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Abstract

This is a vignette for the R package CARBayesST version 3.2, and is an updated
version of a paper in the Journal of Statistical Software in 2018, Volume 84, Issue 9.
The package has been developed to model spatio-temporal data relating to a set of non-
overlapping areal units that are observed over multiple time periods. These data typically
contain spatio-temporal autocorrelation, and this package provides a suite of models for
capturing this autocorrelation via random effects that are assigned spatio-temporal ex-
tensions of conditional autoregressive (CAR) priors within a hierarchical Bayesian model.
CARBayesST is the first dedicated R package for modelling these data in a Bayesian
setting using Markov chain Monte carlo (MCMC) simulation. The software can fit a
range of models that estimate different aspects of the data, including the estimation of
average spatial and temporal trends, and the identification of clusters of areal units that
exhibit elevated values. This vignette outlines the class of models that the software can
implement, before applying them to exemplar case studies.

Keywords: Bayesian inference, conditional autoregressive priors, spatio-temporal areal unit
modelling.

1. Introduction

Areal unit data are a type of spatial data where the observations relate to a set ofK contiguous
but non-overlapping areal units, such as electoral wards or census tracts. Each observation
relates to an entire areal unit, and thus is typically a summary measure such as an average,
proportion, or total, for the entire unit. Examples include the proportion of people who are
Catholic in lower super output areas in Northern Ireland (Lee, Minton, and Pryce 2015),
the average score on SAT college entrance exams across US states (Wall 2004), and the
total number of cases of chronic obstructive pulmonary disease from populations living in
counties in Georgia, USA (Choi and Lawson 2011). Areal unit data have become increasingly
available in recent times, due to the creation of databases such as Scottish Statistics (http:

//statistics.gov.scot/), and cancer registries such as the Surveillance Epidemiology and
End Results programme (http://seer.cancer.gov). These databases provide data on a set
of K areal units for N consecutive time periods, yielding a rectangular array of K×N spatio-
temporal observations. The motivations for modelling these data are varied, and include
estimating the effect of a risk factor on a response (see Wakefield 2007), identifying clusters

http://statistics.gov.scot/
http://statistics.gov.scot/
http://seer.cancer.gov
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of contiguous areal units that exhibit an elevated risk of disease compared with neighbouring
areas (see Anderson, Lee, and Dean 2014), and quantifying the level of segregation in a city
between two or more different groups (see Lee et al. 2015).

However, a common challenge when modelling these data is spatio-temporal autocorre-
lation, whereby observations from geographically close areal units and temporally close time
periods tend to have more similar values than units and time periods that are further apart.
Temporal autocorrelation occurs because the data relate to largely the same populations in
consecutive time periods, while spatial autocorrelation can arise due to unmeasured confound-
ing, neighbourhood effects and grouping effects. A Bayesian inferential approach is typically
taken to modelling these data, where the spatio-temporal autocorrelation is modelled via sets
of autocorrelated random effects. Conditional autoregressive (CAR, Besag, York, and Mollié
1991) priors and spatio-temporal extensions thereof are typically assigned to these random
effects to capture this autocorrelation. A range of different models have been proposed to
date, and the most appropriate model depends on the goals of the analysis.

An array of freely available software can now implement purely spatial areal unit
models, including BUGS (Lunn, Spiegelhalter, Thomas, and Best 2009) and the R packages
CARBayes (Lee 2013) and R-INLA (Rue, Martino, and Chopin 2009). However, specialist
software for spatio-temporal modelling with conditional autoregressive priors using MCMC
simulation was not previously not available, which has motivated the development of CAR-

BayesST (Lee, Rushworth, and Napier 2018). Section 2 summarises the models that can
be implemented for univariate spatio-temporal data, while Section 3 summarises the models
available for multivariate spatio-temporal data. Section 4 provides an overview of the soft-
ware and its functionality. Sections 5 and 6 present two worked examples illustrating how to
use the software for epidemiological and housing market research, while Section 7 concludes
with a summary of planned future developments.

2. Spatio-temporal models for univariate areal unit data

This section outlines the class of univariate models that CARBayesST can implement, and
in all cases inference is in a Bayesian setting using Markov chain Monte Carlo (MCMC)
simulation. The first part of this section outlines the general hierarchical model that can be
fitted, while the second describes the range of space-time random effects structures that are
available.

2.1. General Bayesian hierarchical model

The study region comprises a set of k = 1, . . . ,K non-overlapping areal units S = {S1, . . . ,SK},
and data are recorded for each unit for t = 1, . . . , N consecutive time periods. Thus data are
available for a K×N rectangular array with K rows (spatial units) and N columns (time pe-
riods). The response data are denoted by Y = (Y1, . . . ,YN )K×N , where Yt = (Y1t, . . . , YKt)
denotes the K × 1 column vector of observations for all K spatial units for time period
t. Next, a vector of known offsets is denoted by O = (O1, . . . ,ON )K×N , where similarly
Ot = (O1t, . . . , OKt) denotes the K × 1 column vector of offsets for time period t. Finally,
xkt = (xkt1, . . . , xktp) is a vector of p known covariates for areal unit k and time period t,
and can include factors or continuous variables and a column of ones for the intercept term.
Note, non-linear covariate-response relationships can be included by adding transformations
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(e.g., squared) or spline basis functions (e.g., using ns()) of covariates to xkt. CARBayesST

can fit the following generalised linear mixed model to these data.

Ykt|µkt ∼ f(ykt|µkt, ν
2) for k = 1, . . . ,K, t = 1, . . . , N, (1)

g(µkt) = x⊤
ktβ +Okt + ψkt,

β ∼ N(µβ,Σβ).

The vector of covariate regression parameters are denoted by β = (β1, . . . , βp), and a multi-
variate Gaussian prior is assumed with mean µβ and diagonal variance matrix Σβ that can
be chosen by the user. The ψkt term is a latent component for areal unit k and time period
t encompassing one or more sets of spatio-temporally autocorrelated random effects, and the
complete set are denoted by ψ = (ψ1, . . . ,ψN ), where ψt = (ψ1t, . . . , ψKt). CARBayesST

can fit a number of different spatio-temporal structures for ψkt, which are outlined in Section
2.2 below. The software can implement Equation 1 for binomial, Gaussian and Poisson data
models, and the exact specifications of each are given below:

• Binomial - Ykt ∼ Binomial(nkt, θkt) and ln(θkt/(1 − θkt)) = x⊤
ktβ +Okt + ψkt.

