Documentation for QCGWAS, version 1.0-9
Peter J. van der Most, March 2012 - February 2014, final update May 2022
Frequently used terms / abbreviations
· Datafiles
· GWAS data

data, dataset
· Allele-reference

ref, ref_set

· Indicate parameters/columns in the dataset
· Effect-size

effect
· Standard error

SE

· Coded-allele frequency

FRQ
· Hardy-Weinberg p-value

HWE
· Callrate

cal
· Imputation quality

imp, impQ
· Imputation status

impstatus
(= whether a SNP is imputed or genotyped)
· Missing value

NA
· Other

· Quality control

QC

· High-quality SNPs

HQ

· Quantile-quantile (plot)

QQ
Changelog v1.0-8 → v1.0-9
As of 2021, QCGWAS has been replaced by GWASinspector. We strongly recommend users to switch to that package, as it is substantially faster and accepts more variants types than QCGWAS. For more information, visit http://gwasinspector.com/.

Besides this announcement, v1.0-9 servers only to update QCGWAS to R4.0 and comply with new metadata requirements.

Changelog v1.0-7 → v1.0-8
QCGWAS v1.0-8 is a minor update: it fixes a few bugs and adds one additional check to the QC_GWAS function.

· The QC_GWAS function now checks the dataset for superfluous spaces in columns containing character data. These spaces are removed automatically.
· Solved a problem with QC_series, where the effect-size distribution plot would not display filenames longer than 15 characters. QC_series now uses the file number (as listed in the checkgraph_legenda file) when this occurs.

· Fixed a bug in filter_GWAS that caused it to reject correctly formatted ini files.

· Fixed a mistake in the log file that caused the minimal sample size to be rounded to two significant values.

· Solved a warning message (“integer overflow”) that occurred when very large datasets (> 20,000,000 SNPs) were processed.
Changelog v1.0-5 → v1.0-7
· New log format: the QC_GWAS log file is now formatted for easy viewing in a text-processing program. To restore the old, spreadsheet-friendly format, set the spreadsheet_friendly_log argument to TRUE.

· All graph files have been changed to .png for compatibility with Mac systems.

· Changed default settings for various arguments:
· Added default values for QC_GWAS HQ & QQ filters.

· Check_ambiguous_alleles default set to FALSE in QC_GWAS & match_alleles
· remove_mismatches default is now TRUE in QC_GWAS
· The GenABEL format for out_header has been added to filter_GWAS
· A new argument (plot_intensity) has been added to QC_GWAS and match_alleles. This will change the allele-frequency correlation graph from a scatterplot to an intensity plot. This functionality is currently still being tested – use it as your own risk.

· Bugfixes

· Fixed a crash in QC_GWAS that occurred when an allele-reference was supplied but not used.
· Fixed a bug in QC_series that occurred when out_header was a filename rather than a table.

The QC function

The heart of the QCGWAS package is the function QC_GWAS. This function takes a single GWAS results file (or, rather, the filename of that file), and runs a full quality control over it. QC_GWAS uses three auxiliary files: the header translation table (required) and the standard and alternative allele references (both optional).
The main difference with previous versions of QCGWAS is that there now is a function to run a QC over multiple files: QC_series. QC_series accepts a list of files to be QC’ed, and then passes them to QC_GWAS one by one. QC_series also takes care of loading the auxiliary files and compiles the QC checklist and graphs. Since it is in effect a wrapper for QC_GWAS, most of the arguments are identical.
The number of arguments and options for either function can appear overwhelming. However, running a QC is actually quite simple. This document explains the technical detail of what a QC does and which options are available. For a quick introduction to QCGWAS, read the quick reference guide that can be found in “R\library\QCGWAS\doc”.
Auxiliary files

The header-translation table
This file is used to translate the datasets column names (the header) into the standard names used by QCGWAS. A sample file is provided as part of the package – you can find it in “R\library\QCGWAS\doc”. The file contains a two-column table, with the left column containing the standard column-names and the right the alternatives. Both the standard and alternative columns must be fully capitalized.
The standard and alternative allele-reference files
These (optional) references are used to check the alleles in the datasets and to ensure they are all in the same configuration (same strand, same coded alleles) in the post-QC data. The standard allele reference file is the default reference. A standard reference based on HapMap can be created with the create_hapmap_reference function (see the quick reference guide for details).
The alternative allele reference serves as a back-up. SNPs that aren’t found in the standard reference will be compared to the alternative reference. If they aren’t in the alternative reference either and the update_alt argument is set to TRUE, a new version of the alternative reference will be saved with the unknown SNPs added.

Format: the standard reference has four required columns: SNP, MINOR, MAJOR, and MAF. The alternative reference has eight required columns: SNP, CHR, POS, MINOR, MAJOR, MAF, SOURCE, and DATE_ADDED. Unlike the standard reference, the alternative may be updated by the QC function, so the columns must be in this order. In both files, the alleles must be aligned to the positive strand.
Function settings / arguments

This section gives a complete explanation of every argument and how to use it. It is very technical and not relevant unless you wish to alter them. For a non-technical explanation of what the QC_GWAS actually does, skip towards the section “Description”. For a quick introduction to QCGWAS, read the quick reference guide that can be found in “R\library\QCGWAS\doc”.
QC_GWAS(

filename, filename_output = paste("QC_", filename, sep = ""),

dir_data = getwd(),
dir_output = paste(dir_data, "QCGWASed", sep="/"),
dir_references = getwd(),
header_translations,

column_separators = c("\t", " ", "", ",", ";"), header = TRUE, nrows = -1, nrows_test = 1000, comment.char = "",
na.strings = c("NA", “nan”, “NaN”, "."),
imputed_T = c(“1”, "TRUE", "T"), imputed_F = c(“0”, "FALSE", "F"), imputed_NA = c(NA, “-“),
save_final_dataset = TRUE, gzip_final_dataset = TRUE, order_columns = FALSE, spreadsheet_friendly_log = FALSE, out_header = "standard", out_quote = FALSE, out_sep = "\t", out_eol = "\n", out_na = "NA", out_dec = ".", out_qmethod = "escape", out_rownames = FALSE, out_colnames = TRUE,
calculate_missing_p = FALSE,

remove_X = FALSE, remove_Y = FALSE, remove_XY = remove_Y, remove_M = FALSE,
return_HQ_effectsizes = FALSE,

make_plots = TRUE, only_plot_if_threshold = TRUE,

threshold_allele_freq_correlation = 0.95, threshold_p_correlation = 0.99,
plot_intensity = FALSE,
plot_histograms = make_plots, plot_QQ = make_plots, plot_QQ_bands = TRUE,
plot_Manhattan = make_plots, plot_cutoff_p = 0.05,

allele_ref_std, allele_name_std,
allele_ref_alt, allele_name_alt,

update_alt = FALSE, update_savename, update_as_rdata = FALSE, backup_alt = FALSE,
remove_mismatches = TRUE, remove_mismatches_std = remove_mismatches, remove_mismatches_alt = remove_mismatches,

threshold_diffEAF = 0.15, remove_diffEAF = FALSE,

remove_diffEAF_std = remove_diffEAF, remove_diffEAF_alt = remove_diffEAF, check_ambiguous_alleles = FALSE,

use_threshold = 0.1, useFRQ_threshold = use_threshold,
useHWE_threshold = use_threshold, useCal_threshold = use_threshold, useImp_threshold = use_threshold, useMan_threshold = use_threshold,

HQfilter_FRQ = 0.01, HQfilter_HWE = 10^-6,
HQfilter_cal = 0.95, HQfilter_imp = 0.3,

QQfilter_FRQ = c(NA, 0.01, 0.05), QQfilter_HWE = c(NA, 10^-6, 10^-4),
QQfilter_cal = c(NA, 0.95, 0.99), QQfilter_imp = c(NA, 0.3, 0.5, 0.8),

NAfilter = TRUE, NAfilter_FRQ = NAfilter, NAfilter_HWE = NAfilter,
NAfilter_cal = NAfilter, NAfilter_imp = NAfilter,

minimal_impQ_value = -0.5, maximal_impQ_value = 1.5,

ignore_impstatus = FALSE,
logI = 1L, logN = 1L, …
)
QC_series(

data_files, datafile_tag, output_filenames,

dir_data = getwd(), dir_output = paste(dir_data, "QCGWASed", sep="/"), dir_references = getwd(),

header_translations, out_header = “standard”,

allele_ref_std, allele_name_std,
allele_ref_alt, allele_name_alt,

update_alt = FALSE, update_savename, update_as_rdata = FALSE, backup_alt = FALSE,

plot_effectsizes = TRUE, lim_effectsizes = NULL,
plot_SE = TRUE, label_SE = TRUE,

plot_SK = TRUE, label_SK = "outliers",

…
)

Arguments for loading & saving data

· filename, data_files, datafile_tag
Character-string – respectively the name or names of the files to be QC’ed. If no data_files are specified, QC_series will process every file in dir_data whose filename contains the string in datafile_tag.
· output_filenames, output_files
Character-string – respectively the name of the output file or files of the QC WITHOUT extension (the function automatically adds one). The default is the input name with “QC_” prefixed.
· dir_data, dir_output, dir_references
The folders for, respectively, the input file(s), the QC output, and auxiliary files (the header-translation tables and the allele-references). Note that R uses forward slash (/) where Windows uses backslash (\).
· If dir_output does not exist, the function will create a folder by that name. The default is to create a folder named “QCGWASed” inside dir_data.
· column_separators

· Character-string or vector containing the column-separator(s) used in the dataset. This argument is passed to the load_test function. See the description of load_GWAS for more information.
· White-space (i.e. when a sequence of spaces/tabs indicate a single column-separator) can be specified with ""
· Default = c("\t", " ", "", ",", ";")
· header_translations

A translation table for the column-names of the input file. This argument accepts either a table of the correct dimensions, or the name of a file in dir_references containing such a table. A sample table is included in the package: see the section on auxiliary files.
· out_header
· A translation table for the column-names of the output file. This argument accepts either a table of the correct dimensions, or a standard format-name or the name of a file in dir_references containing such a table.
· The available standard formats are:
· “standard” (default setting) retains the column names used by QC_GWAS
· “original” restores the column names used in the input file
· “old” uses the default column names of the pre-v1.0b versions
· “GWAMA”, “PLINK”, “GenABEL” and “META” set the column-names to those used by the respective program. The columns not used by those programs retain the standard names. Note that META’s allele_B corresponds with QC_GWAS effect-allele.

· If (a filename of) a table is specified, the translation table works similarly to header translation table, with two differences:

· The left column (“translate to”) should contain the desired column-names, while the right column should contain the standard names (“translate from”).

· The left column does not need to be capitalized
· header
Logical – does the dataset contain a header-line with column names? If FALSE, column names must be specified via col.names (argument passed to read.table).
· nrows

Integer – the number of rows to be included when loading the dataset. This argument is passed to read.table. The default is -1 (load the entire dataset).
· nrows_test

Integer – the number of rows used for “trial-loading”. Before loading the entire dataset, the function load_test is called to determine the dataset’s file-format by reading the top rows. Setting nrows_test to a low number (e.g. 150) will mean quick testing, but runs the risk of missing problems in lower rows. To test the entire dataset, set it to -1.
· comment.char

Character vector of length one, containing a single character or an empty string used in the dataset to indicate comments - i.e. elements that should not be imported. If R encounters this character in a line when importing the data, it will ignore everything to the right of it, and continue with the next line. Setting it to an empty string ("", the default value) turns off the interpretation of comments, which speeds up the loading process. This argument is passed to read.table when loading the data.
· na.strings

Character-vector containing the strings that indicate missing values in the dataset. Default = c(“NA”, “.”).

· imputed_T, imputed_F, imputed_NA = character vectors – passed to the convert_impstatus function (as T_strings, F_strings and NA_strings, respectively) to translate the imputation-status column. Note that missing values (NA) will not automatically be converted. It must be specified in one of the strings, otherwise the function will report it as an untranslated value.
· save_final_dataset
Logical – should the post-QC dataset should be saved? Default = TRUE.

· gzip_final_dataset

Logical – should the post-QC dataset should be compressed? Default = TRUE.
· order_columns

Logical – should the post-QC dataset retain its original column-order (FALSE) or use the standard one (TRUE). Default = FALSE.

· spreadsheet_friendly_log

Logical – if TRUE, the final log file will be tab-separated, for easy viewing in a spreadsheet program. If FALSE, it will be formatted for pretty viewing in a text-processing program. Default = FALSE.
· out_quote, out_sep, out_eol, out_na, out_dec, out_rownames, out_colnames, out_qmethod
· Arguments for the format of the final dataset, passed to write.table.
· out_quote = logical – should character-strings be enclosed by quotation marks. Default = FALSE, because two quotation-marks per character-string, three strings per SNP, and ~2.5 M SNPs per file add up to 15M additional characters per file.

· out_sep, out_eol = character-strings of the column-separator and row-end. Default = tab (“\t”) and “\n”.

