 3

4 40.9 ID 4

5 50.4 ID 5

6 59.8 ID 6

7 69.0 ID 7

8 80.8 ID 8

9 91.4 ID 9

Slot "sp":

SpatialPoints:

x y

[1,] 1 1

[2,] 2 1

[3,] 3 1

[4,] 1 2

[5,] 2 2

[6,] 3 2

[7,] 1 3

[8,] 2 3

[9,] 3 3

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 11:00:00 1

2010-08-05 12:00:00 2

2010-08-05 13:00:00 3

2010-08-05 14:00:00 4

2010-08-05 15:00:00 5

2010-08-05 16:00:00 6

2010-08-05 17:00:00 7

2010-08-05 18:00:00 8

2010-08-05 19:00:00 9

5.2 Methods

Selection takes place with the [method:

> stsdf[1:2,]

An object of class "STSDF"

Slot "data":

values ID

1 10.8 ID 1

2 20.3 ID 2

Slot "sp":

SpatialPoints:

x y

[1,] 1 1

15

[2,] 2 1

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

2010-08-05 11:00:00 1

2010-08-05 12:00:00 2

6 Methods: obtaining a snapshot or history

A time snapshot (Galton, 2004) to a particular moment in time can be obtained
through selecting a particular time moment:

> stfdf[, time[3]]

coordinates values ID newVal NewID

7 (0, 0) 10.6 OldIDs7 0.5343004 NewIDs6

8 (0, 1) 20.9 OldIDs8 1.0076880 NewIDs5

9 (1, 1) 30.5 OldIDs9 -0.1229387 NewIDs4

by default, a simplified object of the underlying Spatial class for this particular
time is obtained; if we specify drop = FALSE, the class will not be changed:

> class(stfdf[, time[3], drop = FALSE])

[1] "STFDF"

attr(,"package")

[1] "spacetime"

A time series (or history, according to Galton, 2004) for a single particular
location is obtained by selecting this location, e.g.

> stfdf[1, , "values"]

values

2010-08-05 10:00:00 9.30

2010-08-05 11:00:00 10.10

2010-08-05 12:00:00 10.60

2010-08-05 13:00:00 9.42

Again, the class is not reduced to the simpler when drop = FALSE is specified:

> class(stfdf[1, drop = FALSE])

[1] "STFDF"

attr(,"package")

[1] "spacetime"

Note that for objects of class STSDF, drop = TRUE is not (yet) implemented as it
is not clear to which classe a single record should be reduced; for sets of records,
further processing is needed to find out whether a single point in time or a single
spatial location is retrieved.

16

7 Coercion

Coercion from full to partial and/or sparse space-time data.frames, we can use
as:

> class(stfdf)

[1] "STFDF"

attr(,"package")

[1] "spacetime"

> class(as(stfdf, "STPDF"))

[1] "STPDF"

attr(,"package")

[1] "spacetime"

> class(as(as(stfdf, "STPDF"), "STSDF"))

[1] "STSDF"

attr(,"package")

[1] "spacetime"

> class(as(stfdf, "STSDF"))

[1] "STSDF"

attr(,"package")

[1] "spacetime"

On our way back, the reverse coercion takes place:

> x = as(stfdf, "STSDF")

> class(as(x, "STPDF"))

[1] "STPDF"

attr(,"package")

[1] "spacetime"

> class(as(as(x, "STPDF"), "STFDF"))

[1] "STFDF"

attr(,"package")

[1] "spacetime"

> class(as(x, "STFDF"))

[1] "STFDF"

attr(,"package")

[1] "spacetime"

> xx = as(x, "STFDF")

> identical(stfdf, xx)

[1] FALSE

17

8 Spatial footprint or support, time intervals

Time series typically store for each record a time stamp, not a time interval.
The implicit assumption of time seems to be (i) the time stamp is a moment,
(ii) this indicates either the real moment of measurement / registration, or the
start of the interval over which something is aggregated (summed, averaged,
maximized). For financial ”Open, high, low, close” data, ”Open” and ”Close”
refer to the values for moments at opening and closing of the stock exchange,
where ”high” and ”low” aggregated (minimum, maximum over the time interval
between opening and closing times.

9 Worked examples

9.1 Interpolating Iris wind

This worked example is a shortened version of the analysis present in demo(wind),
in package gstat. This demo is rather lengthy and largely reproduces the origi-
nal analysis in Haslett and Raftery (1989). Here, we will reduce the intermediate
plots and focus on the use of spatiotemporal classes.