• Gaussian - Ykt ∼ N(µkt, ν
2) and µkt = x⊤

ktβ +Okt + ψkt.

• Poisson - Ykt ∼ Poisson(µkt) and ln(µkt) = x⊤
ktβ +Okt + ψkt.

In the binomial model (nkt, θkt) respectively denote the number of trials and the probability
of success in each trial in area k and time period t, while in the Gaussian model ν2 is the
observation variance. An inverse-gamma(a, b) prior is specified for the Gaussian variance ν2,
and default values of (a = 1, b = 0.01) are specified by the software but can be changed by
the user.

2.2. Spatio-temporal random effects models

Spatial autocorrelation is controlled by a symmetric non-negative K × K neighbourhood or
adjacency matrix W = (wkj), where wkj represents the spatial closeness between areal units
(Sk,Sj). Larger values represent spatial closeness between the two areas in question, where
as smaller or zero values correspond to areas that are not spatially close. Most often W is
assumed to be binary, where wkj = 1 if areal units (Sk,Sj) share a common border (i.e., are
spatially close) and is zero otherwise. Additionally, wkk = 0. Under this binary specification
the values of (ψkt, ψjt) for spatially adjacent areal units (where wkj = 1) are spatially auto-
correlated, where as values for non-neighbouring areal units (where wkj = 0) are conditionally
independent given the remaining {ψit} values. This binary specification of W based on shar-
ing a common border is the most commonly used for areal data, but the only requirement by
CARBayesST is for W to be symmetric, non-negative, and for each row sum to be greater
than zero. Similarly, the model ST.CARanova() defined below uses a binary N ×N temporal
neighbourhood matrix D = (dtj), where dtj = 1 if |j − t| = 1 and dtj = 0 otherwise.

CARBayesST can fit the models for ψ outlined in Table 1, and full details for each one
are given below. Out of these models ST.CARlinear(), ST.CARanova() and ST.CARar() are
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Model Equation Description

ST.CARlinear() (2) This model is similar to that proposed by Bernardinelli, Clay-
ton, Pascutto, Montomoli, Ghislandi, and Songini (1995), and
represents the spatio-temporal pattern in the mean response
with spatially varying linear time trends. Allowable data mod-
els are binomial, Gaussian and Poisson.

ST.CARanova() (3) This model is similar to that proposed by Knorr-Held (2000),
and represents the spatio-temporal pattern in the mean re-
sponse with an ANOVA style decomposition into overall spatial
and temporal main effects and a space-time interaction. Allow-
able data models are binomial, Gaussian and Poisson.

ST.CARsepspatial() (4) This model is that proposed by Napier, Lee, Robertson, Lawson,
and Pollock (2016), and represents the spatio-temporal pattern
in the mean response with an overall temporal effect and sepa-
rate independent spatial effects for each time period. Allowable
data models are binomial and Poisson.

ST.CARar() (5) This model is that proposed by Rushworth, Lee, and Mitchell
(2014), and represents the spatio-temporal pattern in the mean
response with a single set of spatially and temporally autocor-
related random effects. The effects follow a multivariate autore-
gressive process of order 1. Allowable data models are binomial,
Gaussian and Poisson.

ST.CARadaptive() (8) This model is that proposed by Rushworth, Lee, and Sarran
(2017), and has the same spatio-temporal random effect struc-
ture as the ST.CARar() model, but with an adaptive spatial
autocorrelation structure via estimation of W. Allowable data
models are binomial, Gaussian and Poisson.

ST.CARlocalised() (10) This model is that proposed by Lee and Lawson (2016), and
has the same spatio-temporal random effect structure as the
ST.CARar() model, with an additional piecewise constant in-
tercept term. Allowable data models are binomial and Poisson.

ST.CARclustrends() (13) This model is that proposed by Napier, Lee, Robertson, and
Lawson (2019), and is a mixture model for clustering areas
based on their temporal trends in disease risk, where the candi-
date trend functions have fixed parametric forms or constrained
shapes. Allowable data models are binomial and Poisson.

Table 1: Summary of the models available in the CARBayesST package together with the
equation numbers defining them mathematically in this vignette.
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the simplest in terms of parsimony, and thus missing (NA) values are allowed in the response
data (Y) for these models, and are estimated using data augmentation (Tanner and Wong
1987). Missing values are not allowed in the remaining models as they have more complex
forms, and exploratory simulated-based testing showed that missing values could not be well
recovered in these cases.

ST.CARlinear()

This model is a modification of that proposed by Bernardinelli et al. (1995), and estimates
autocorrelated linear time trends for each areal unit. Thus it is appropriate if the goal of the
analysis is to estimate which areas are exhibiting increasing or decreasing (linear) trends in
the response over time. The full model specification is given below.

ψkt = β1 + φk + (α+ δk)
(t− t̄)

N
, (2)

φk|φ−k,W ∼ N

(

ρint

∑K
j=1wkjφj

ρint

∑K
j=1wkj + 1 − ρint

,
τ2

int

ρint

∑K
j=1wkj + 1 − ρint

)

,

δk|δ−k,W ∼ N

(

ρslo

∑K
j=1wkjδj

ρslo

∑K
j=1wkj + 1 − ρslo

,
τ2

slo

ρslo

∑K
j=1wkj + 1 − ρslo

)

,

τ2
int, τ

2
slo ∼ Inverse-Gamma(a, b),

ρint, ρslo ∼ Uniform(0, 1),

α ∼ N(µα, σ
2
α),

where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φK) and δ−k = (δ1, . . . , δk−1, δk+1, . . . , δK). Here t̄ =
(1/N)

∑N
t=1 t, and the linear temporal trend t∗ = (t− t̄)/N runs over a centred unit interval.