· out_na = character-string to use for missing values
· out_dec = character string to use for decimal points. Must be a single character.
· out_rownames, out_colnames = either a logical value indicating whether row/column-names are saved, or a character-vector specifying new row/column-names. out_colnames overrules the out_header argument, but it is not advisable to use out_colnames for changing column names, as both the order (if order_columns is set to TRUE) and number of columns may change during the QC. Use out_colnames only to remove the column-names from the final dataset. Default = FALSE and TRUE respectively.
Arguments for QC_series only
· plot_effectsizes, plot_SE, plot_SK

logical; toggle the creation of plots comparing the effect-size distribution, precision and skewness vs. kurtosis of all succesfully QC'ed datasets, respectively. See plot_distribution, plot_precision and plot_skewness for more information. Note: because GWAS filenames can be very long, QC_series truncates them. The truncated names can be looked up in the file “Checkgraph_legenda.txt”.
· label_SE

logical; should the data points in the precision plot be labelled with an identifier?

· label_SK

Character string; determines whether the data points in the skewness vs. kurtosis graph are labelled with an identifier. The options are “none”, “all”, or “outliers” (outliers only).

· lim_effectsizes
A vector of two numeric values specifying range of the y-axis of the effectsize boxplot.
· save_filtersettings
Logical – saves or updates (if it already exists) a .txt file containing filter settings for use by filter_GWAS.
Arguments for filter settings
· remove_X, remove_Y, remove_XY, remove_M

Logical – should the QC remove X, Y, XY and M chromosome SNPs before starting the QC? Default value is FALSE (remove_XY takes its default value from remove_Y).
· ignore_impstatus

Logical – if FALSE, the filters for HWE p-values and callrates are applied to genotyped SNPs only; and imputation quality to imputed SNPs only. If TRUE, the filters are applied to all SNPs.

· use_threshold
· useFRQ_threshold, useHWE_threshold, useCal_threshold, useImp_threshold, useMan_threshold
· Threshold values – the relative or absolute number of non-missing, non-invalid values required for a variable to be included in the QC. If the number of non-missing, non-invalid values does not equal or exceed this number, the variable will be ignored, i.e. no filter will be applied to it and no plots will be made.
· For example: a useFRQ_threshold value of 100000 means that there need to be at least 100,000 SNPs with non-missing, non-invalid allele-frequency values for the allele-frequency variable to be used in the QC. When there are insufficient values, the variable will be ignored by the filters; and no plot will be made.

· use_threshold serves as the default value of the other five. The other five represent allele-frequency, HWE p-value, callrate, imputation quality and Manhattan plot (i.e. chromosome & position values) thresholds respectively.
· The default value of use_threshold is 0.1. The default value of the other five is use_threshold (i.e. the use_threshold value is used unless another value is specified).

· Values > 1 are treated as absolute numbers, while values of 1 or lower are considered as the fraction of SNPs remaining in the dataset. (In either case, the minimum threshold is 2 SNPs, and 10 for the Manhattan plot.)
· HQfilter_FRQ, HQfilter_HWE, HQfilter_cal, HQfilter_imp
· Threshold values for the high-quality (HQ) SNP filter - i.e. SNPs that do not meet or exceed all four of those values will be excluded from several QC tests. The filters are for allele-frequency, HWE p-value, callrate & imputation quality respectively.
· The allele-frequency filter is two-sided: it tests for allele-frequency ≥ x AND allele-frequency ≤ 1 – x

· Set to NULL to disable the HQ filter for that variable

· To filter for missing values only, set to NA and set the respective NAfilter to TRUE
· Default value = NULL.
· QQfilter_FRQ, QQfilter_HWE, QQfilter_cal, QQfilter_imp
· Threshold values for the quantile-quantile (QQ) plot filters – SNPs that do not meet or exceed the value will be excluded from the QQ plots. The filters are for allele-frequency, HWE p-value, callrate & imputation quality respectively.
· Allow up to five values per variable

· The allele-frequency filter is two-sided: it tests for allele-frequency ≥ x AND allele-frequency ≤ 1 – x

· Values ≥ 1 will be divided by the SNP’s sample-size. This is to allow for comparing allele-frequency values to a threshold of
[image: image1.wmf]size

sample

value

_

. Note that the sample size used is that of the individual SNP. SNPs with a missing sample size will be ignored or excluded, depending on the corresponding NAfilter setting.
· Set to NULL to disable the QQ filter for that variable

· To filter for missing values only, set to NA and set the respective NAfilter to TRUE
· Default value = NULL.
· NAfilter,
NAfilter_FRQ, NAfilter_HWE, NAfilter_cal, NAfilter_imp

· Logical – should the HQ & QQ filter will exclude (TRUE) or ignore (FALSE) missing & invalid values?
· NA_filter serves as the default value of the other four. The other four stand for allele-frequency, HWE p-value, callrate & imputation quality respectively. The default value of NAfilter = TRUE.
· If the corresponding HQ/QQ filter is set to NULL, the filter is disabled regardless of the NA_filter setting.
· minimal_impQ_value, maximal_impQ_value
The minimal and maximal possible (i.e. non-invalid) imputation quality values. Default value = -0.5 and 1.5 respectively.
Arguments for the allele-check
· allele_ref_std, allele_ref_alt

· Tables representing the standard and alternative allele reference, respectively. See the section on allele-matching for details.

· These arguments accept a table of the correct dimensions or the name of file in dir_references containing such a table. Files in .RData format are accepted, but must contain objects with the correct object names (allele_ref_std and allele_ref_alt respectively).

· allele_name_std, allele_name_alt
Character-strings giving the names of the standard and alternative allele references (i.e. how they are called in the output files and on-screen). If no values are given, the function will either use the filename of the reference (if specified) or the defaults = “Std. reference” and “Alt. reference”, respectively.
· update_alt
· Logical – should the alternative allele reference should be updated (or created if not present) with new SNPs?

· WARNING: the new alternative reference will be saved in dir_references – it is not updated within R itself. If the user wants to do further QC’s with the alternative reference, (s)he will have to do reload the reference manually.

· To be precise: the allele reference is updated within R, but will revert to its original state when QC_GWAS terminates. When QC’ing multiple files with QC_series, the allele reference will be reloaded into R every time it is updated. But, again, it will revert to its original state when the function terminates.

· Default = FALSE
· update_savename
Filename for the saved alternative reference WITHOUT extension. If no value is specified and allele_ref_alt is a filename, it will use allele_ref_alt.
· update_as_rdata
Logical – if the allele-refence is updated, should it be saved as an .Rdata file (TRUE) or a tab-delimited .txt file (FALSE)? Default = FALSE.
· backup_alt
Logical – if the allele-refence is updated, should a back-up be made of any previous files? Default = FALSE. Note that QC_series will only do this once every time it is called.
· threshold_diffEAF

Numeric – the threshold for the difference between reported and reference allele-frequency. SNPs for which the difference exceeds the threshold are counted and (optionally) removed. The default value = 0.15.
· remove_mismatches, remove_mismatches_std, remove_mismatches_alt

Logical – should SNPs with mismatching alleles be removed from the dataset? remove_mismatches serves as the default value; the other two arguments determine this setting for the standard and alternative references, respectively. Default = TRUE.

· remove_diffEAF, remove_diffEAF_std, remove_diffEAF_alt
Logical – should SNPs that exceed the diffEAF threshold be removed from the dataset? remove_diffEAF serves as the default value; the other two arguments determine this setting for the standard and alternative references, respectively. Default = FALSE.

· check_ambiguous_alleles
Logical – should the function check for SNPs with strand-independent allele-configurations (i.e. A/T and C/G SNPs)? See the allele-matching function for details. Default = FALSE.
Arguments for the other QC checks

· make_plots, only_plot_if_threshold

Logical – should the various QC steps create and save plots; and if so, should these be made only when the outcome exceeded the threshold settings? (The threshold values are specified by the arguments below.) If make_plots is FALSE, no plots will be made regardless of the threshold. Default = TRUE. make_plots is also the default setting for the other plot arguments.
· threshold_allele_freq_correlation, threshold_p_correlation

Thresholds for reporting (and plotting, depending on the plot settings) the correlation between respectively the allele frequency of the dataset and the reference, and the calculated and reported p-values. Default = 0.95 and 0.99 respectively.

· plot_intensity

Logical – if TRUE, the allele-correlation plot will be an intensity plot instead of a scatter plot. This option is currently only partially implemented. Leave to FALSE for now.

· plot_histograms
Logical – should the function create histograms of the effect sizes, standard errors, allele frequencies, HWE p-values, callrates and imputation quality?
· plot_QQ, plot_Manhattan

Logical – should the function create QQ & Manhattan plots?
· plot_QQ_bands

Logical – include probability bands in the QQ plot? Default = TRUE.

· plot_cutoff_p

Threshold for excluding low-significance SNPs from the QQ & Manhattan plots. Reducing the number of points to be plotted with 95% (p = 0.05) will dramatically improve running time, hence the default value = 0.05.

· return_HQ_effectsizes

Logical – should QC_GWAS return a vector of (max. 1000) high-quality effect-sizes? Default = FALSE.

· calculate_missing_p
Logical – should the QC calculate missing/invalid p-values from the effect size and standard error? Default = FALSE.

· logI , logN

Screen-output – not relevant for users.
· …
· In QC_series: arguments passed to QC_GWAS.
· In QC_GWAS: arguments passed to read.table. Note: do not call the file, sep, na.strings and stringsAsFactors arguments, as these are already set by the QC function itself.
Output

Within R, the QC_GWAS function returns a single object containing a variety of parameters, settings and result values. However, the most important output comes in the shape of a series of files in the dir_output folder and using filename_output as filename. These files have a tab-delimitated format and are best viewed in a spreadsheet program.
QC_series files
Most of the output files are generated by QC_GWAS, not QC_series. QC_series is only responsible for the plots and files comparing the datasets:

1. The QC checklist

Checklist.txt
2. The skewness & kurtosis plot

Checkgraph_skew&kurt.png
3. The precision plot

Checkgraph_precision.png
4. The legend of the above plots

Checkgraph_legenda.txt
5. The effect-size comparison plot

Checkgraph_effectsize.png
6. The filter settings

Check_filtersettings.txt
7. The updated alternative allele reference
Name specified by user
QC_GWAS files
1. The QC log & stat tables

a. Filename: [filename_output]_log.txt
b. Contents: the log file is essentially summary of the QC. The top of the file consists of log-entries generated while the QC was running. The entries are added to the file when reported (i.e. not at the end of the QC), so in case of a fatal crash the log gives an indication where it occurred. Once the QC is finished, the QC_GWAS will add a series of tables to the bottom of the file describing the contents of the data file and the results of the QC.

2. Lists of removed & invalid SNPs

a. [filename_output]_SNPs_invalid_allele2.txt

Invalid other-allele values (max. 30)

b. [filename_output]_SNPs_duplicates.txt

Duplicate SNP names

c. [filename_output]_SNPs_removed.txt

Unusable SNPs

d. [filename_output]_SNPs_improbable_values.txt

SNPs with invalid values (max. 1000 entries are saved)

3. [Optional] the output of the allele-matching

a. Lists of SNPs whose allele-frequency did not correspond to the reference

i. [filename_output]_SNPs_EAFdifferent-[allele_name_std].txt
ii. [filename_output]_SNPs_EAFdifferent-[allele_name_alt].txt
b. Lists of SNPs whose alleles did not match the reference

i. [filename_output]_SNPs_mismatches-[allele_name_std].txt
ii. [filename_output]_SNPs_mismatches-[allele_name_alt].txt
c. Scatter-plots of observed vs. reference allele-frequencies

i. [filename_output]_graph_EAF-[allele_name_std].png
ii. [filename_output]_graph_EAF-[allele_name_alt].png
d. Idem for the subset of ambiguous SNPs

i. [filename_output]_graph_EAF-[allele_name_std]-ambiguous.png
ii. [filename_output]_graph_EAF-[allele_name_alt]-ambiguous.png
e. Idem for the subset of non-ambiguous SNPs

i. [filename_output]_graph_EAF-[allele_name_std]-nonambiguous.png
ii. [filename_output]_graph_EAF-[allele_name_alt]-nonambiguous.png
f. Updated/new alternative allele reference
save_update_savename
4. [Optional] other plots

a. Histograms:

[filename_output]_graph_histogram.png
b. Scatterplot of expected vs. observed p-values

[filename_output]_graph_p-cor.png
c. QQ plots

[filename_output]_graph_QQ.png
d. Manhattan plot

[filename_output]_graph_M.png
5. [Optional] the post-QC dataset
[filename_output].txt
Return values
QC_series invisibly returns a logical value indicating whether the alternative allele reference has been updated.
QC_GWAS returns an object of class ‘list’. If the QC was completed successfully, all of the following components are included. If not, only those indicated in red will be included.
· QC_successful
· Logical – indicates whether the function was able to complete the QC. If FALSE, the function was either unable to load the dataset, encountered an unexpected datatype, or removed all SNPs during the QC. The log file and console output will indicate what triggered the abort.