In the next fragment, we will load the wind data from package gstat, and
convert character representation (such as 51d56’N) to proper numerical coordi-
nates.

> library(gstat)

> data(wind)

> wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]])))

> wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude"]])))

> coordinates(wind.loc) = ~x + y

> proj4string(wind.loc) = "+proj=longlat +datum=WGS84"

The first thing is to reshape these data. As space is sparse and time is rich,
the data in data.frame wind come stations time series in columns. The station
locations come in a separate data.frame, called wind.loc.

> wind[1:3,]

year month day RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO

1 61 1 1 15.04 14.96 13.17 9.29 13.96 9.87 13.67 10.25 10.83 12.58

2 61 1 2 14.71 16.88 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67

3 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 8.04 8.50 7.67

BEL MAL

1 18.50 15.04

2 17.54 13.83

3 12.75 12.71

> wind.loc[1:3,]

coordinates Station Code Latitude Longitude MeanWind

1 (-10.25, 51.9333) Valentia VAL 51d56'N 10d15'W 5.48

2 (-10, 54.2333) Belmullet BEL 54d14'N 10d00'W 6.75

3 (-8.98333, 53.7167) Claremorris CLA 53d43'N 8d59'W 4.32

18

> library(mapdata)

> plot(wind.loc, xlim = c(-11, -5.4), ylim = c(51, 55.5), axes = T,

+ col = "red")

> map("worldHires", add = T, col = grey(0.5))

> text(coordinates(wind.loc), pos = 1, label = wind.loc$Station,

+ cex = 0.7)

12°W 10°W 8°W 6°W 4°W

51
°N

52
°N

53
°N

54
°N

55
°N

Valentia

Belmullet

Claremorris

Shannon

Roche's Point

Birr

Mullingar

Malin Head

Kilkenny

Clones

Dublin

Roslare

Figure 4: Station locations for Irish wind data

19

First, we will recode the time columns to an appropriate time data structure,
and subtract a smooth trend of daily means:

> wind$time = ISOdate(wind$year + 1900, wind$month, wind$day)

> wind$jday = as.numeric(format(wind$time, "%j"))

Next, we will match the wind data to its location, and convert the long/lat
coordinates and country boundary to the appropriate UTM zone:

> pts = coordinates(wind.loc[match(names(wind[4:15]), wind.loc$Code),

+])

> pts = SpatialPoints(pts)

> proj4string(pts) = "+proj=longlat +datum=WGS84"

> library(rgdal)

> pts = spTransform(pts, CRS("+proj=utm +zone=29 +datum=WGS84"))

> t = xts(1:nrow(wind), wind$time)

> stations = 4:15

> w = STFDF(pts, t, data.frame(values = as.vector(t(wind[stations]))))

> library(maptools)

Note: polygon geometry computations in maptools

depend on the package gpclib, which has a

restricted licence. It is disabled by default;

to enable gpclib, type gpclibPermit()

Checking rgeos availability as gpclib substitute:

FALSE

> m = map2SpatialLines(map("worldHires", xlim = c(-11, -5.4), ylim = c(51,

+ 55.5), plot = F))

> proj4string(m) = "+proj=longlat +datum=WGS84"

> m = spTransform(m, CRS("+proj=utm +zone=29 +datum=WGS84"))

> grd = SpatialPixels(SpatialPoints(makegrid(m, n = 300)), proj4string = proj4string(m))

> w = w[, "1961-04"]

> covfn = function(x, y) {

+ du = spDists(coordinates(x), coordinates(y))

+ t1 = as.numeric(index(x))

+ t2 = as.numeric(index(y))

+ dt = abs(outer(t1, t2, "-"))

+ 0.6 * exp(-du/750000) * exp(-dt/(1.5 * 3600 * 24))

+ }

> n = 10

> tgrd = xts(1:n, seq(min(index(w)), max(index(w)), length = n))

> pred = krige0(sqrt(values) ~ 1, w, STF(grd, tgrd), covfn)

> wind.pr = STFDF(grd, tgrd, data.frame(pred = pred))

9.2 Tracking data: trip and ltraj objects

9.3 Conversion from and to trip

Objects of class trip (Sumner, 2010) extend objects of class SpatialPoints-

DataFrame by indicating in which attribute columns time and trip ID are, in

20

> spl = list(list("sp.points", pts, first = F, cex = 0.5), list("sp.lines",

+ m, col = "grey"))