Thus areal unit k has its own linear time trend, with a spatially varying intercept β1 +φk and
a spatially varying slope α+ δk. Note, the β1 term comes from the covariate component x⊤

ktβ

in (1). The random effects φ = (φ1, . . . , φK) and δ = (δ1, . . . , δK) are modelled as spatially
autocorrelated by the CAR prior proposed by Leroux, Lei, and Breslow (2000), and are mean
centred, that is

∑K
k=1 φk =

∑K
k=1 δk = 0. Here (ρint, ρslo) are spatial dependence parameters,

with values of one corresponding to strong spatial smoothness that is equivalent to the intrinsic
CAR prior proposed by Besag et al. (1991), while values of zero correspond to independence
(for example if ρslo = 0 then δk ∼ N(0, τ2

slo)). Flat uniform priors on the unit interval are
specified for the spatial dependence parameters (ρint, ρslo), while conjugate inverse-gamma
and Gaussian priors are specified for the random effects variances (τ2

int, τ
2
slo) and the over-

all slope parameter α respectively. The corresponding hyperparameters (a, b, µα, σ
2
α) can be

chosen by the user, and the default values are (a = 1, b = 0.01, µα = 0, σ2
α = 1000), which

correspond to weakly informative prior distributions. Alternatively, the dependence parame-
ters (ρint, ρslo) can be fixed at values in the unit interval [0, 1] rather than being estimated,
by specifying arguments (ρint, ρslo) in the ST.CARlinear() function. Finally, missing (NA)
values are allowed in the response data Y for this model.

ST.CARanova()

The model is a modification of that proposed by Knorr-Held (2000), and decomposes the
spatio-temporal variation in the data into 3 components, an overall spatial effect common
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to all time periods, an overall temporal trend common to all spatial units, and a set of
independent space-time interactions. This model is appropriate if the goal is to estimate
overall time trends and spatial patterns, and the model is given by.

ψkt = φk + δt + γkt, (3)

φk|φ−k,W ∼ N

(

ρS

∑K
j=1wkjφj

ρS

∑K
j=1wkj + 1 − ρS

,
τ2

S

ρS

∑K
j=1wkj + 1 − ρS

)

,

δt|δ−t,D ∼ N

(

ρT

∑N
j=1 dtjδj

ρT

∑N
j=1 dtj + 1 − ρT

,
τ2

T

ρT

∑N
j=1 dtj + 1 − ρT

)

,

γkt ∼ N(0, τ2
I ),

τ2
S , τ

2
T , τ

2
I ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1).

Here the spatio-temporal autocorrelation is modelled by a common set of spatial random
effects φ = (φ1, . . . , φK) and a common set of temporal random effects δ = (δ1, . . . , δN ), and
both are modelled by the CAR prior proposed by Leroux et al. (2000). Additionally, the model
can incorporate an optional set of independent space-time interactions γ = (γ11, . . . , γKN ),
which can be specified by the argument interaction=TRUE (the default) in the function call.
All sets of random effects are mean centred. Fixed uniform (ρS , ρT ) and conjugate (τ2

S , τ
2
T , τ

2
I )

priors are specified for the remaining parameters, and the default specifications for the latter
are (a = 1, b = 0.01). Alternatively, the dependence parameters (ρS , ρT ) can be fixed at
values in the unit interval [0, 1] rather than being estimated in the model, for full details see
the help file for this function. Finally, missing (NA) values are allowed in the response data Y
for this model.

ST.CARsepspatial()

The model is a generalisation of that proposed by Napier et al. (2016), and represents the data
by two components, an overall temporal trend, and separate spatial surfaces for each time
period that share a common spatial dependence parameter but have different spatial variances.
This model is appropriate if the goal is to estimate both a common overall temporal trend
and the extent to which the spatial variation in the response has changed over time. The
model specification is given below.

ψkt = φkt + δt, (4)

φkt|φ−kt,W ∼ N

(

ρS

∑K
j=1wkjφjt

ρS

∑K
j=1wkj + 1 − ρS

,
τ2

t

ρS

∑K
j=1wkj + 1 − ρS

)

,

δt|δ−t,D ∼ N

(

ρT

∑N
j=1 dtjδj

ρT

∑N
j=1 dtj + 1 − ρT

,
τ2

T

ρT

∑N
j=1 dtj + 1 − ρT

)

,

τ2
1 , . . . , τ

2
N , τ

2
T , ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1),

where φ−k,t = (φ1,t, . . . , φk−1,t, φk+1,t, . . . , φK,t). This model fits an overall temporal trend
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to the data δ = (δ1, . . . , δN ) that is common to all areal units, which is augmented with
a separate (uncorrelated) spatial surface φt = (φ1t, . . . , φKt) at each time period t. The
overall temporal trend and each spatial surface are modelled by the CAR prior proposed by
Leroux et al. (2000), and the latter have a common spatial dependence parameter ρS but
a temporally-varying variance parameter τ2

t . Thus the collection (τ2
1 , . . . , τ

2
N ) allows one to

examine the extent to which the magnitude of the spatial variation in the data has changed
over time. Note that here we fix ρS to be constant in time as it is not orthogonal to τ2

t , thus if
it varied then any changes in τ2

t would not directly correspond to changes in spatial variance
over time. As with all other models the random effects are zero-mean centred, while flat and
conjugate priors are specified for (ρS , ρT ) and (τ2

T , τ
2
1 , . . . , τ

2
N ) respectively. Alternatively, the

dependence parameters (ρS , ρT ) can be fixed at values in the unit interval [0, 1] rather than
being estimated in the model. Missing (NA) values are not allowed in the response data Y in
this model.

ST.CARar()

There are two versions of this model, which are based on either a first (AR(1)) or a second
(AR(2)) order temporal autoregressive process. The first order model is that proposed by
Rushworth et al. (2014), and represents the spatio-temporal structure with a multivariate
first order autoregressive process with a spatially autocorrelated precision matrix. The second
model extends this by using a multivariate second order autoregressive process with a spatially
autocorrelated precision matrix. These models are appropriate if one wishes to estimate the
evolution of the spatial random effects surface over time. The model specifications in both
cases are given below.

AR(1) model

ψkt = φkt, (5)

φt|φt−1 ∼ N
(

ρTφt−1, τ
2Q(W, ρS)−1

)

t = 2, . . . , N,

φ1 ∼ N
(

0, τ2Q(W, ρS)−1
)

,

τ2 ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1).

AR(2) model

ψkt = φkt, (6)

φt|φt−1,φt−2 ∼ N
(

ρT1
φt−1 + ρT2

φt−2, τ
2Q(W, ρS)−1

)

t = 3, . . . , N,

φ1,φ2 ∼ N
(

0, τ2Q(W, ρS)−1
)

,

τ2 ∼ Inverse-Gamma(a, b),

ρS ∼ Uniform(0, 1),

f(ρT1
, ρT2

) ∝ 1.
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Here φt = (φ1t, . . . , φKt) is the vector of random effects for time period t, which evolve over
time via a multivariate first or second order autoregressive process with temporal autoregres-
sive parameter ρT (AR(1) model) or (ρT1

, ρT2
) (AR(2) model). The choice between these two

options is made by the argument AR=1 or AR=2 within the function. Thus temporal auto-
correlation is induced via the mean while spatial autocorrelation is induced by the variance
τ2Q(W, ρS)−1. The corresponding precision matrix Q(W, ρS) was proposed by Leroux et al.