· filename_input

· The filename provided to the function at the start of the analysis

· filename_output
· The filename of the post-QC dataset, including the extension
· sample_size, sample_size_HQ
· The max sample size of all / high-quality SNPs respectively

· lambda, lambda_geno, lambda_imp

· The lambda values of all, genotypes-only and imputed-only SNPs

SNP numbers

· SNP_N_input

· The number of SNPs in the input dataset

· SNP_N_input_monomorphic, SNP_N_input_monomorphic_identic_alleles
· The number of SNPs removed because they are monomorphic and the subset of those that had identical allele values but not allele-frequencies of 0 or 1

· SNP_N_input_chr
· The number of SNPs removed because they were on the X, Y, XY or M chromosomes (depending on the ‘exclude’ arguments – if all ‘exclude’ arguments are FALSE, this returns NA)
· SNP_N_preQC
· The number of SNPs that entered phase 2b-d: data integrity & individual value check

· SNP_N_preQC_unusable, SNP_N_preQC_invalid
· The number of SNPs that were removed (unusable) or found to have invalid values in phase 2b-d respectively

· SNP_N_preQC_min

· The number of negative-strand SNPs in phase 2b-d. If no strand-information was present, this returns NA.

· SNP_N_midQC
· The number of SNPs that entered phase 3: allele-matching

· SNP_N_midQC_min, SNP_N_midQC_min_std, SNP_N_midQC_min_alt, SNP_N_midQC_min_new

· The number of negative-strand SNPs during phase 3 in the entire dataset, the number that was matched with standard-reference, the number that was matched with the alternative reference, and the number that was added to the alternative reference. If no strand-information was present, value = NA.

· SNP_N_midQC_strandswitch_std, SNP_N_midQC_strandswitch_std_min, SNP_N_midQC_strandswitch_alt, SNP_N_midQC_strandswitch_alt_min

· Respectively the number of SNPs with strand-switched alleles matched with the standard reference, the number of negative-strand SNPs that were strand-switched again to match with the standard reference; and similar for the alternative reference. If no strand-information was present, value = NA.

· SNP_N_midQC_mismatch, SNP_N_midQC_mismatch_std, SNP_N_midQC_mismatch_std_min, SNP_N_midQC_mismatch_alt, SNP_N_midQC_mismatch_alt_min

· Respectively the total number of SNPs with mismatching alleles, the number of mismatching alleles matched with the standard reference, the number of negative-strand SNPs that were mismatched with the standard reference; and similar for the alternative reference. If no strand-information was present, value = NA.

· SNP_N_midQC_flip_std, SNP_N_midQC_flip_alt, SNP_N_midQC_flip_new

· Respectively the number of flipped SNPs matched with the standard reference, the alternative reference and added to the alternative reference

· SNP_N_midQC_ambiguous, SNP_N_midQC_ambiguous_std, SNP_N_midQC_ambiguous_alt, SNP_N_midQC_ambiguous_new
· Respectively the number of SNPs with ambiguous alleles (an A/T or C/G allele configuration) in the entire dataset, matched with the standard reference, the alternative reference and added to the alternative reference
· SNP_N_midQC_suspect, SNP_N_midQC_suspect_std, SNP_N_midQC_suspect_alt

· Respectively the number of SNPs with suspect alleles (ambiguous alleles with a large allele-frequency aberration compared to the reference) in the entire dataset, matched with the standard reference and the alternative reference
· SNP_N_midQC_diffEAF, SNP_N_midQC_diffEAF_std, SNP_N_midQC_diffEAF_alt

· Respectively the number of SNPs whose allele frequency differs strongly from the reference in the entire dataset, matched with the standard reference and the alternative reference

· SNP_N_postQC
· The number of SNPs in the final dataset
· SNP_N_postQC_geno, SNP_N_postQC_imp, SNP_N_postQC_invalid
· The number of genotyped, imputed SNPs or SNPs with invalid values in the final dataset

· SNP_N_postQC_min, SNP_N_postQC_HQ

· Respectively the number of negative-strand SNPs (if no strand information is present, value = NA) and the number of high-quality SNPs in the final dataset

Column information (part 1)
· fixed_HWE, fixed_callrate, fixed_sampleN, fixed_impQ
· Logical OR character string indicating whether the max. value of this variable equals the min. value

· Only looks at genotyped for the HWE p-values and callrates, and only at imputed SNPs for the imputation quality

· If the variable did not meet the use_threshold value, the value will be “insuf. data”; for sample size there is no such threshold – if there are no sample sizes, the value will be “no data”
· effect_25, effect_mean, effect_median, effect_75
· The 25%, mean, 50% and 75% quantiles of the effect-sizes

· SE_median, skewness, kurtosis

· The median of the standard-error and the skewness & kurtosis values for all SNPs

· SE_HQ_median, skewness_HQ, kurtosis_HQ
· The median of the standard-error and the skewness & kurtosis values for high-quality SNPs

Allele-reference check output

· allele_ref_std_name, allele_ref_alt_name

· The names used in the log files for the standard and alternative allele reference. Correspond to the allele_name_std and allele_name_alt arguments.

· all_MAF_std_r, all_MAF_alt_r

· The correlation between reported allele-frequency and reference allele-frequency of the standard and alternative allele references

· all_ambiguous_MAF_std_r, all_ambiguous_MAF_alt_r
· The correlation between reported allele frequency and reference allele frequency of the standard and alternative allele references – for SNPs with ambiguous allele-configurations (i.e. A/T and C/G) only!

· all_ambiguous_N_std, all_ambiguous_N_alt, all_ambiguous_N_new
· The number of SNPs with ambiguous allele-configurations in the standard and alternative reference, and those to be added to the alternative reference
· all_non_ambig_MAF_std_r, all_non_ambig_MAF_alt_r

· The correlation between reported allele frequency and reference allele frequency of the standard and alternative allele references – for SNPs with non-ambiguous allele-configurations

· all_ref_changed
· Logical – indicates whether a new/updated alternative allele reference was created. If the QC failed, this value is FALSE.

Other QC stats

· effectsize_return
· Logical – indicates whether a list of HQ effect-sizes was returned. If the QC failed, this value is FALSE.

· effectsizes_HQ

· If effectsize_return is TRUE, a vector of a 1000 high-quality effect-sizes (if less than a 1000 HQ SNPs are found, NA’s will be added to bring the list to the correct length). If FALSE, value = NULL.

· pvalue_r
· The correlation of the p-value test

· visschers_stat, visschers_stat_HQ
· Visscher’s statistic for all/high-quality SNPs only
Column information (part 2)
· columns_std_missing

· The names of any missing, standard columns: if no columns are missing, value = 0

· columns_std_empty
· The names of any empty, standard columns: if no such columns are empty, value = 0
· columns_unidentified

· The names of unidentified columns. If no such columns are present, value = 0

Outcome control parameters
· outcome_useFRQ, outcome_useHWE, outcome_useCal, outcome_useImp, outcome_useMan
· Logical – indicate whether allele-frequency, HWE p-value, callrate, imputation quality and the Manhattan plot passed the specified threshold

QC settings
These values save the input arguments of the QC function,

· settings_ignore_impstatus

· settings_filter_NA_FRQ, settings_filter_NA_HWE, settings_filter_NA_cal, settings_filter_NA_imp
· settings_filter_HQ_FRQ, settings_filter_HQ_HWE, settings_filter_HQ_cal, settings_filter_HQ_imp
· settings_filter_QQ_FRQ, settings_filter_QQ_HWE, settings_filter_QQ_cal, settings_filter_QQ_imp

Description

The QC_GWAS function takes a single dataset (or rather, the location and filename of a single dataset) and runs it through the following phases. Items with a start are optional.
1. Loading
a. Loading the dataset

b. Translating the column headers to the standard names

2. Data integrity & SNP check
a. Removing monomorphic, *allosomal and *mitochondrial SNPs
b. Checking the imputation status & imputation quality columns for missing & invalid values

c. Checking the other columns for missing & invalid values

d. Removing SNPs with missing/invalid values for crucial variables (“unusable SNPs”) and setting non-crucial invalid values to missing

3. Aligning alleles with reference and comparing the allele-frequency
a. *Standard reference

b. *Alternative reference

c. *Updating the alternative reference with any unknown SNPs

4. Quality control of the other parameters
a. *Creating a histograms of effect size, standard error, allele frequency, HWE p-value, callrate and imputation quality

b. Compare the reported p-values to the p-value calculated from the effect size and standard error

i. *Replace missing/invalid p-values with the calculated p-value

c. Calculate Visscher’s statistic

d. *Creating the QQ & Manhattan plots

5. Adding the summary stats of the QC to the log file and *saving the dataset

Phase 1: loading the dataset

The first thing to happen when this function is called is actually a bit of house-keeping: it checks whether all input arguments are valid, and creates a logical variable named EmergencyExit, which is set to FALSE. EmergencyExit is a failsafe: when the function encounters a condition that would make further QC of the data impossible (for example when all SNPs have been removed from the dataset), EmergencyExit is set to TRUE. At various points in the QC (indicated here by the green sign), EmergencyExit is tested and, if TRUE, the rest of the analysis is skipped. It’s not a perfect failsafe: it catches most but not all possible problems when loading the dataset. However, once the loading is complete, it does not matter whether the data is corrupted or not. Any unfixable problems will be detected and trigger EmergencyExit before they cause problems.
Phase 1a: importing the data

· If the file-extension is “zip” or “.gz”, a temporary-unzip function is used to load the dataset without needing to unzip it on the hard disk
· Checking file-format – specifically the column-separator. This is done by the function load_test, which does a “trail-run” by loading part of the dataset. load_test tries the column separators specified in column_separators one by one, until it finds one that gives no errors and yields a dataset of 5 or more columns.
· Because GWAS datasets are huge and take a long time to load even in R, load_test only reads only part of the dataset. The default setting is to read the first 1000 lines; this can be changed with the nrows_test argument.
· If load_test is successful, the entire file is loaded. If not, EmergencyExit is set to TRUE.
· Creating the log-file
· The log file is essentially a summary of the QC. While the QC is running, it will create a log of conditions encountered (SNPs removed, missing data, significant outcomes). At the end, it adds a series of tables describing the dataset and the outcome of the various QC steps.

· The log entries are added to the file immediately (i.e. not after the QC has finished), so if a fatal crash occurs, the log-file will given an indication where it happened.
· Filename: “[filename_output]_log.txt”. The file has a tab-delimitated format, and is best viewed in a spreadsheet program.
[image: image2.png]

Phase 1b: checking column headers

The QC function requires the dataset to have all standard columns, and that these columns use standard names.
· Translating the data column-names into standard names, using the table supplied in the argument header_translations and the function translate_header
· If there are duplicate column-names, or if any of the five crucial variables (SNP name, alleles, effect-size or standard-error) is absent, EmergencyExit is set to TRUE
· If non-crucial variables are absent (“missing columns”), the function adds dummy column(s) and fills it with NA values
· Columns whose name cannot be translated (“unknown columns”) will simply be ignored

· If order_columns is set to TRUE, the columns will be given the standard order, with any unknown columns coming last

[image: image3.png]

Phase 2: Data integrity & SNP check

The purpose of phase 2 is to prepare the dataset for the QC. Specifically, its job is to ensure that the dataset CAN be QC’ed: that all SNPs have the required data and that all columns contain only valid (or missing) values. SNPs that do not posses the required data are removed, while non-crucial invalid values will be set to missing. This phase is divided into four sections:

Phase 2a: checking alleles & chromosome
This section removes monomorphic SNPs and, optionally, X, Y, XY and M chromosomic SNPs. Since these SNPs aren’t relevant, they are removed first, so that subsequent phases of the QC only report problems with SNPs that are relevant. First, both allele columns are tested to see whether they contain data and whether it is of the correct type (character). If not, EmergencyExit is set to TRUE.

[image: image4.png]

 The function then creates the so-called list-0, which consists of:
· Monomorphic SNPs

· Missing non-effect allele (NA, “0”, “-” or “99”)

· Invalid non-effect allele (not A, T, C or G or missing)

· Lowercase allele values are converted to uppercase
· Allele frequency = 1 or 0 (not including SNPs of the above categories)
· Identical alleles (not including SNPs of above categories)
· [Optional] excluded chromosomes are SNPs with chromosome values:
· X or 23

· Y or 24
· XY or 25
· M, MT or 26
Note that a missing allele frequency or chromosome value is NOT a cause for removal. Character-values (whether upper- or lowercase) are converted to numeric values here, regardless of whether the chromosome is removed or not. If phase 2a removes all SNPs in the dataset, EmergencyExit is set to TRUE. Otherwise, the first 30 invalid allele-2 entries (if any) are saved in [filename]_SNPs_invalid_OTHER_ALL.txt, and then the list-0 SNPs are removed.