> print(stplot(wind.pr, col.regions = bpy.colors(), par.strip.text = list(cex = 0.5),

+ sp.layout = spl))

1961−04−01 12:00:001961−04−04 17:20:001961−04−07 22:40:001961−04−11 04:00:001961−04−14 09:20:00

1961−04−17 14:40:001961−04−20 20:00:001961−04−24 01:20:001961−04−27 06:40:001961−04−30 12:00:00

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Figure 5: Space-time interpolations of wind (square root transformed, de-
trended) over Ireland using a separable product covariance model, for 10 time
points regularly distributed over the month for which daily data was considered
(April, 1961)

21

slot TOR.columns. To not lose this information (in particular, which column
contains the IDs), we will extend class STSDF to retain this info.

Currently it does assume that time in a trip object is in order, as xts will
order it anyhow:

> library(diveMove)

> library(trip)

> locs <- readLocs(system.file(file.path("data", "sealLocs.csv"),

+ package = "diveMove"), idCol = 1, dateCol = 2, dtformat = "%Y-%m-%d %H:%M:%S",

+ classCol = 3, lonCol = 4, latCol = 5, sep = ";")

> ringy <- subset(locs, id == "ringy" & !is.na(lon) & !is.na(lat))

> coordinates(ringy) <- ringy[c("lon", "lat")]

> tr <- trip(ringy, c("time", "id"))

> setClass("STSDFtrip", representation("STSDF", TOR.columns = "character"))

[1] "STSDFtrip"

> setAs("trip", "STSDFtrip", function(from) {

+ new("STSDFtrip", STSDF(as(from, "SpatialPoints"), from[[from@TOR.columns[1]]],

+ from@data), TOR.columns = from@TOR.columns)

+ })

> setAs("STSDFtrip", "trip", function(from) trip(SpatialPointsDataFrame(from@sp,

+ from@data), from@TOR.columns))

> x = as(tr, "STSDFtrip")

> y = as(x, "trip")

> all.equal(y, tr)

[1] TRUE

9.4 Trajectory data: ltraj in adehabitat

Trajectory objects of class ltraj are lists of bursts, sets of sequentially, con-
nected space-time points at which an object is registered. When converting a
list to a single STSDF object, the ordering is according to time, and the sub-
sequent objects become unconnected. In the coercion back to ltraj, based on
ID and burst the appropriate bursts are restored.

> library(adehabitat)

This package requires ade4 to be installed

Type:

demo(rastermaps) for demonstration of raster map analysis

demo(homerange) for demonstration of home-range estimation

demo(managltraj) for demonstration of animals trajectory management

demo(analysisltraj) for demonstration of animals trajectory analysis

demo(nichehs) for demonstration of niche/habitat selection analysis

> data(puechabon)

> locs <- puechabon$locs

> xy <- locs[, c("X", "Y")]

22

> da <- as.character(locs$Date)

> da <- as.POSIXct(strptime(as.character(locs$Date), "%y%m%d"))

> ltr <- as.ltraj(xy, da, id = locs$Name)

> foo <- function(dt) {

+ return(dt > (100 * 3600 * 24))

+ }

> l2 <- cutltraj(ltr, "foo(dt)", nextr = TRUE)

> setClass("ltraj", representation("list"))

[1] "ltraj"

> setClass("STSDFltraj", representation("STSDF"))

[1] "STSDFltraj"

> setAs("ltraj", "STSDFltraj", function(from) {

+ d = do.call(rbind, from)

+ n = unlist(lapply(from, nrow))

+ d$id = rep(unlist(t(sapply(from, attributes))[, 4]), times = n)

+ d$burst = rep(unlist(t(sapply(from, attributes))[, 5]), times = n)

+ new("STSDFltraj", STSDF(SpatialPoints(d[c("x", "y")]), d$date,

+ d))

+ })

> setAs("STSDFltraj", "ltraj", function(from) {

+ xy = coordinates(from@sp)

+ da = index(from@time)

+ as.ltraj(xy, da, id = from@data[, "id"], burst = from@data[,

+ "burst"])

+ })

> ltr.stsdf = as(l2, "STSDFltraj")

> ltr.stsdf[1:10,]

An object of class "STSDFltraj"