(2000) and corresponds to the CAR models used in the other models above. The algebraic
form of this matrix is given by

Q(W, ρS) = ρS [diag(W1) − W] + (1 − ρS)I, (7)

where 1 is the K × 1 vector of ones while I is the K × K identity matrix. In common with
all other models the random effects are zero-mean centred, while flat and conjugate inverse-
gamma priors are specified for (ρS , ρT , ρT1

, ρT2
) and τ2 respectively, with (a = 1, b = 0.01)

being the default hyperparameter values for the latter. The dependence parameters (ρS , ρT )
can be fixed at values in the unit interval [0, 1] rather than being estimated in the model,
while (ρT1

, ρT2
) can also be fixed if required. Finally, missing (NA) values are allowed in the

response data Y for this model.

ST.CARadaptive()

The model is that proposed by Rushworth et al. (2017), and is an extension of ST.CARar()

proposed by Rushworth et al. (2014) to allow for spatially adaptive smoothing. It is appro-
priate if one believes that the residual spatial autocorrelation in the response after accounting
for the covariates is consistent over time but has a localised structure. That is, it is strong in
some parts of the study region but weak in others. The model has the same autoregressive
random effects structure as the first order ST.CARar() model, namely:

ψkt = φkt, (8)

φt|φt−1 ∼ N
(

ρTφt−1, τ
2Q(W, ρS)−1

)

t = 2, . . . , N,

φ1 ∼ N
(

0, τ2Q(W, ρS)−1
)

,

τ2 ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1).

However, the random effects from ST.CARar() have a single level of spatial dependence that
is controlled by ρS . All pairs of adjacent areal units (for which wkj = 1) will have strongly
autocorrelated random effects if ρS is close to one, while no such spatial dependence will exist
anywhere if ρS is close to zero. However, real data may exhibit spatially varying dependencies,
as two adjacent areal units may exhibit similar values suggesting a value of ρS close to one,
while another adjacent pair may exhibit very different values suggesting a value of ρS close
to zero.

This model allows for localised spatial autocorrelation by allowing spatially neigh-
bouring random effects to be correlated (inducing smoothness) or conditionally independent
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(no smoothing), which is achieved by modelling the non-zero elements of the neighbour-
hood matrix W as unknown parameters, rather than assuming they are fixed at 1. For this
model W must be a binary matrix. These adjacency parameters are collectively denoted by
w+ = {wkj |k ∼ j}, where k ∼ j means areas (k, j) are neighbours and wkj = 1. Estimating
wkj ∈ w+ equal to zero means (φkt, φjt) are conditionally independent for all time periods
t given the remaining random effects, while estimating it close to one means they are corre-
lated. These adjacency parameters in w+ are each modelled on the unit interval, by assuming
a multivariate Gaussian prior distribution on the transformed scale v+ = log

(

w+/(1 − w+)
)

.
This prior is a shrinkage model with a constant mean µ and a diagonal variance matrix with
variance parameter ζ2, and is given by

f(v+|τ2
w, µ) ∝ exp



−
1

2τ2
w





∑

vik∈v
+

(vik − µ)2







 , (9)

τ2
w ∼ Inverse-Gamma(a, b).

The prior distribution for v+ assumes that the degree of smoothing between pairs of adjacent
random effects is not spatially dependent, which results from the work of Rushworth et al.

(2017). Under small values of τ2
w the elements of v+ are shrunk to µ, and here we follow

the work of Rushworth et al. (2017) and fix µ = 15 because it avoids numerical issues when
transforming between v+ and w+ and implies a prior preference for values of wkj close to
1. That is as τ2

w → 0 the prior becomes the global smoothing model ST.CARar(), where as
when τ2

w increases both small and large values in w+ are supported by the prior. As with the
other models the default values for the inverse-gamma prior for τ2

w are (a = 1, b = 0.01). It
is possible to fix ρS using the rho argument. For further details see Rushworth et al. (2017).
Missing (NA) values are not allowed in the response data Y in this model.

ST.CARlocalised()

The model was proposed by Lee and Lawson (2016), and augments the smooth spatio-
temporal variation in ST.CARar() with a piecewise constant intercept process. This model is
appropriate when the aim of the analysis is to identify clusters of areas that exhibit elevated
(or reduced) values of the response compared with their geographical and temporal neigh-
bours. This model captures any step-changes in the response via the mean function, and is
given by

ψkt = λZkt
+ φkt, (10)

φt|φt−1 ∼ N
(

ρTφt−1, τ
2Q(W)−

)

t = 2, . . . , N,

φ1 ∼ N
(

0, τ2Q(W)−
)

,

τ2 ∼ Inverse-Gamma(a, b),

ρT ∼ Uniform(0, 1),

where the ‘−’ in Q(W)− denotes a generalised inverse. The random effects φ = (φ1, . . . ,φT )
are modelled by a simplification of the ST.CARar() model with a first order autoregressive
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process where ρS = 1, which corresponds to the intrinsic CAR model proposed by Besag
et al. (1991). Note, for this model the inverse Q(W)−1 does not exist as the precision matrix
is singular. This simplification is made so that the random effects φ capture the globally
smooth spatio-temporal autocorrelation in the data, allowing the other component λZkt

to
capture localised clustering and step-changes. This second component is a piecewise constant
clustering or intercept process λZkt

. Spatially and temporally adjacent data points (Ykt, Yjs)
will be similar if they have the same intercept, that is if λZkt

= λZjs
, but exhibit a step-change

if they are have different intercepts, that is if λZkt
6= λZjs

. The piecewise constant intercept
or clustering process comprises at most G distinct levels, making this component a piecewise
constant intercept term. The G levels are ordered via the prior specification:

λj ∼ Uniform(λj−1, λj+1) for j = 1, . . . , G, (11)

where λ0 = −∞ and λG+1 = ∞. Here Zkt ∈ {1, . . . , G} and controls the assignment of the
(k, t)th data point to one of the G intercept levels. A penalty based approach is used to model
Zkt, where G is chosen larger than necessary and a penalty prior is used to shrink it to the
middle intercept level. This middle level is G∗ = (G + 1)/2 if G is odd and G∗ = G/2 if G
is even, and this penalty ensures that Zkt is only in the extreme low and high risk classes if
supported by the data. Thus G is the maximum number of distinct intercept terms allowed
in the model, and is not the actual number of intercept terms estimated in the model. The
allocation prior is independent across areal units but correlated in time, and is given by:

f(Zkt|Zk,t−1) =
exp(−δ[(Zkt − Zk,t−1)2 + (Zkt −G∗)2])
∑G

r=1 exp(−δ[(r − Zk,t−1)2 + (r −G∗)2])
for t = 2, . . . , N, (12)

f(Zk1) =
exp(−δ(Zk1 −G∗)2)

∑G
r=1 exp(−δ(r −G∗)2)

,

δ ∼ Uniform(1,m).