[image: image5.png]

Phase 2b & 2c: checking data integrity
Although this part of the QC looks very complicated, what it does is quite simple: it carries out three tests on every standard variable / column:

1. Does the column contain the correct data-type (i.e. numeric or character)? If not, EmergencyExit is set to TRUE. Note that EmergencyExit is only tested at the end of phase 2c, so the QC will continue until then regardless of how often EmergencyExit is triggered.
2. Which column entries are missing (NA)?

3. Which column entries are invalid (impossible or improbable)?

However, tests 2 & 3 are carried out in different ways for different variables. There are also many special conditions, so in practice every variable has its own set of tests. The response to the outcomes of tests 2 and 3 also differs, depending on whether the variable is crucial. SNPs with missing or invalid crucial variables will be removed from the dataset in phase 2d, hence such values are reported on screen and counted in the log-file*. Missing non-crucial values will be counted, but otherwise ignored. Invalid non-crucial values will be counted, reported and set to missing in phase 2d.

*) There is a special case for missing (not invalid) crucial variables: the on-screen messages and the log-entries (the upper table of the log file) do not count imputed SNPs with low imputation-quality (< 0.3), as missing values are to be expected under these circumstances. The other output, including the other tables of the log file, do include all SNPs.
Phase 2b: checking imputation quality

Because poorly-imputed SNPs are counted separately, the two variables relating to imputation are checked first:

· Imputation status (this is done by the function convert_impstatus)
1. Data type: not checked
· Values matching imputed_T are transformed 1
· Values matching imputed_F are transformed 0
· Values matching imputed_NA are transformed to NA
· If there are untransformed values, convert_impstatus will generate an error-message and set them to NA
2. Missing: NA
3. Invalid: ≠ 1 or 0. Note that the for the purpose of the QC, a missing imputation-status is just as problematic as an invalid one. For that reason, the errors-table of the log file reports SNPs with either missing or invalid imputation-status as “invalid”. If imputation status is character-data, any untranslated (i.e. invalid) values will trigger EmergencyExit.
· Imputation quality

1. Data type: numeric
2. Missing: NA or -1
3. Invalid: < minimal_impQ_value or > maximal_impQ_value
Phase 2c: checking other variables

· Markername (CRUCIAL)

1. Data type: character
2. Missing: NA
3. Invalid: duplicate markernames – duplicate entries will be saved in the file “[filename_output]_SNPs_duplicates.txt”
· Chromosome

1. Data type: not checked, since it could be both numeric & character (although the standard character-strings have been converted into numeric during phase 2a).
2. Missing: NA
3. Invalid: any not in 1-26
· Position

1. Data type: numeric
2. Missing: NA
3. Invalid: ≤ 0
· Effect allele (CRUCIAL)

1. Data type: character
2. Missing: NA
3. Invalid: not “A”, “T”, “C” or “G”
· Other allele (CRUCIAL): already tested during phase 2a

· Strand

1. Data type: character
2. Missing: NA
3. Invalid: not “+” or “-”
· Effect-size (CRUCIAL)
1. Data type: numeric
2. Missing: NA. Additionally, values of -1 will be changed to NA if either the p-value or standard error is also -1. The screen and log-entry for this do not count SNPs that are poorly imputed (*).
3. Invalid: not tested since effect-size can be any numerical value

· Standard error (CRUCIAL)

1. Data type: numeric
2. Missing: NA or -1. The screen and log-entry for this do not count SNPs that are poorly imputed (*).
3. Invalid: ≤ 0. SE = 0 is reported separately because it may be due too poor rounding (*).

· P-value

1. Data type: numeric
2. Missing: NA or -1
3. Invalid: ≤ 0 or > 1. Again, a value of zero could be due to poor rounding, but it still is a problem. Unlike SE, it is not reported separately.
· Allele frequency

1. Data type: numeric
2. Missing: NA
3. Invalid: < 0 or > 1. Allele frequencies of 1 and 0 have already been removed in phase 2a

· HWE p-value

1. Data type: numeric
2. Missing: NA or -1
3. Invalid: ≤ 0 or > 1. Again, a value of zero is counted as invalid.
· Callrate

1. Data type: numeric
2. Missing: NA or -1
3. Invalid: < 0 or > 1
· Sample size

1. Data type: numeric
2. Missing: NA
3. Invalid: ≤ 0
[image: image6.png]

Phase 2d: removing unusable SNPs and replacing invalid values
The phases 2c and 2d have compiled lists of all problematic values in the dataset, but as yet no corrections have been made. First, the function compiles a list of SNPs with missing or invalid crucial variables (list 1). If list 1 is as long as the current dataset, EmergencyExit is set to TRUE. If not:
· The list-1 entries (if any) are saved to “[filename]_SNPs_removed.txt”

· If there are any SNPs with invalid values in non-crucial variables or a missing imputation status:

· The first 100 entries are saved to “[filename]_SNPs_improbable_values.txt”

· Invalid, non-crucial variables are set to missing

· The imputation-status is replaced by the values from convert_impstatus
· The list-1 entries (if any) are removed from the dataset

[image: image7.png]

Phase 3: allele matching
This part of the QC serves three purposes:

1) To check if the correct alleles are listed for each SNP
2) To check if the allele frequency is listed for the correct allele (effect allele)

3) To align the alleles with the reference, i.e. to ensure that a SNP will have the same effect allele in all post-QC datasets
This is accomplished by matching the data with a reference, like HapMap. Obviously, (1) is a straightforward comparison. We check (2) by correlating allele frequencies in the dataset with those in the reference: if it’s correct, the r should be near 1. If allele frequency is listed for the other allele, then r will be near -1. Finally, we ensure (3) by flipping SNPs so that their effect allele’s always match the minor allele in the reference.

However, in our experience GWAS datasets often contain SNPs that do not appear in HapMap. In order to include these, the QC function uses a secondary, alternative reference. If update_alt is TRUE, the alternative reference will be updated with any SNPs not in the standard one, so that we can check (1) and (3) for those SNPs if we encounter them in a subsequent dataset.
The advantages of this system are, firstly, that we do not need to exclude such SNPs; and secondly that the alleles will be made uniform over all datasets without having to run the QC twice. Any unknown SNP is added to the alternative reference immediately, for use as reference in any subsequent datasets.

The downside is that the contents of the alternative reference are somewhat arbitrary, depending on which file is analyzed first. For example, if a SNP has a variable allele frequency that is close to 0.5, it will be random which allele is designated as minor in alternative reference. More importantly: if the first file contains a mistake, all subsequent datasets will be tested using the error as a template. This can be particularly damaging if the mistake involves the allele(s), as any subsequent dataset using the correct alleles will be strand-switched or treated as a mismatch. Similarly, if the first file is from an isolated or otherwise unusual population, the allele-frequency may be very different from the norm. This may create problems if the user enables the remove_diffEAF option. (Update: it is now possible to specify remove_mismatches and remove_diffEAF independently for the standard and alternative allele references, avoiding this problem. The downside, obviously, is that (1) is no longer tested.)
This also means that, in order for the alternative reference to work, you need to use (and update) the same alternative-reference file for all datasets. If you QC half the datasets using one alternative reference, and the other half using another, the same SNP may have different alleles or a different allele configuration in the two references.
Note that the updated alternative reference is saved in dir_references; it is not updated inside R. The user will have to do this manually. (To be precise: the allele reference is updated within R, but will revert to its original state when QC_GWAS terminates. This is caused by the way R handles data altered inside functions. When QC’ing multiple files with QC_series, the allele reference will be reloaded into R every time it is updated. But, again, it will revert to its original state when the function terminates.)
Phase 3 therefore consists of four stages:
a. Matching SNPs with the standard reference

b. Matching SNPs that weren’t found in the standard reference with the alternative reference
c. Checking any unknown SNPs and adding them to the alternative reference

d. Removing any mismatching SNPs (if remove_mismatches is TRUE) and SNPs whose allele-frequencies differ more than threshold_diffEAF allows (if remove_diffEAF is TRUE). (Update: version 1.0-4 allows the user to specify the remove arguments for the standard and alternative references separately.)
Phases 3a and 3b are optional: by not specifying input for the standard or alternative references allele_ref_std / allele_ref_alt arguments the user can disable them. Any unmatched SNPs will be passed to stage 3c; although the updated alternative reference is only saved when update_alt is TRUE.
Phase 3a & b: standard and alternative allele reference
The comparisons with the standard and alternative allele reference are both carried out by the function match_alleles. A brief description of what it does (check the section on that function for more details):

1. Negative-strand switch: if there are negative-strand SNPs present, they will be “strand-switched” to the positive strand. This means that an “A” allele becomes “T”, “T” becomes “A”, etc.

2. Mismatch strand-switch: this tests whether the correct alleles are present by comparing them to the reference. If not, the function will attempt to fix this by carrying out another strand-switch. The SNPs are counted in the log files under “strand switches”.
a. If the strand-switch does not resolve the allele-mismatch, the original alleles are restored and, if remove_mismatches is set to TRUE, the SNPs are tagged for removal in stage 3d. These SNPs are counted in the log files under “mismatch”
3. Flipping (realigning alleles with the reference): SNP whose effect allele matches the reference major allele will be “flipped”: their alleles are reversed, and their effect-size and allele frequency inverted (i.e. effect-size = 1.32, AF = 0.76 becomes effect-size = -1.32, AF = 1 - 0.76 = 0.24)

4. Ambiguous SNPs: if check_ambiguous is set to TRUE, the function will count the number of SNPs with a strand-independent allele configuration (i.e. A/T or C/G), and the subgroup of those whose allele-frequency is very different from the reference (“suspect”)

5. Correlating allele frequency with the reference: this is a straightforward correlation, and depending on the outcome and the make_plot, only_plot_if_threshold and threshold_allele_freq_correlation arguments, a scatterplot is made.
a. If check_ambiguous is TRUE, the function will also do this for the subsets of ambiguous and non-ambiguous SNPs.

b. It will also count the number of SNPs whose allele-frequency differs from the reference more than threshold_diffEAF allows. If remove_diffEAF is TRUE, these SNPs are also tagged for removal in phase 3d.

Phase 3c: unknown SNPs
This phase checks the SNPs that were not found in either reference. The function will strand-switch any negative-strand SNPs to the positive strand and flip SNPs with an allele-frequency > 0.5. If update_alt is TRUE, the SNPs are added to the alternative reference together with the time and their file of origin, and saved in dir_references under the name update_savename.
Again, the name of the argument update_alt is slightly misleading: it is not updated inside R – it is saved it in dir_references. The user has to reload it manually.
Phase 3d: removing mismatched SNPs

If remove_mismatches and/or remove_diffEAF are TRUE, the function match_alleles will have set the effect allele values of the relevant SNPs to NA. These are now removed. As usual, the function first checks if the number of removed SNPs isn’t equal to the number of SNPs in the dataset, and sets EmergencyExit to TRUE if it does.
[image: image8.png]

Phase 4: quality control of the other parameters
At this point no further changes will be made to dataset. The function first determines if there are sufficient non-missing, non-invalid values for the various QC tests (as defined by the use_threshold arguments); and the carries out the QC tests. The stages of phase 4 are:
a) The first stage involves checking if there are sufficient non-missing, non-invalid values for the various QC tests (as defined by the threshold arguments), and how many high-quality SNPs (as defined by the HQ-filter arguments) there are. Visscher’s statistic is also calculated here:

[image: image9.wmf](

)

(

)

N

SE

FRQ

FRQ

Median

÷

÷

ø

ö

ç

ç

è

æ

-

2

*

1

*

*

2

1

FRQ = allele frequency, SE = standard error, N = sample size

b) Creating histograms – if plot_histograms is TRUE, the function saves a .jgp file with histograms of the effect-size, standard error, allele frequency, HWE p-value, callrate and imputation quality.
c) Checking p-values
a. Calls the function check_P, which correlates the reported p-value with a p-value calculated from chi2 =
[image: image10.wmf]2

÷

ø

ö

ç

è

æ

Stderr

Effect

, with 1 degree of freedom. If the correlation is lower than threshold_p_correlation, a log entry is generated and (depending on the make_plots & only_plot_if_threshold arguments), a scatterplot is made. In a typical GWAS dataset, the expected and observed p values should correlate perfectly. If this isn’t the case, either a column was misidentified when loading the data, or the wrong values were used when generating the dataset.
b. Calculating missing p-values – if calculate_missing_p is TRUE (default = FALSE), any missing/invalid p-values are calculated using the above formula. The resulting p’s are tested for extreme values (< 10-300) and changed to 10-300 if they are. (This cut-off was chosen because it is close to the smallest numeric value that R can handle safely.)
i. Note that only recalculated p-values are tested: values between 10-300 and 0 are ignored when they are in the original dataset. That said, p-values of 0 are considered invalid and will therefore have been changed to NA during phase 2. They are treated the same as other missing p-values here, which means that if recalculation produces another zero, they will be set to 10-300.
Phase 4e: QQ & Manhattan plots

Phase 4e is entirely carried out by another function: QC_plots. A full description is provided in the relevant section of this document, but briefly it does this:

1. Calculate lambda

2. Create filtered QQ plots based on the QQfilter and NAfilter arguments. The QQ plots can be disabled by setting plot_QQ to FALSE.