Slot "data":

x y date dx dy dist dt R2n abs.angle

50 699520 3159572 1992-07-29 120 -870 878.23687 345600 0 -1.4337302

51 699640 3158702 1992-08-02 49 155 162.56076 86400 771300 1.2646087

52 699689 3158857 1992-08-03 -19 -13 23.02173 86400 539786 -2.5415424

53 699670 3158844 1992-08-04 128 -84 153.10127 86400 552484 -0.5807564

54 699798 3158760 1992-08-05 -67 11 67.89698 345600 736628 2.9788653

55 699731 3158771 1992-08-09 -63 -86 106.60675 86400 686122 -2.2030409

56 699668 3158685 1992-08-10 343 79 351.98011 86400 808673 0.2263730

57 700011 3158764 1992-08-11 -326 -116 346.02312 259200 893945 -2.7997351

58 699685 3158648 1992-08-14 34 61 69.83552 259200 881001 1.0623070

59 699719 3158709 1992-08-17 32 202 204.51895 172800 784370 1.4136861

rel.angle id burst

50 NA Chou Chou.1

51 2.6983389 Chou Chou.1

52 2.4770341 Chou Chou.1

53 1.9607861 Chou Chou.1

54 -2.7235637 Chou Chou.1

23

55 1.1012792 Chou Chou.1

56 2.4294138 Chou Chou.1

57 -3.0261081 Chou Chou.1

58 -2.4211432 Chou Chou.1

59 0.3513791 Chou Chou.1

Slot "sp":

SpatialPoints:

x y

[1,] 699520 3159572

[2,] 699640 3158702

[3,] 699689 3158857

[4,] 699670 3158844

[5,] 699798 3158760

[6,] 699731 3158771

[7,] 699668 3158685

[8,] 700011 3158764

[9,] 699685 3158648

[10,] 699719 3158709

Coordinate Reference System (CRS) arguments: NA

Slot "time":

[,1]

1992-07-29 50

1992-08-02 51

1992-08-03 52

1992-08-04 53

1992-08-05 54

1992-08-09 55

1992-08-10 56

1992-08-11 57

1992-08-14 58

1992-08-17 59

> ltr0 = as(ltr.stsdf, "ltraj")

> all.equal(l2, ltr0, check.attributes = FALSE)

[1] TRUE

Acknowledgements

Michael Sumner provided helpful comments on the trip example.

References

Botts, M., Percivall, G., Reed, C., and Davidson, J., 2007. OGC Sensor
Web Enablement: Overview And High Level Architecture. Technical re-
port, Open Geospatial Consortium. http://portal.opengeospatial.

org/files/?artifact_id=25562

24

http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=25562

Calenge, C., S. Dray, M. Royer-Carenzi (2008). The concept of animals’ tra-
jectories from a data analysis perspective. Ecological informatics 4, 34-41.

Croissant Y., G. Millo (2008). Panel Data Econometrics in R: The plm Pack-
age. Journal of Statistical Software, 27(2). http://www.jstatsoft.org/
v27/i02/.

Galton, A. (2004). Fields and Objects in Space, Time and Space-time. Spatial
cognition and computation 4(1).

Haslett, J. and Raftery, A. E. (1989). Space-time Modelling with Long-memory
Dependence: Assessing Ireland’s Wind Power Resource (with Discussion).
Applied Statistics 38, 1-50.

Schabenberger, O., and Gotway, C.A., 2004. Statistical methods for spatial
data analysis. Boca Raton: Chapman and Hall.

Sumner, M. , 2010. The tag location problem. Unpublished PhD thesis, Insti-
tute of Marine and Antarctic Studies University of Tasmania, September
2010.

25

http://www.jstatsoft.org/v27/i02/
http://www.jstatsoft.org/v27/i02/

	Introduction
	 Space-time layouts
	Full space-time grid
	Partial space-time grid
	Sparse space-time data.frame

	Spatio-temporal full grid data.frames (STFDF)
	Class definition
	Coercion to data.frame
	Coercion to xts
	Attribute retrieval and replacement: [[and $
	Selection with [

	Space-time partial data.frames (STPDF)
	Class definition

	Spatio-temporal sparse data.frames (STSDF)
	Class definition
	Methods

	Methods: obtaining a snapshot or history
	Coercion
	Spatial footprint or support, time intervals
	 Worked examples
	 Interpolating Iris wind
	Tracking data: trip and ltraj objects
	Conversion from and to trip
	Trajectory data: ltraj in adehabitat