Temporal autocorrelation is induced by the (Zkt − Zk,t−1)2 component of the penalty, while
the (Zkt − G∗)2 component penalises class indicators Zkt towards the middle risk class G∗.
The size of this penalty and hence the amount of smoothing that is imparted on Z is con-
trolled by δ, which is assigned a uniform prior. The default value is m = 10, and full details
of this model can be found in Lee and Lawson (2016). Missing (NA) values are not allowed in
the response data Y in this model.

ST.CARclustrends()
The model is that proposed by Napier et al. (2019) and represents the data by two components,
an overall spatial pattern, and a mixture of temporal trend functions with fixed parametric
forms (e.g. linear, step-change) or constrained shapes (e.g. monotonically increasing). Note
here that due to identifiability issues, covariates are not allowed in this model, but offsets
(using the offset() function) are allowed. This model is appropriate if the goal is to identify
clusters of areas that exhibit similar temporal trends. The model specification is given below.
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ψkt = φk +
S
∑

s=1

ωksfs(t|γs), (13)

φk|φ−k,W, ρ, τ2 ∼ N

(

ρ
∑K

j=1wkjφj

ρ
∑K

j=1wkj + 1 − ρ
,

τ2

ρ
∑K

j=1wkj + 1 − ρ

)

,

τ2 ∼ Inverse-Gamma(a, b),

ρ ∼ Uniform(0, 1),

ωk = (ωk1, . . . , ωkS) ∼ Multinomial(1;λ),

λ = (λ1, . . . , λS) ∼ Dirichlet(α = (α1, . . . , αS)),

where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φK). This model fits an overall spatial pattern to the
data φ = (φ1, . . . , φK) that is common to all time periods, which is modelled by the CAR
prior proposed by Leroux et al. (2000). As with all other models the spatial random effects
are zero-mean centred, while flat and conjugate priors are specified for ρ and τ2 respectively
with (a = 1, b = 0.01) being the default values. The model clusters areas according to their
temporal trends where the S trends (f1(t|γ1), . . . , fS(tγS)) are user-specified and are given
in Table 2. An area k is assigned to one of the S candidate trends via the binary indicator
ωk = (ωk1, . . . , ωkS), where ωks = 1 if area k is assigned to trend s, and is zero otherwise.
Region-wide probabilities are associated with each candidate trend via λ = (λ1, . . . , λS),
and are assigned a weakly informative conjugate Dirichlet prior distribution (αi = 1 for
i = 1, . . . , S).

Trend Function R identifier

Constant f(t) = 0 Constant

Linear
decreasing f(t|γ) = γt LD
increasing f(t|γ) = γt LI

Known change point
peak f(t|γ) = γ1t+ γ2(t− t∗)+ CP
trough f(t|γ) = γ1t+ γ2(t− t∗)+ CT

Monotonic cubic splines
decreasing f(t|γ) = γ0t+

∑q
j=1

γj(t− t∗j )3
+ MD

increasing f(t|γ) = γ0t+
∑q

j=1
γj(t− t∗j )3

+ MI

Table 2: ST.CARclustrends() temporal trend functions. The shapes of the trend functions
come via the prior specifications of the γ’s. The known change point is denoted by t∗.

2.3. Inference

All models in this package are fitted in a Bayesian setting using Markov chain Monte Carlo
simulation. All parameters whose full conditional distributions have a closed form distribution
are Gibbs sampled, which includes the regression parameters (β) and the random effects (e.g.,
φ etc) in the Gaussian data models, as well as the variance parameters (e.g., τ2 etc) in all
models. The remaining parameters are updated using Metropolis or Metropolis-Hastings
steps, and the random effects in the binomial and Poisson data models are updated via the
simple Gaussian random walk Metropolis algorithm. The regression parameters in the Poisson
and binomial data models are updated in blocks of size 5 using either the simple Gaussian
random walk Metropolis algorithm or the Metropolis Adjusted Langevin Algorithm (MALA,
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Roberts and Rosenthal 1998). The default is to use simple random walk updates, but the
user can choose MALA by specifying MALA=TRUE in the function call. The overall functions
that implement the MCMC algorithms are written in R, while the computationally intensive
updating steps are written as computationally efficient C++ routines using the R package
Rcpp (Eddelbuettel and Francois 2011). Additionally, the sparsity of the neighbourhood
matrices W and D are utilised via their triplet forms when updating the random effects
within the algorithms, which increases the computational efficiency of the software.

One of the challenges of fitting Bayesian models using any software is determining when
the Markov chains have converged, and as a result how many samples to discard as the burn-
in period and then how many more to generate on which to base inference. Convergence can
be assessed using many metrics, the simplest of which is by eye, by viewing trace-plots of the
parameters that should be stationary and show random fluctuations around a single mean
level. In addition, CARBayesST presents the convergence diagnostic proposed by Geweke
(1992) for sample parameters when applying the print() function to a fitted model object,
which uses the geweke.diag() function from the coda package. This statistic is in the form
of a Z-score, and values between (-1.96, 1.96) are suggestive of convergence. A full discussion
of how many samples to generate, burn-in lengths and whether or not to thin the Markov
chains are beyond the scope of this vignette, and further details can be found in general texts
on Bayesian modelling such as Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2013).

3. Spatio-temporal models for multivariate areal unit data

This section extends the previous one by outlining the class of multivariate spatio-temporal
models that CARBayesST can implement. The study region and time frame comprising
K areal units for N consecutive time periods is the same as in the previous section. The
extension considered here is to model J > 1 outcome variables simultaneously, yielding a
multivariate spatio-temporal data structure. Let Yktj denote the outcome (response) variable
for the kth areal unit (k = 1, . . . ,K) in the tth time period (t = 1, . . . , N) for the jth
outcome (j = 1, . . . , J), while Oktj is a corresponding offset variable if required. Then letting
xkt = (xkt1, . . . , xktp) be a vector of p known covariates for areal unit k and time period t
that is common to all responses j = 1, . . . , J , CARBayesST can fit the following generalised
linear mixed model to these data.