3. Create a Manhattan plot: this uses the high-quality SNP filter and can be disabled by setting plot_Manhattan to FALSE.
To calculate lambda and create the plots, the function uses the reported p-value. If there are no (valid) p-values and recalculate_missing_p is set to FALSE, then the function will skip 2 and 3.
Phase 5: saving the QC results

Although the log file is updated constantly during the QC, it only reports the number of exclusions or warnings encountered. The detailed tables describing the QC are only added here. If save_final_dataset is set to TRUE, the post-QC dataset will be saved as well, as “[filename_output].txt”.
The allele-matching function

The allele-matching function is the most complicated subfunction of QCGWAS, and its integration into the QC is somewhat convoluted as well. However, its purpose is straightforward:

1. Check the strand-column
a. Switch negative-strand SNPs to the positive strand

2. Check the alleles

a. Uniformize allele-configuration so that a SNP has the same coded allele in every dataset

3. Check the allele frequency
The complexity stems from the fact that these three tests have to be carried out together and often overlap. When alleles do not match the reference, this may indicate they are negative-strand SNPs, or that they are incorrect. Allele-frequency is used to check for strand-switches as well. So the actual function schematic is this:
1. House keeping

a. Translate the dataset/reference headers* and merge the datasets
b. Report the presence of missing alleles in the dataset and reference
2. *Switching negative-strand SNPs
3. Correcting mismatching SNPs: mismatch means that the allele-pair listed in the dataset does not match the pair in the reference. The order of alleles (i.e. whether a SNP has an A/T or a T/A configuration) is not important here. If a mismatch is found, the function will first try to correct it by strand-switching the SNPs. If that doesn’t fix the mismatch, the affect SNPs are reverted to their pre-switch status and optionally *saved and/or * “removed” (their effect allele set to NA).
4. Flipping (realigning alleles with the reference): SNP whose effect-allele matches the reference major allele will be “flipped”: their alleles are reversed, and their effect-size and allele frequency inverted (i.e. effect-size = 1.32, AF = 0.76 becomes effect-size = -1.32, AF = 1 - 0.76 = 0.24)

5. Checking for undetected strand-mismatch
a. Counting the number of ‘ambiguous’ SNPs – SNPs with a strand-independent allele pair (i.e. A/T or C/G)

b. *Counting the number of ‘suspect’ SNPs – ambiguous SNPs whose allele-frequency is very different from the reference (> 0.65 and < 0.35 or visa versa). If there are many suspect SNPs, there probably is an undetected strand-mismatch.
6. *Checking allele frequencies: the reported allele-frequencies are compared to the reference. If the correlation falls below a threshold, the function will create a *log-entry and a *scatterplot. *Separate correlations (with logs and scatterplots) will be carried out for the subsets of ambiguous SNPs and non-ambiguous SNPs. Also, the difference between reported and reference allele-frequency is checked against the threshold, and SNPs exceeding the threshold are * “removed” (their effect allele set to NA).
* The steps are optional, and can be enabled/disabled by the function’s arguments

Note that the third step – attempting to correct mismatch by carrying out a strand-switch – assumes that the SNPs are on the negative-strand, but have not been listed as such (otherwise step 2 would have caught them). This step will be carried out regardless of whether step 2 was – so theoretically a SNP may be strand-switched twice: once for being on the negative strand, and another time for mismatch.

match_alleles

· Function call

match_alleles(
dataset, ref_set, HQ_subset,
dataname = "dataset", ref_name = "reference",
unmatched_data = !all(dataset$MARKER %in% ref_set$SNP),
check_strand = FALSE,
save_mismatches = TRUE, delete_mismatches = FALSE,
delete_diffEAF = FALSE, threshold_diffEAF = 0.15,
check_FRQ = TRUE, check_ambiguous = FALSE,
plot_FRQ = FALSE, plot_intensity = FALSE,
plot_if_threshold = FALSE, threshold_r = 0.9,
return_SNPs = FALSE, return_ref_values = FALSE,
header_translations, header_reference,
save_name = dataname, save_dir = getwd(),
use_log = FALSE, log_SNPall = nrow(dataset)
)

· Input arguments

· dataset = table consisting of 3 columns that are obligatory, plus an additional three that are needed for various optional tests
· Obligatory are the SNP ID and the two alleles

· Optional are strand (required if check_strand is TRUE), allele-frequency (required if check_FRQ or check_ambiguous is TRUE) and effect-size
· The column-order or the presence of unnecessary / unknown columns does not matter
· Column names can be non-standard if header_translations is a translation table (see the information on the header-translation file in the “QC function - Auxiliary files” section)
· ref_set = reference table, consists of 3 required and 1 optional column:

· Obligatory are the SNP ID and the two alleles (standard names: “SNP”, “MINOR” and “MAJOR”
· Optional is allele-frequency (standard name: “MAF”; required when check_FRQ or check_ambiguous is TRUE)

· The function assumes all reference entries are aligned to the positive strand!

· The column-order or the presence of unnecessary / unknown columns does not matter

· Column names can be non-standard if header_reference is a translation table (see the information on the header-translation file in the “QC function - Auxiliary files” section)
· HQ_subset = optional: a logical or numeric vector indicating the rows of the dataset that contain high-quality SNPs.

· dataname, ref_name = character strings – the names used for the data and reference in the output
· unmatched_data = logical – set to TRUE if there are SNPs in the dataset that do not appear in the reference. This argument is redundant: it will be determined automatically when not specified, and is retained merely for the convenience of the QC_GWAS function.
· check_strand = logical – should the function check for negative-strand SNPs? If FALSE, all SNPs are assumed to be on the positive strand.

· save_mismatches = logical – should mismatching entries be saved before the change takes place?
· delete_mismatches = logical – should mismatching SNPs be “deleted” (have their effect allele set to NA)?
· threshold_diffEAF = numeric – the maximal difference between reported and reference allele-frequency

· delete_diffEAF = logical – should SNPs that exceed the threshold_diffEAF be “deleted” (have their effect allele set to NA)?

· check_FRQ = logical – should allele-frequency be correlated with the reference?

· check_ambiguous = logical – should the function do a separate test of frequency-correlation for SNPs whose alleles are stand-independent (i.e. A/T or C/G pairs)? Note: this only works if check_FRQ is TRUE. If plot_FRQ is TRUE, separate correlation-graphs will be made as well.
· plot_FRQ = logical – create a scatter plot of allele frequencies?
· plot_intensity = logical – if TRUE, the allele-correlation plot will be an intensity plot instead of a scatter plot. This option is currently only partially implemented. Leave to FALSE for now.
· plot_if_threshold = logical – prevents the creation of the scatter plot if the correlation is above the threshold

· threshold_r = correlation threshold value

· return_SNPs, return_ref_values = logical – should the output include relevant entries of the dataset and reference respectively?
· header_translations, header_reference = the alternative-headers table for the data and reference sets respectively. If not specified, the function will assume the data/reference table is using the standard column-names. See the section on the auxiliary files for more information.
· save_name = character-string – the filename, minus extension, of the output files
· save_dir = character-string – the directory for the output files. Note that R uses forward slash (/) where Windows uses backslash (\).

· use_log, log_SNPall = arguments used by QC_GWAS. Not relevant for users.
· Output: the function has a variety of console and file outputs, depending on the use_log and plot arguments. It also returns an object of class ‘list’ with the allele-frequency correlations, the number of SNPs found/changed in the various steps (if a specific step was skipped, the return value will be NA) and, depending on return_SNPs and return_ref_values, vectors representing the allele values, frequencies and effect-size of the dataset and reference set. If the return arguments were set to FALSE, these vectors will return NULL. The components (with the vectors marked in red) are:
· FRQ_cor, FRQ_cor_ambiguous, FRQ_cor_nonambi
The allele-frequency correlations for all, ambiguous, and non-ambiguous SNPs, respectively.
· n_SNPs
The total number of SNPs (i.e. the length of dataset)

· n_missing, n_missing_data, n_missing_ref

The number of SNPs with missing alleles in either the dataset or the reference, the dataset only, or the reference only

· n_negative_strand, n_negative_switch, n_negative_mismatch
The number of negative-strand SNPs, the subset of negative-strand switch SNPs that were strand-switched twice because they did not match the reference, and the subset of those that were still mismatching after the second strand-switch.
· n_strandswitch, n_mismatch

The number of SNPs that was strand-switched because they did not match the reference, and the number of SNPs that still did not match after the strand-switch.

· n_flipped

The number of SNPs that was flipped

· n_ambiguous, n_suspect

The number of ambiguous SNPs, and the subset of those that had a large allele-frequency aberration
· n_diffEAF

The number of SNPs where the difference between the reported allele-frequency and the reference exceeded threshold_diffEAF
· MARKER

The SNP ID column of the post-matching dataset
· EFFECT_ALL, OTHER_ALL

The effect & other allele columns of the post-matching dataset

· STRAND

The strand column of the post-matching dataset - if check_strand is FALSE, this returns NULL
· EFFECT

The effect-size column of the post-matching dataset - if not present in the input data, this returns NULL
· EFF_ALL_FREQ
The allele-frequency column of the post-matching dataset - if check_FRQ is FALSE, this returns NULL
· ref_MINOR, ref_MAJOR

The minor and major allele columns of the reference

· ref_MAF

The allele-frequency column of the reference - if check_FRQ is FALSE, this returns NULL
create_hapmap_reference
This function creates the standard allele-reference file, as used by QC_GWAS and match_alleles from data publicly available at the website of the international HapMap project (under bulk data downloads > bulk data > frequencies). Important note: the data from the HapMap website is subject to the terms and policies of the International HapMap project. See:
http://hapmap.ncbi.nlm.nih.gov/datareleasepolicy.html
· Function call

create_hapmap_reference(dir = getwd(),
download_hapmap = FALSE,

download_subset,
hapmap_files = list.files(path = dir, pattern = "allele_freqs_chr"),
filename = "allele_reference_HapMap",
save_txt = TRUE, save_rdata = !save_txt, return_reference = FALSE)

· Input arguments

· dir = character-string – the directory for the input and output files. Note that R uses forward slash (/) where Windows uses backslash (\).
· download_hapmap = logical – if TRUE, it will download the allele-frequency files from the HapMap website to the folder dir, and then use these to generate a reference. If FALSE, it will use the files specified in hapmap_files.

· download_subset = character-string – indicates which HapMap population is used for the reference. Options are: ASW, CEU, CHB, CHD, GIH, JPT, LWK, MEX, MKK, TSI, YRI.
· hapmap_files = a vector of filenames of HapMap frequency files that should be included in the reference. The default option will include all files including the string “allele_freqs_chr” in their filenames. (Note: this argument is only used when download_hapmap is FALSE.)
· filename = a character-string – the name of the output file(s)

· save_txt, save_rdata = logical – should the reference be saved as .txt and/or .RData file, respectively?
· return_reference = logical – should the function return the reference?

· Output
· The return value depends on the return_reference argument. If TRUE, the final reference is returned. If FALSE, the function returns an invisible NULL.

· Depending on the save_txt and save_rdata arguments, the reference table is saved as .txt file and/or .RData file. The .RData file can be imported into R with the load(“filename.RData”) command, where it will be stored as an object with the name allele_ref_std.

· Notes

· The function removes SNPs with invalid alleles and with allele-frequencies that do not add up to 1. It also removes all instances of duplicate SNPs in the dataset. A warning is printed in the R console, and the entries in question are saved in a .txt file in the output directory.

· Like the QC function, create_hapmap_reference codes the X chromosome as 23, Y as 24, XY (not available on HapMap website) as 25 and M as 26.
The p-value test

A simple test to see if the reported p-values in a GWAS results file match the other statistics. This function calculates an expected p-value (from chi2 =
[image: image11.wmf]2

÷

ø

ö

ç

è

æ

Stderr

Effect

, with one degree of freedom) and then correlates it with the actual, reported p-value.
check_P
· Function call

check_P(
dataset, HQ_subset,
plot_correlation = FALSE, plot_if_threshold = FALSE,
threshold_r = 0.9,
save_name = "dataset", save_dir = getwd(), header_translations,
use_log = FALSE, dataN = nrow(dataset), ...

)

· Input arguments

· dataset = table with at least three columns: p-value, effect-size and standard error
· HQ_subset = an optional logical or numeric vector indicating the rows in dataset that contain high-quality SNPs
· plot_correlation = logical – should a scatter-plot of the expected vs. observed p-values be made

· plot_if_threshold = logical – if TRUE the plot is only made when the correlation is lower than the threshold_r. (Only works when plot_correlation is TRUE.)
· threshold_r = numeric – the correlation-threshold for generating log-entries and, depending on the plot arguments, a scatterplot
· save_name = character-string – the filename, minus extension, of output files

· save_dir = character-string – the directory for the output files. Note that R uses forward slash (/) where Windows uses backslash (\).
· header_translations = alternative-headers table. If not specified, the function will assume the data uses the standard column-names. See the section on the auxiliary files for more information.