Yktj |µktj ∼ f(yktj |µktj , ν
2
j ) for k = 1, . . . ,K, t = 1, . . . , N, j = 1, . . . , J, (14)

g(µktj) = x⊤
ktβj +Oktj + ψktj ,

β ∼ N(µβ ,Σβ).

The regression coefficients βj vary by response variable j, and Gaussian priors are assumed
for the regression parameters βj as before. The following data likelihood models are allowed:

• Binomial - Yktj ∼ Binomial(nktj , θktj) and ln(θktj/(1−θktj)) = x⊤
ktβj +Oktj +ψktj .

• Gaussian - Yktj ∼ N(µktj , ν
2
j ) and µktj = x⊤

ktβj +Oktj + ψktj .

• Poisson - Yktj ∼ Poisson(µktj) and ln(µktj) = x⊤
ktβj +Oktj + ψktj .
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As before, in the binomial model (nktj , θktj) respectively denote the number of trials and the
probability of success in each trial in area k, time period t and outcome j, while in the Gaussian
model ν2

j is the outcome specific observation variance. An inverse-gamma(a, b) prior is spec-
ified for each Gaussian variance ν2

j , and default hyperparameter values of (a = 1, b = 0.01)
are specified by the software but can be changed by the user. Currently, CARBayesST can
fit the following multivariate spatio-temporal random effects model.

MVST.CARar()

This model represents the random effects {ψktj} with a single set of random effects {φktj} that
are modelled as jointly correlated over time, space and outcome, so that ψktj = φktj . These
random effects must therefore induce (auto)correlations in time, space and between outcomes.
The entire set of random effects are denoted by φ = (φ1, . . . ,φN ), where φt = (φ1t, . . . ,φKt)
denotes the set of K × J random effects at time t, while φkt = (φkt1, . . . , φtkJ) denotes the
subset of these effects at the kth areal unit for all J outcomes. The general form of the model
is given by

φ ∼ N

(

0,
[

D(α) ⊗ Q(W, ρ) ⊗ Σ−1
]−1

)

, (15)

where ⊗ denotes a Kronecker product. The precision matrix is given by P(α, ρ,Σ) = D(α)⊗
Q(W, ρ) ⊗ Σ−1, where D(α)N×N controls the temporal autocorrelations, Q(W, ρ)K×K con-
trols the spatial autocorrelations and ΣJ×J captures the between outcome correlations. The
between outcome covariance matrix Σ is not assigned a specific structure, and is instead
assigned the following conjugate Inverse-Wishart prior distribution

Σ ∼ Inverse-Wishart(d,Ω). (16)

The default values for the hyperparameters are set at (d = J + 1,Ω = 0.01I) where I is the
identity matrix, and are chosen to ensure it is only weakly informative. Spatial autocorrelation
is modelled by the conditional autoregressive (CAR) prior proposed by Leroux et al. (2000)
in common with the univariate models, which corresponds to the following spatial precision
matrix

Q(W, ρ) = ρS(diag[W1] − W) + (1 − ρS)I. (17)

Thus ρS is again a global spatial dependence parameter, with a value of 0 corresponding to
spatial independence. In contrast, if ρS = 1 the model captures strong spatial autocorrelation
and simplifies to the intrinsic CAR model proposed by Besag et al. (1991). We enforce a non-
informative uniform prior on the unit interval for ρS , i.e. ρS ∼ Uniform(0, 1), which provides
equal prior weight for all allowable values of ρS and allows the data to play the dominant
role in estimating its value. Temporal autocorrelation is modelled using either first order or
second order autoregressive processes, which can be chosen by specifying AR=1 or AR=2 in the
function call. The model for φ from (15) in each case is described below.
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A - First-order autoregressive process

ψktj = φktj , (18)

φt|φt−1 ∼ N

(

ρTφt−1,
[

Q(W, ρS) ⊗ Σ−1
]−1

)

for t = 2, . . . , N,

φ1 ∼ N

(

0,
[

Q(W, ρS) ⊗ Σ−1
]−1

)

,

Σ ∼ Inverse-Wishart(d,Ω),

ρS ∼ Uniform(0, 1),

f(ρT ) ∝ 1.

B - Second-order autoregressive process

ψktj = φktj , (19)

φt|φt−1,φt−2 ∼ N

(

ρT1
φt−1 + ρT2

φt−2,
[

Q(W, ρS) ⊗ Σ−1
]−1

)

for t = 3, . . . , N,

φ1,φ2 ∼ N

(

0,
[

Q(W, ρS) ⊗ Σ−1
]−1

)

,

Σ ∼ Inverse-Wishart(d,Ω),

ρS ∼ Uniform(0, 1),

f(ρT1
, ρT2

) ∝ 1.

4. Loading and using the software

4.1. Loading the software

CARBayesST can be downloaded from the Comprehensive R Archive Network (CRAN, http:

//cran.r-project.org/) for Windows, Linux and macOS platforms. The package requires
R (≥ 3.0.0) and depends on packages MASS (Venables and Ripley 2002) and Rcpp (≥ 0.11.5).
Additionally, it imports functionality from the CARBayesdata (Lee 2016), coda (Plummer,
Best, Cowles, and Vines 2006), dplyr (Wickham and Francois 2015), gtools (Warnes, Bolker,
and Lumley 2018), leaflet (Cheng, Karambelkar, and Xie 2018), matrixcalc (Novomestky
2012), sp (Bivand, Pebesma, and Gomez-Rubio 2013), spam (Furrer and Sain 2010), spdep,
stats, testthat (Wickham 2011), truncdist (Novomestky and Nadarajah 2012), truncnorm

(Trautmann, Steuer, Mersmann, and Bornkamp 2014) and utils packages. Once installed it
can be loaded using the command library("CARBayesST"). The packages listed above are
automatically loaded for use in CARBayesST by the above call, but a complete spatial analysis
beginning with reading in and visualising the data, creating the neighbourhood matrix W,
and plotting the results requires a number of other packages.

http://cran.r-project.org/
http://cran.r-project.org/
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4.2. Using the software

The software can fit eight classes of model, and the main arguments common to all the models
are as follows.