· use_log, dataN = arguments used by QC_GWAS – not relevant for users.
· … = arguments passed to the standard R plot function
· Output: the correlation value
QQ, Manhattan & regional-association plots
The function QC_plots grew out of phase 4e of the QC test. It has in fact three functions, hence the vague name: it calculates the lambda value, it applies the QQ filters, and it creates the QQ and Manhattan plots (a separate function is available for regional-association plots: see below). The function schematic is as follows:

· Preparing the dataset

This step is optional, and dependant on the arguments. Essentially, it consists of translating the dataset header to the standard column-names (using identify_column rather than translate_header), and converting imputation status (using convert_impstatus) to the standard settings. Missing columns will cause the function to abort – unless the missing column is imputation status. In that case, a warning message is generated and several filters are disabled, but the function continues.
· Calculating the QC stats

· Creating filters – how many SNPs do the various settings remove?

· Calculating lambda – requires > 10 non-missing p-values
· Creating the QQ plots – requires > 10 p-values below the cutoff-threshold
· Creates a graph of every variable for which filters have been specified

· Every graph contains an unfiltered plot, plus plots for every filter that removes more values than the previous, less stringent one. (Filter values >1 and 1+ are considered separately for this purpose.)
· Creating the Manhattan plot – requires > 10 entries with non-missing chromosome and position values and p-values below the cutoff-threshold
QC_plots
· Function call

QC_plots(
dataset,
plot_QQ = TRUE, plot_Man = TRUE,
FRQfilter_values = NULL, FRQfilter_NA = filter_NA,
HWEfilter_values = NULL, HWEfilter_NA = filter_NA,
calfilter_values = NULL, calfilter_NA = filter_NA,
impfilter_values = NULL, impfilter_NA = filter_NA,
impfilter_min = min(dataset$IMP_QUALITY, na.rm = TRUE),

manfilter_FRQ = NULL, manfilter_HWE = NULL,
manfilter_cal = NULL, manfilter_imp = NULL,

filter_NA = TRUE, plot_cutoff_p = 0.05, plot_names = FALSE,
QQ_colors = c("red", "blue", "orange", "green3", "yellow"),
plot_QQ_bands = FALSE,

save_name = "dataset", save_dir = getwd(), header_translations, use_log = FALSE,
check_impstatus = FALSE, ignore_impstatus = FALSE,

T_strings = c(“1”, “TRUE”, "yes", "YES", "y", "Y"), F_strings = c(“0”, “FALSE”, "no", "NO", "n", "N"), NA_strings = c(NA, "NA", ".", "-")
)
· Input arguments

· dataset = either a vector of p-values, or a table containing the p-value column and (depending on the settings) columns for chromosome number, chromosome position, the quality parameters and imputation status.
· plot_QQ, plot_Man = logical – should the function create QQ / Manhattan plots

· FRQfilter_values, HWEfilter_values, calfilter_values, impfilter_values
· Numeric vectors of max. length 5
· Threshold values for the QQ plot filters – SNPs that do not meet or exceed the value will be excluded from the QQ plot

· Set to NULL (default) to disable the QQ filter for that variable

· To filter only missing values, set a value to NA and set the corresponding filter_NA argument to TRUE
· The allele-frequency filter is two-sided: it excludes allele-frequencies < x AND allele-frequencies > 1 - x

· Values ≥ 1 will be divided by the SNP’s sample-size. This allows filtering allele-frequency values with a threshold of
[image: image12.wmf]n

value

. Note that the sample size used is that of the individual SNP. SNPs with a missing sample size will be excluded if the corresponding filter_NA argument is TRUE and ignored if it is FALSE.

· Example:
FRQfilter_values =
c(NA,
 0.05,
0.1,
3),

impfilter_values =
c(NA,
-0.1,
0,
0.1),

calfilter_values =
c(NA,
 0.9),

HWEfilter_values =
NULL,

FRQfilter_NA =

TRUE,

impfilter_NA =

TRUE,

calfilter_NA =

FALSE,

HWEfilter_NA =

TRUE
In this example, there are:

· Four filters for allele-frequency (AF): one for missing values, one for AF < 0.05, one for AF < 0.1, and one for AF < 3 / N. All four exclude missing values because FRQfilter_NA = TRUE.
· Four filters for imputation-quality: one for missing values, one for impQ < -0.1, one for impQ < 0, and one for impQ < 0.1. All four exclude missing values because impfilter_NA = TRUE.

· Two filters for callrate: one empty and one for callrates < 0.9. Because calfilter_NA = FALSE, neither excludes missing values. This means that the first specified filter value (NA) excludes nothing.
· No filters for HWE p-values. Because HWEfilter_values is NULL, the setting of HWEfilter_NA does not affect the QQ plot (it may affect the Manhattan plot filter, though).

· FRQfilter_NA, HWEfilter_NA, calfilter_NA, impfilter_NA, filter_NA

Logical – should the QQ & Manhattan exclude missing values for these variables? filter_NA is the default value for the other four.
· impfilter_min = numeric – the lowest-possible imputation-quality value. This argument is redundant: it will be calculated automatically, and is retained merely for the convenience of the QC_GWAS function.
· manfilter_FRQ, manfilter_HWE, manfilter_cal, manfilter_imp

· Numeric

· Threshold values for the Manhattan-plot filter - i.e. SNPs that do not meet or exceed all four of those values will be excluded from the plot.

· The allele-frequency filter is two-sided: it tests for allele-frequency ≥ x AND allele-frequency ≤ 1 - x

· Set to NULL (default) to disable the filter for that variable. To filter missing values only, set to NA and set the corresponding filter_NA argument to TRUE.
· plot_cutoff_p = numeric – the threshold of p-values to be shown in the QQ & Manhattan plots. Higher (i.e. less significant) p-values are not included in the plot. The default setting (0.05) excludes 95% of data-points, which dramatically reduces running time and memory usage.
· plot_names = logical – function not implemented yet.

· QQ_colors = vector of R colour-values – the colour of the QQ filter-plots. Unfiltered is black: these set the colours of the least (first value) to most (last value) stringent filters. (If there are filter values above and below 1, the +1 values are considered as less stringent here.)
· plot_QQ_bands = logical – add probability bands to the QQ plots
· save_name = character-string – the filename, minus extension, of the output files

· save_dir = character-string – the directory for the output files. Note that R uses forward slash (/) where Windows uses backslash (\).
· header_translations = alternative-headers table. If not specified, the function will assume the data uses the standard column-names. See the section on the auxiliary files for more information.
· use_log = for use by QC_GWAS – nor relevant for users.
· check_impstatus = logical – should the imputation-status column be translated into the standard format? See the section on “converting imputation status”.
· ignore_impstatus = logical – if FALSE, HWE p-value and callrate filters are applied only to genotyped SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters are applied to all SNPs regardless of the imputation status.
· T_strings, F_strings, NA_strings = arguments passed to convert_impstatus
· Output: a list of 6 components
· lambda = a vector of the lambda values over all SNPs, genotyped SNPs and imputed SNPs
· ignore_impstatus = logical value indicating whether imputation status was used when applying the filters
· FRQfilter_names, HWEfilter_names, calfilter_names, impfilter_names = vectors of character-strings describing the specified QQ filters

· FRQfilter_N, HWEfilter_N, calfilter_N, impfilter_N = numeric vectors – the number of SNPs the filter-settings removed

Note that the QQ filters are sorted before being applied. This means the order of the output does not necessarily match that of the input – check the names in the return value to see the correct order.

· Manfilter_N = numeric - the number of SNPs removed by the Manhattan filter (does not count SNPs without chromosome, position or p-values)
· Note: the function automatically converts chromosome values X to 23, Y to 24, XY to 25 and M to 26.
plot_regional
This function creates a regional association plot.
· Function call

plot_regional(
dataset, chr, start_pos, end_pos,
plot_cutoff_p = 1, name_cutoff_p,
data_name = NULL, save_name = "regional_association_plot",
save_dir = getwd(), header_translations,
main = "Regional association plot", ...
)

· Input arguments

· dataset = a table containing the p-values, chromosome numbers, chromosome position and (optionally) the markernames

· chr = a character or numeric value indicating the chromosome of interest

· start_pos, end_pos = the basepair location of the start and end of the region of interest

· plot_cutoff_p = numeric – the threshold of p-values to be shown in the QQ & Manhattan plots. Higher (i.e. less significant) p-values are not included in the plot. Note that, unlike in QC_GWAS or QC_plots, the default value is 1 (i.e. includes everything), rather than 0.05. When including a large number of SNPs, setting this to 0.05 may dramatically reduce memory usage and running time.

· name_cutoff_p = numeric – SNPs with p-values lower than or equal to this value will have their names plotted in the graph.
· If no value is specified, this function is disabled.
· R is careless about placing labels, so they may well overlap one another or other datapoints. Chose the cutoff carefully.

· save_name = character-string – the filename, minus extension, for saving the graph

· save_dir = character-string – the directory for saving the graph. Note that R uses forward slash (/) where Windows uses backslash (\).
· header_translations = alternative-headers table. If not specified, the function will assume the data uses the standard column-names. See the section on auxiliary files for more information.
· data_name, main, … = arguments passed to plot
QQ_plot & QQ_series

QQ_plot generates a simple QQ plot of the expected and reported p-value distribution. It includes the option to filter the data with the high-quality filter. QQ_series generates a series of such QQ plots for multiple filter settings. Arguments that are single values in QQ_plot and (can be) vectors in QQ_series are indicated in red.
· Function call

QQ_series(
dataset,
save_name = "dataset", save_dir = getwd(),
filter_FRQ = NULL, filter_cal = NULL,
filter_HWE = NULL, filter_imp = NULL,

filter_NA = TRUE,
filter_NA_FRQ = filter_NA, filter_NA_cal = filter_NA,
filter_NA_HWE = filter_NA, filter_NA_imp = filter_NA,
p_cutoff = 0.05, plot_QQ_bands = FALSE,
header_translations,
check_impstatus = FALSE, ignore_impstatus = FALSE,

T_strings = c("1", "TRUE", "yes", "YES", "y", "Y"),

F_strings = c("0", "FALSE", "no", "NO", "n", "N"),

NA_strings = c(NA, "NA", ".", "-"),
...)

QQ_plot(

dataset,
save_name = "dataset", save_dir = getwd(),
filter_FRQ = NULL, filter_cal = NULL,
filter_HWE = NULL, filter_imp = NULL,

filter_NA = TRUE,
filter_NA_FRQ = filter_NA, filter_NA_cal = filter_NA,
filter_NA_HWE = filter_NA, filter_NA_imp = filter_NA,
p_cutoff = 0.05, plot_QQ_bands = FALSE,
header_translations,
check_impstatus = FALSE, ignore_impstatus = FALSE,

T_strings = c("1", "TRUE", "yes", "YES", "y", "Y"),

F_strings = c("0", "FALSE", "no", "NO", "n", "N"),

NA_strings = c(NA, "NA", ".", "-"),
...)
· Input arguments

· dataset = a data frame containing the p-value column and (depending on the settings) columns for chromosome number, position, the quality parameters, sample size and imputation status.
· save_name = for QQ_plot, character-string; for QQ_series, a vector of character-strings; defining the filenames, minus extension, of the output files

· save_dir = character-string – the directory for the output files. Note that R uses forward slash (/) where Windows uses backslash (\).

· filter_FRQ, filter_cal, filter_HWE, filter_imp
· for QQ_plot: single numeric values the filter values passed to HQ_filter
· For QQ_series: a vector of filter values passed one by one to QQ_plot. For example:
filter_FRQ =
c(NA, 0.1, 0.2, 0.3),
filter_cal =
c(NA, 0.9),
filter_HWE =
NULL,
filter_NA =
TRUE

Means that four plots will be made. The first filters missing allele-frequency (AF) values and callrates. The second filters AF < 0.1 and > 1 – 0.1, and callrates < 0.9. The third filters AF < 0.2 and > 1 – 0.2 and missing callrates. The fourth filters AF < 0.3 and > 1 – 0.3, and callrates < 0.9.

HWE p-values are not filtered, even not for missing values, since filter_HWE is NULL. However, for both active filters the missing values are removed. Also, because filter_cal is shorter than filter_FRQ, it is “recycled” to make it of equal length.

· Set to NULL to disable the filter for that variable. To filter missing values only, set to NA and set the corresponding filter_NA argument to TRUE.