• formula - A formula for the covariate part of the model using the syntax of the lm()

function. Offsets can be included here using the offset() function. For the univariate
models the response and each covariate should be vectors of length (KN)×1, where K is
the number of spatial units and N is the number of time periods. Each vector should be
ordered so that the first K data points are the set of all K spatial locations at time 1, the
next K are the set of spatial locations for time 2 and so on. For the multivariate models
the response and the offset (if included) should be matrices of dimension (KN) × J ,
where K is the number of spatial units, N is the number of time periods and J is the
number of different variables. Each column of the response and offset matrices relates
to a different outcome variable. The covariates should each be a (KN) × 1 vector, and
different regression parameters are estimated for each of the J variables.

• family - One of either "binomial", "gaussian" or "poisson".

• trials - This is a vector (univariate models) or matrix (multivariate models) the same
size and in the same order as the response containing the total number of trials for each
area and time period. This is only needed if family="binomial".

• W - A K ×K symmetric and non-negative neighbourhood matrix whose row sums must
all be positive.

• burnin - The number of MCMC samples to discard as the burn-in period.

• n.sample - The number of MCMC samples to generate.

• thin - The level of thinning to apply to the MCMC samples to reduce their temporal
autocorrelation. Defaults to 1 (no thinning).

When a model has been fitted in CARBayesST, the software provides the following summary
extractor functions:

• coef() - returns the estimated (posterior median) regression coefficients.

• fitted() - returns the fitted values based on posterior means.

• logLik() - returns the estimated loglikelihood based on posterior means.

• model.matrix() - returns the design matrix of covariates.

• print() - prints a summary of the fitted model to the screen, including both parameter
summaries and convergence diagnostics for the MCMC run.

• residuals() - returns either the “response" (raw), or “pearson", residuals from the
model (based on posterior means).
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Additionally, the CARBayes functions summarise.samples() and summarise.lincomb() can
be applied to CARBayesST models to summarise the results. The software updates the user
on its progress to the R console, which allows the user to monitor the function’s progress.
However, using the verbose=FALSE option will disable this feature. Once run, each model
returns a list object with the following components.

• summary.results - A summary table of selected parameters that is presented when
using the print() function. The table includes the posterior median (Median) and 95%
credible interval (2.5%, 97.5%), the effective number of independent samples using
the effectiveSize() function from the coda package (n.effective), and the con-
vergence diagnostic proposed by Geweke (1992) and implemented in the coda package
(Geweke.diag). This diagnostic takes the form of a Z-score, so that convergence is
suggested by the statistic being within the range (-1.96, 1.96).

• samples - A list containing the MCMC samples from the model, where each element in
the list is a matrix. The names of these matrix objects correspond to the parameters
defined in Section 2 of this vignette, and each column contains the set of samples for
a single parameter. For example, for ST.CARlinear() the (tau2, rho) elements of
the list have columns ordered as (τ2

int, τ
2
slo) and (ρ2

int, ρ
2
slo) respectively. Similarly, for

ST.CARanova() the (tau2, rho) elements of the list have columns ordered as (τ2
S , τ

2
T , τ

2
I )

(the latter only if interaction=TRUE) and (ρ2
S , ρ

2
T ) respectively. Finally, each model

returns samples from the posterior distribution of the fitted values for each data point
(fitted), and the missing values in the response variable (Y).

• fitted.values - For the univariate models a vector of fitted values based on poste-
rior means for each area and time period in the same order as the data Y. For the
multivariate models a matrix of fitted values where each column relates to a single
outcome.

• residuals - For the univariate models a matrix of 2 types of residuals in the same
order as the response. The 2 columns of this matrix correspond to “respons” (raw),
and “pearson”, residuals. For the multivariate models a list of matrices corresponding
to “response” (raw), and “pearson”, residuals. For each matrix each column relates to
a single outcome.

• modelfit - Model fit criteria including the Deviance Information Criterion (DIC, Spiegel-
halter, Best, Carlin, and Van der Linde 2002) and its corresponding estimated effec-
tive number of parameters (p.d), the Watanabe-Akaike Information Criterion (WAIC,
Watanabe 2010) and its corresponding estimated number of effective parameters (p.w),
the Log Marginal Predictive Likelihood (LMPL, Congdon 2005) and the loglikelihood.
The best fitting model is one that minimises the DIC and WAIC but maximises the
LMPL. If the response data contains missing data, the DIC is computed based on only
the observed data (see Celeux, Forbes, Robert, and Titterington (2006)).

• accept - The acceptance probabilities for the parameters.

• localised.structure - This element is NULL except for the models ST.CARadaptive()

and ST.CARlocalised(). For ST.CARadaptive() this element is a list with 2 K × K
matrices, Wmn and W99, which summarise the estimated adjacency relationships. Wmn
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contains the posterior median for each wkj element estimated in the model for adjacent
areal units, while W99 contains indicator variables for whether P(wjk < 0.5|Y) > 0.99.
For both matrices, elements corresponding to non-adjacent pairs of areas have NA values.
For ST.CARlocalised() this element is a vector of lengthKT×1, and gives the posterior
median class (Zkt value) that each data point is assigned to. This vector is in the same
order as the data Y.

• formula - The formula (as a text string) for the covariate and offset parts of the model.

• model - A text string describing the model that has been fitted.

• X - The design matrix of covariates inherited from the formula argument.

4.3. Estimating the neighbourhood matrix

The package also contains functionality (W.estimate()) to estimate an appropriate neigh-
bourhood matrix WE for the data being modelled, rather than relying on a purely geograph-
ical W constructed, for example, by the border sharing rule. Using a neighbourhood matrix
estimated for the data at hand will likely lead to improved estimation of covariate effects,
random effects and fitted values. It will also allow you to identify boundaries in the random
effects surface that separate 2 geographically adjacent areas that have very different values.
The matrix is estimated using a graph-based optimisation algorithm, and full details can be
found in Lee and Meeks (2020). In short, the algorithm uses a vector of spatial data observa-
tions and a binary baseline neighbourhood matrix W, the latter being constructed using the
border sharing rule. The estimated neighbourhood matrix is then constructed by removing
neighbour relations (i.e. setting wEij

= wEji
= 0) if they are not appropriate for the data.

Note, new edges not in the initial W matrix cannot be added when creating WE .

5. Example 1 - Quantifying the effect of air pollution on health

This example is an ecological regression problem, whose aim is to estimate the effect that air
pollution concentrations have on respiratory disease risk.