· The allele-frequency filter is two-sided: it tests for allele-frequency ≥ x AND allele-frequency ≤ 1 - x

· filter_NA_FRQ, filter_NA_HWE, filter_NA_Cal, filter_NA_imp, filter_NA

Logical – should the filter exclude missing values for these variables? filter_NA is the default value for the other four.
· p_cutoff = numeric – the threshold of p-values to be shown in the plot. Higher (i.e. less significant) p-values are not included in the plot. The default setting (0.05) excludes 95% of data-points, which dramatically reduces running time and memory usage.
· plot_QQ_bands = logical – add probability bands to the QQ plots

· header_translations = alternative-headers table. If not specified, the function will assume the data uses the standard column-names. See the section on the auxiliary files for more information.
· check_impstatus = logical – should the imputation-status column be translated into the standard format? See the section on “converting imputation status”.
· ignore_impstatus = logical – if FALSE, HWE p-value and callrate filters are applied only to genotyped SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters are applied to all SNPs regardless of the imputation status.
· T_strings, F_strings, NA_strings = arguments passed to convert_impstatus
· … = in QQ_series, arguments passed to QQ_plot. In QQ_plot, arguments passed to plot.
Histograms of observed vs. expected distribution

QC_histogram allows the user to create a histogram of the expected and observed distribution of any numeric variable in the dataset. There is also the option to apply a filter to avoid outliers from poor-quality SNPs. The expected distribution is the standard distribution based on the mean and standard-deviation of the observed data, after filtering. The user can specify a filter
histogram_series allows the user to create multiple histograms with different filter-settings. It does this by simply calling QC_histogram repeatedly. This means that you do need to specify a different file-name for every filter. You also need to make sure that the vectors specifying the filters are of equal length. Arguments that are single values in QC_histogram and (can be) vectors in histogram_series are indicated in red.

QC_histogram & histogram_series

· Function call

QC_histogram(
dataset, data_col = 1,
save_name = "dataset", save_dir = getwd(),
export_outliers = FALSE,
filter_FRQ = NULL, filter_cal = NULL,
filter_HWE = NULL, filter_imp = NULL,
filter_NA = TRUE, filter_NA_FRQ = filter_NA, filter_NA_cal = filter_NA,
filter_NA_HWE = filter_NA, filter_NA_imp = filter_NA,

breaks = "Sturges", graph_name = names(dataset)[data_col], header_translations,

check_impstatus = FALSE, ignore_impstatus = FALSE,
T_strings = c(“1”, “TRUE”, "yes", "YES", "y", "Y"), F_strings = c(“0”, “FALSE”, "no", "NO", "n", "N"), NA_strings = c(NA, "NA", ".", "-"),
...)

histogram_series(
dataset, data_col = 1,
save_name = paste("dataset_F", 1:nrow(plot_table), sep = ""),
save_dir = getwd(), export_outliers = FALSE,
filter_FRQ = NULL, filter_cal = NULL, filter_HWE = NULL,
filter_imp = NULL,
filter_NA = TRUE, filter_NA_FRQ = filter_NA, filter_NA_cal = filter_NA,
filter_NA_HWE = filter_NA, filter_NA_imp = filter_NA

breaks = "Sturges",
header_translations,

check_impstatus = FALSE, ignore_impstatus = FALSE,
T_strings = c(“1”, “TRUE”, "yes", "YES", "y", "Y"), F_strings = c(“0”, “FALSE”, "no", "NO", "n", "N"), NA_strings = c(NA, "NA", ".", "-"), ...

)

· Input arguments

· dataset = either a vector of values or a data frame

· data_col = either the name or number of the column with the observed distribution

· save_name

· For QC_histogram = character-string – the filename, minus the extension, of the output files

· For histogram_series = a vector of character-strings giving the filenames, minus the extension, of the output files. If the vector is not of the same length as the filter-vectors, the function will add a number to the end of each filename to prevent overwriting previous results.
· save_dir = character-string – the directory for the output files. Note that R uses forward slash (/) where Windows uses backslash (\).

· export_outliers = logical or numeric – should any outlying entries be exported into a file? If numeric, specifies the max. number of entries to be exported

· filter_FRQ, filter_cal, filter_HWE, filter_imp
· for QC_histogram: the filter values passed to HQ_filter
· For histogram_series: the filter values passed one by one to QC_histogram. For example

filter_FRQ =
c(NA, 0.1, 0.2, 0.3),
filter_cal =
c(NA, 0.9),
filter_HWE =
NULL,
filter_NA =
TRUE

Means that four histograms will be made. The first filters missing allele-frequency (AF) values and callrates. The second filters AF < 0.1 and > 1 – 0.1, and callrates < 0.9. The third filters AF < 0.2 and > 1 – 0.2 and missing callrates. The fourth filters AF < 0.3 and > 1 – 0.3, and callrates < 0.9.
HWE p-values are not filtered, even not for missing values, since filter_HWE is NULL. However, for both active filters the missing values are removed. Also, because filter_cal is shorter than filter_FRQ, it is “recycled” to make it of equal length.

· Set to NULL to disable the filter for that variable. To filter missing values only, set to NA and set the corresponding filter_NA argument to TRUE.

· The allele-frequency filter is two-sided: it tests for allele-frequency ≥ x AND allele-frequency ≤ 1 - x

· filter_NA_FRQ, filter_NA_HWE, filter_NA_Cal, filter_NA_imp, filter_NA

Logical – should the filter exclude missing values for these variables? filter_NA is the default value for the other four.
· breaks = argument passed to hist
· graph_name = character-string – the name of the data in the plot

· header_translations = header-translation table. If not specified, the function will assume the data uses the standard column-names. See the section on auxiliary files for more information.
· check_impstatus = logical – should the imputation-status column be translated into the standard format? See the section on “converting imputation status”.
· ignore_impstatus = logical – if FALSE, HWE p-value and callrate filters are applied only to genotyped SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters are applied to all SNPs regardless of the imputation status.
· T_strings, F_strings and NA_strings = arguments passed to convert_impstatus
· … = in histogram_series, arguments passed to QC_histogram; in QC_histogram, arguments passed to hist
Plots for comparing studies

QC_series creates three graphs to compare the results of the QC’ed datafiles. These plots are generated by the following functions.
plot_precision

As sample size increases, the standard error is expected to decrease. Hence, if one plots the precision (1 / median standard-error) against the square root of the sample-size for many studies, one expects a linear relation. Both the median standard error and the sample size are part of the return-value of QC_GWAS.
· Function call

plot_precision(
SE, N, labels = NULL,
save_name = "Graph_precision", save_dir = getwd(),
...

)

· Input arguments

· SE, N = vectors containing the median standard error and the sample size of the datasets. In QC_series, these correspond to the SE_HQ_median (median standard-error of high-quality SNPs) and sample_size_HQ (max. sample size of high-quality SNPs), collected from the return values of QC_GWAS.

· labels = vector containing the names or identifiers of the dataset, to be plotted next to the data points.

· To disable labels, set to NULL
· R is careless about placing labels, so short ones are preferable.
· save_name = character-string – the filename, minus extension, for saving the graph

· save_dir = character-string – the directory for saving the graph. Note that R uses forward slash (/) where Windows uses backslash (\).

· … = arguments passed to plot
plot_skewness
Generates a skewness vs. kurtosis plot. Both values are part of the return-value of QC_GWAS. Kurtosis is a measure of how well a distribution (in QC_series, this is the distribution of high-quality effect sizes) matches a Gaussian distribution. A Gaussian distribution has a kurtosis of 0. Negative kurtosis indicates a flatter distribution curve, while positive kurtosis indicates a sharper, thinner curve.
Skewness is a measure of distribution asymmetry. A symmetrical distribution has skewness 0. A positive skewness indicates a long tail towards higher values, while a negative skewness indicates a long tail towards lower values.

Ideally, one expects both the skewness and kurtosis of effect sizes to be close to 0. In practice, these statistics can be hugely variable. QC_series uses only high-quality effect sizes to calculate these values in order to reduce some of the more extreme values. Still, it is recommended that you compare the values to those of other GWAS with the same phenotype, rather than relying on the label outliers command to identify problems.
· Function call

plot_skewness(
skewness, kurtosis, labels = paste("Study", 1:length(skewness)),
plot_labels = "none",
save_name = "Graph_skewness_kurtosis", save_dir = getwd(),
...
)

· Input arguments

· skewness, kurtosis, labels = vectors containing the skewness, kurtosis and the names or identifiers of the datasets
· plot_labels = character string or logical determining whether the content of labels is plotted next to the data points. Note that R is careless about placing labels, so short ones are preferable so there is less chance overwriting data points. Options are “none” (or FALSE); “all” (or TRUE); and “outliers” for outliers only.

· save_name = character-string – the filename, minus extension, for saving the graph

· save_dir = character-string – the directory for saving the graph. Note that R uses forward slash (/) where Windows uses backslash (\).

· … = arguments passed to plot
· Note: outliers are defined as skewness > 0.1 or < -0.1, or kurtosis > 10

plot_distribution

This function is intended for creating a box-plot to compare the distribution of effect-sizes between studies, sorted on sample size. The effect-size distribution of a study can be obtained by running QC_GWAS with return_HQ_effectsizes is set to TRUE. This will include a vector of 1000 high-quality effect-sizes in the output (component name = effectsizes_HQ).
· Function call

plot_distribution(
data_table, names = 1:ncol(data_table), include = TRUE,
plot_order = 1:ncol(data_table),
quantile_lines = FALSE,
save_name = "Graph_distribution", save_dir = getwd(),
...

)

· Input arguments

· data_table = a table or data frame with a column of effect-sizes for every study

· names = a vector of character-strings – the names of the studies. The default option is the column-numbers of data_table. WARNING: labels longer than approx. 25 characters will not be plotted.
· include = a logical vector – indicating which studies should be included (TRUE) or excluded (FALSE). The default includes all.
· plot_order = a numeric vector giving the order of plotting.

· quantile_lines = logical – should lines representing the median quantile values be plotted?

· save_name = character-string – the filename, minus extension, for saving the graph

· save_dir = character-string – the directory for saving the graph. Note that R uses forward slash (/) where Windows uses backslash (\).

· … = arguments passed to boxplot
Functions for handling GWAS datasets

This section describes the functions that can be used to load and prepare GWAS datasets manually.

Loading GWAS datasets

Because GWAS datasets come in a variety of formats (zipped, unzipped, comma-separated) but only a single size-category (very large), it can take a few tries, and a few minutes, to find out how a specific dataset should be loaded into R. To save time and frustration, I wrote an auto-loader function (based on code by Ilja Nolte) that does this for you. load_GWAS calls load_test, which does a trial-run of loading the dataset. It reads the topmost lines of the dataset and tries out a vector of field-separators (column-separators) one by one. If it finds one that yields a dataset with 5 or more columns, it will report success and return the correct field-separator. load_GWAS uses this information to load the entire dataset.

load_GWAS & load_test
· Function call

load_GWAS(filename, dir = getwd(),
column_separators = c("\t", " ", "", ",", ";"), test_nrows = 1000,
header = TRUE, nrows = -1, comment.char = “”,
na.strings = c("NA", "."), stringsAsFactors = FALSE, ...

)

load_test(filename, dir = getwd(),
column_separators = c("\t", " ", "", ",", ";"), test_nrows = 1000, ...

)
· Input arguments

· filename = character-string – the complete file-name of the dataset to be loaded. The functions can load .zip or .gz files, but only when the filename of the archived file is the same as that of the archive. For example: if the file is “GWAS.txt”, then the archive should be “GWAS.txt.gz” or “GWAS.txt.zip”. If it’s just “GWAS.gz”, then the function won’t be able to extract the text.

· dir = character-string – the directory where the file is located. Note that R uses forward slash (/) where Windows uses backslash (\).

· column_separators = character-string or vector containing the column-separator(s) to be tried by load_test
· White-space (i.e. sequential tabs and spaces are treated as a single column-separator) can be specified with “”

· test_nrows = integer – specifies the number of lines of the dataset that load_test checks. A smaller number means faster loading, but also makes it more likely that errors slip through. Default = 1000. To check the entire dataset, set to -1.
· header, nrows, comment.char, na.strings, stringsAsFactors, … = arguments passed to read.table
· Output

· load_GWAS returns the table inside the specified file. If unable to load (because load_test reported failure), an error message will be generated.
· load_test returns an object of class ‘list’ with four components:
· success = logical – whether load_test was able to load a dataset with five or more columns

· error = character-string – if unable to load a dataset, this will return the error-message of the last column separator to be tried
· file_type = character-string – the last three characters of filename

· sep = the first column-separator that succeeded in loading a dataset with five or more columns

· Notes

· load_GWAS uses the same default loading-settings as QC_GWAS. load_test, however, has no defaults for header, comment.char, na.strings and stringsAsFactors. When calling load_test directly it will therefore use the read.table defaults rather than the QC_GWAS ones.

· load_GWAS can be used on any data-table, although (because of the requirements of the QC function) tables with less than five columns will be rejected.

· By default, load_test only checks the first 1000 lines (adjustable by the test_nrows argument); if the problem lies further down in the dataset, it will not catch it. In such a case, load_GWAS and QC_GWAS will crash when attempting to load the dataset.
A common problem is specifying white-space (“”) as field-separator for a file that uses empty fields to indicate missing values. The field-separators surrounding an empty field are adjacent, so R parses them as a single field-separator. Specifying a single space (“ ”) or tab (“\t”) as column separator solves the problem (this is why the default value for column_separators puts these values before whitespace).
· load_test tries the column_separators one by one in the given order. As soon as it finds one that works, it will stop and report success. If none of them work, it reports the error-message generated by the last one.

Automated filtering of GWAS datasets
This function can be used to automate the filtering of GWAS datasets for low-quality and allosomal / mitochondrial SNPs. The easiest way to use filter_GWAS is by passing an ini file to the ini_file argument. The ini file can be generated by running QC_series with the save_filtersettings argument set to TRUE. The output will include a file 'Check_filtersettings.txt', describing the (high-quality) filter settings used for each file (taking into account whether there was enough data, i.e. whether the use_threshold was met, to apply the filters).

The ini_file argument accepts both tables with correct columns, or the name of a file in dir_GWAS or the current R working directory. If no ini_file is specified, the function will use the GWAS_files, x_HQ, x_NA and ignore_impstatus arguments to construct such a table. GWAS_files can either be a character vector or a single value. If a single string, all filenames containing the string will be processed. The other arguments can also be a vector or a single value; if the latter, they will be recycled to create a vector of the correct length. Note that ini_file overrules the other filter settings, i.e. one cannot adjust ini_file through the other arguments.
If neither ini_file nor GWAS_files are specified, the function will look for a file 'Check_filtersettings.txt' in dir_GWAS and the current R working directory.

filter_GWAS
· Function call
filter_GWAS(ini_file, GWAS_files, output_names,

gzip_output = TRUE,

dir_GWAS = getwd(), dir_output = dir_GWAS,

FRQ_HQ = NULL, HWE_HQ = NULL, cal_HQ = NULL, imp_HQ = NULL,

FRQ_NA = TRUE, HWE_NA = TRUE, cal_NA = TRUE, imp_NA = TRUE,

ignore_impstatus = FALSE,

remove_X = FALSE, remove_Y = FALSE,
remove_XY = FALSE, remove_M = FALSE,

header_translations,
check_impstatus = FALSE,

imputed_T = c("1", "TRUE", "yes", "YES", "y", "Y"),

imputed_F = c("0", "FALSE", "no", "NO", "n", "N"),

imputed_NA = NULL,

column_separators = c("\t", " ", "", ",", ";"), header = TRUE,

nrows = -1, nrows_test = 1000,
comment.char = "", na.strings = c("NA", "."),

out_header = "original", out_quote = FALSE, out_sep = "\t",

out_eol = "\n", out_na = "NA", out_dec = ".", out_qmethod = "escape",

out_rownames = FALSE, out_colnames = TRUE, ...)

· Input arguments
· ini_file = (the filename of) a table describing the files to be processed and the filters to be applied. See above.

· output_names = character vector: the filenames for the output files. The default option is to use the input filenames. Note that, unlike with other QCGWAS functions, the file extensions should be included.
· gzip_output = logical – should the output be compressed?

· dir_GWAS, dir_output = the folders for, respectively, the input file(s), and output. Note that R uses forward slash (/) where Windows uses backslash (\).
· Arguments used when no ini_file is specified. See above.

· GWAS_files = character vector – the names of the files to be processed

· FRQ_HQ, HWE_HQ, cal_HQ, imp_HQ = numeric vectors – these specify the HQ_filter settings
· FRQ_NA, HWE_NA, cal_NA, imp_NA = logical vectors - these specify the HQ_filter settings for missing values
· ignore_impstatus = logical vector for the HQ_filter.
· remove_X, remove_Y, remove_XY, remove_M = logical – respectively whether X-chromosome, Y-chromosome, pseudo-autosomal and mitochondrial SNPs are removed. Note: these arguments accept only a single TRUE or FALSE. Unlike the above settings, it’s not possible to specify them independently for every dataset.
· header_translations = header-translation table. If not specified, the function will assume the data uses the standard column-names. See the section on auxiliary files for more information.
· check_impstatus = logical – should the imputation-status column be translated into the standard format? See the section on “converting imputation status”.
· imputed_T, imputed_F, imputed_NA = arguments passed to convert_impstatus
· column_separators, header, nrows, nrows_test, comment.char, na.strings, … = arguments passed to load_GWAS.
· out_header = A translation table for the column-names of the output file. This argument accepts either a table of the correct dimensions, or a standard format-name or the name of a file in dir_GWAS containing such a table. The available standard formats are:
· “standard” (default setting) retains the column names used by QC_GWAS
· “original” restores the column names used in the input file
· “old” uses the default column names of the pre-v1.0b versions
· “GWAMA”, “PLINK”, “GenABEL” and “META” set the column-names to those used by the respective program. The columns not used by those programs retain the standard names. Note that META’s allele_B corresponds with QC_GWAS effect-allele. Also, unlike in QC_GWAS the GenABEL option will not calculate lambda or carry out a genomic-control correction. The relevant columns will be added, but filled with NAs.
If (a filename of) a table is specified, the translation table works similarly to header translation table, with two differences:

· The left column (“translate to”) should contain the desired column-names, while the right column should contain the standard names (“translate from”).

· The left column does not need to be capitalized
· out_quote, out_sep, out_eol, out_na, out_dec, out_qmethod, out_rownames, out_colnames = arguments passed to write.table when saving the filtered dataset.
· Output: an invisible logical vector indicating which files were successfully filtered.
Translating the data header

These functions are used to translate the dataset’s header into the standard column names. translate_header takes a vector of standard column-names, and uses identify_column to find these one by one. translate_header then returns (amongst other things) a list of newly-translated column names. Note that while most functions use translate_header, QC_plots and match_alleles have their own translation code using identify_column.

translate_header

· Function call

translate_header(
header,

standard = c("MARKER", "CHR", "POSITION", "EFFECT_ALL", "OTHER_ALL", "STRAND", "EFFECT", "STDERR", "PVALUE", "EFF_ALL_FREQ", "HWE_PVAL", "CALLRATE", "N_TOTAL", "IMPUTED", "USED_FOR_IMP", "IMP_QUALITY"),

alternative

)

· Input arguments

· header = the header of the datafile (= the names you have)
· standard = the list of standard column names (= the names you want)
· alternative = the translation table: a two-column table containing the standard names in the left column and the alternatives in the right column
· Output: a list of 6 components:

· header_h = a vector containing the “translated” header. Unknown columns are included under their old names.

· missing_h = a vector of standard columns names that cannot be found. If none, this returns NULL.

· unknown_h = a vector of column names in header that remain untranslated. Note that these are also included in header_h. If none, this returns NULL.

· header_N, missing_N, unknown_N = the length of the above three vectors

· Notes on the argument alternative

· translate_header automatically capitalizes the data header, so all entries in alternative should be capitalized as well

· See the section on auxiliary files for more infromation.

identify_column

· Function call

identify_column(std_name, alt_names, header)
· Input arguments

· std_name = the standard (column) name that needs to be identified

· alt_names = the table with standard and alternative names (corresponds to the alternative argument of translate_header)

· header = the (capitalized) header of the datafile

· Output: an integer vector of the entry(s) in header (i.e. the column numbers) that can be translated into std_name.
Converting imputation status

This function is used to convert the imputation-status column into the standard format of 0 = genotyped, 1 = imputed. Values in T_strings are converted to 1, F_strings to 0, and NA_strings to NA. If there are still unidentified values in the column, it will generate a warning message and set unidentified values to NA. Note that the function no longer automatically “convert” NA values to NA. NA must be specified in one of the strings, otherwise the function will report that unconverted values are present. This function is used by QC_GWAS, but can also be called by several others via the check_impstatus argument.

convert_impstatus

· Function call

convert_impstatus(
impstatus,
T_strings = c(“1”, "yes", "YES", "y", "Y"),
F_strings = c(“0”, "no", "NO", "n", "N"),
NA_strings = c("NA", ".", "-"),
use_log = FALSE, ….
)

· Input arguments

· impstatus = a vector contain imputation status data

· T_strings = character strings to be converted into 1

· F_strings = character strings to be converted into 0

· NA_strings = character strings to be converted into NA

· use_log, … = arguments used by QC_GWAS – not relevant for users.
· Output: a vector of 1, 0 and NA values

The high-quality SNP filter

This function is used by several other functions to exclude low-quality SNPs.

HQ_filter

· Function call

HQ_filter(
data, ignore_impstatus = FALSE,
FRQ_val = NULL, HWE_val = NULL, cal_val = NULL, imp_val = NULL,
filter_NA = TRUE, FRQ_NA = filter_NA, HWE_NA = filter_NA,
cal_NA = filter_NA, imp_NA = filter_NA
)

· Input arguments

· data = the dataset to be filtered. The dataset must use standard column names.
· ignore_impstatus = logical – if FALSE, HWE p-value and callrate filters are applied only to genotyped SNPs, and imputation quality filters only to imputed SNPs. If TRUE, the filters are applied to all SNPs regardless of the imputation status.
· FRQ_val, cal_val, HWE_val, imp_val = the threshold for filtering high-quality for allele frequency, callrate, HWE p-value and imputation quality respectively.

· The allele-frequency filter is two-sided

· Set to NULL (default) to disable filtering

· To filter only missing values, set to NA and the corresponding filter_NA argument to TRUE
· filter_NA, FRQ_NA, cal_NA, HWE_NA, imp_NA = logical values indicating whether missing values should be filtered (TRUE) or ignored (FALSE)

· filter_NA is the default value for the other four

· Default is TRUE, but the filter is only applied if the corresponding filter value is not NULL

· Output: a logical vector, giving TRUE for every SNP that meets or exceeds the quality criteria
· A SNP is considered high-quality if it meets all quality-criteria

· The thresholds are inclusive; i.e. SNPs that have a value equal to or higher than the threshold will be included
Calculating skewness & kurtosis

calc_skewness & calc_kurtosis

Kurtosis is a measure of how well a distribution matches a Gaussian distribution. A Gaussian distribution has a kurtosis of 0. Negative kurtosis indicates a flatter distribution curve, while positive kurtosis indicates a sharper, thinner curve.

Skewness is a measure of distribution asymmetry. A symmetrical distribution has skewness 0. A positive skewness indicates a long tail towards higher values, while a negative skewness indicates a long tail towards lower values.

· Function call

calc_skewness(input, FRQ_val = NULL, HWE_val = NULL, cal_val = NULL, imp_val = NULL, ...)

calc_kurtosis(input, FRQ_val = NULL, HWE_val = NULL, cal_val = NULL, imp_val = NULL, ...)

· Input arguments

· input = a vector of effect-sizes, or a dataset using the standard column-names

· FRQ_val, HWE_val, cal_val, imp_val, … = arguments passed to HQ_filter
· Output: the skewness / kurtosis value of the dataset. If no non-missing, high-quality values are present, the functions return NA.
Other functions
The remaining functions are in effect subroutines of other functions. Since they are designed for a single context, and a rather specific one at that, I recommend that users do not bother with them. They are described here for the sake of completeness only.
intensity_plot
This function generates the intensity plots used by match_alleles. It is currently only partially implemented – it’s not guaranteed to be bug-free.
· Function call

intensity_plot(x, y, strata, nbin = 20,

 xmax = max(x), xmin = min(x),

 ymax = max(y), ymin = min(y),

 strata_colours = c("black", "red", "turquoise3"),

 verbose = TRUE, xlab = "x", ylab = "y", ...)

· Input arguments

· x, y = numerical vectors; the x and y coordinates of the data points

· strata = logical vector, indicates whether the datapoints belong to strata 1 or 2. If missing, all datapoints are assumed to belong to 1.

· nbin = integer, he number of bins (categories) on the x and y axis.

· xmax, xmin, ymax, ymin = the range of x and y values shown in the plot

· strata_colours = character vector of length 3; indicating the colours to be used for entries of strata 1, 2 or mixed, respectively.

· verbose = logical; determines whether a warning is printed in the console when datapoints are removed

· xlab, ylab, … = arguments passed to plot.
· Output: an invisible list with two components: the number of entries removed due to missing x or y values (NA_removed) or for exceeding the min or max arguments (outliers_removed).

switch_strand

A function that converts allele values to that of the other strand.

· Function call

switch_strand(input, strand_col = (ncol(input) == 3))

· Input arguments

· input = a table with allele-values in columns 1 and 2, and optionally a third column with the strand-value (coded “+” or “-”)

· strand_col = a logical value determining whether the function also switches the strand value. By default, this occurs when the input table has three columns.

· Output: a table matching input, but with the alleles converted to the other strand

save_log

save_log adds log entries to the log file.

· Function call

save_log(phaseL, checkL, typeL, SNPL = allSNPs, allSNPs = 1L,
actionL, noteL = "", fileL)

· Input arguments

· phaseL, checkL, typeL = brief texts indicating what happened
· SNPL, allSNPs = the number of affected SNPs, and the total number of SNPs in the dataset

· actionL, noteL = information on how the function responded, and a more detailed description of the problem

· fileL = the filename used for the log file WITHOUT the extension, but with the directory included
· Output: adds a log-entry to the log file. The filename will be [fileL]_log.txt.
· As of v1.0d, save_log no longer reports errors in the console.
_1400574836.unknown

_1415019335.unknown

_1409469995.unknown

_1393745960.unknown