5.1. Data and exploratory analysis

Scotland is split into 14 regional health boards, and this study focuses on the Greater Glasgow
and Clyde health board containing the city of Glasgow and a population of around 1.2 million
people. This health board is split into K = 271 Intermediate Geographies (IG) (also known
as Intermediate Zones (IZ)), which are a key geography for the distribution of small-area
statistics in Scotland. The available data span N = 5 years between 2007 and 2011 for each
of theK = 271 IGs. The disease and covariate data are freely available from Scottish Statistics
(http://statistics.gov.scot/), while the particulate matter pollution concentrations are
available from the Department for the Environment, Food and Rural Affairs (DEFRA, https:

//uk-air.defra.gov.uk/data/pcm-data).

The disease data relate to the observed and expected numbers of respiratory related
hospital admissions in each IG and year, which for the kth IG and tth year are denoted by

http://statistics.gov.scot/
https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/data/pcm-data
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(Ykt, ekt) respectively. Here the expected numbers of hospital admissions control for the vary-
ing population sizes and demographic structures (e.g., age and sex profile) in each IG and year,
and are computed via indirect standardisation. The Poisson model, Ykt ∼ Poisson(ektθkt) is
typically used to model these data, where θkt is the risk, relative to ekt, of disease in IG
k and year t. For example, a value of 1.2 corresponds to a 20% increased risk of disease.
Operationally, ekt is included as an offset term in the model on the linear predictor (natural
log) scale, that is Okt = ln(ekt) in (1).

The pollution data comprise yearly average modelled concentrations of particulate
matter less than 10 microns (PM10), which are available on a 1 kilometre square grid and
are produced by the numerical model described in Ricardo-AEA (2015). These 1 kilometre
square estimates are spatially misaligned with the irregularly shaped polygonal IGs at which
the disease data are available, and thus simple averaging is used to produce IG level PM10

estimates. Finally, we have 2 potential confounders to include in the model, both of which
are measures of socio-economic deprivation (poverty) which is a major factor influencing
population health. The first is the average property price in each IG and year (in hundreds
of thousands), while the second is the proportion of the working age population who are in
receipt of job seekers allowance (JSA), a benefit paid to individuals who are unemployed and
seeking employment.

These data are available in the CARBayesdata package in the object pollutionhealthdata,
and the package also contains the spatial polygon information for the Greater Glasgow and
Clyde health board study region in the object GGHB.IG as a SpatialPolygonsDataFrame

object. These data can be loaded using the following commands.

R> library("CARBayesdata")

R> library("sp")

R> data("GGHB.IG")

R> data("pollutionhealthdata")

The data frame pollutionhealthdata has the following structure

R> head(pollutionhealthdata)

IG year observed expected pm10 jsa price

1 S02000260 2007 97 98.24602 14.02699 2.25 1.150

2 S02000261 2007 15 45.26085 13.30402 0.60 1.640

3 S02000262 2007 49 92.36517 13.30402 0.95 1.750

4 S02000263 2007 44 72.55324 14.00985 0.35 2.385

5 S02000264 2007 68 125.41904 14.08074 0.80 1.645

6 S02000265 2007 24 55.04868 14.08884 1.25 1.760

where the first column labelled IG is the set of unique identifiers for each IG, while observed

and expected are respectively the observed (e.g. Ykt) and expected (e.g. Ekt) numbers of
hospital admissions due to respiratory disease. An exploratory measure of disease risk is
the standardised morbidity ratio (SMR), which for the kth IG and tth year is computed as
SMRkt = Ykt/Ekt. However, due to the natural log link function in the Poisson model, the
covariates are related in the model to the natural log of the SMR. Therefore the code below
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Figure 1: Scatterplot of the disease, pollution and covariate data.

adds the SMR and the natural log of the SMR to the data set using functionality of the dplyr

package.

R> library(dplyr)

R> pollutionhealthdata <- pollutionhealthdata %>% mutate(

+ SMR = pollutionhealthdata$observed / pollutionhealthdata$expected,

+ logSMR = log(pollutionhealthdata$observed / pollutionhealthdata$expected))

Then we visualise the relationships in the data with a scatterplot matrix using functionality
from the GGally package.

R> library(GGally)

R> ggpairs(pollutionhealthdata, columns=c(9, 5:7))

The pairs plot shown in Figure 1 shows respectively positive and negative relationships be-
tween the natural log of SMR and the two deprivation covariates jsa and price, in both
cases suggesting that increasing levels of poverty are related to an increased risk of respira-
tory hospitalisation. There also appears to be a weak positive relationship between log(SMR)
and PM10, while the only relationship that exists between the covariates is a negative non-
linear one between jsa and price. Next, it is of interest to visualise the average spatial
pattern in the SMR over all five years, and the data can be appropriately aggregated using
the summarise() function from the dplyr package using the code below. The final line adds
the aggregated averages to the GGHB.IG SpatialPolygonsDataFrame object.
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Figure 2: Map showing the average SMR over all five years from 2007 to 2011.

R> group_IG <- group_by(pollutionhealthdata, IG)

R> SMR.av <- summarise(group_IG, SMR.mean = mean(SMR))

R> GGHB.IG@data$SMR <- SMR.av$SMR.mean

A spatial map of the aggregated SMR variable can be overlaid on an OpenStreetMap using
the functionality of the leaflet package. However, first the GGHB.IG object needs to have
its coordinate reference system changed to longitude and latitude as this is what the leaflet

package requires, which can be done using the following R code.

R> library(rgdal)

R> GGHB.IG <- spTransform(GGHB.IG, CRS("+proj=longlat +datum=WGS84 +no_defs"))

Then a map of SMR can be drawn using the following code.

R> library(leaflet)

R> colours <- colorNumeric(palette = "YlOrRd", domain = GGHB.IG@data$SMR)

R> map1 <- leaflet(data=GGHB.IG) %>%

+ addTiles() %>%

+ addPolygons(fillColor = ~colours(SMR), weight=1, color="",

+ fillOpacity = 0.7) %>%

+ addLegend(pal = colours, values = GGHB.IG@data$SMR, opacity = 1,

+ title="SMR") %>%

+ addScaleBar(position="bottomleft")

R> map1

The map is shown in Figure 2, where the yellow shaded areas are low risk (SMR<1) while
the red areas exhibit elevated risks (SMR>1). The map shows that the main high-risk areas
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are in the east-end of Glasgow in the east of the study region, and the Greenock area in the
far west of the region on the lower bank of the river Clyde. The spatio-temporal models we
fit to these data require the neighbourhood matrix W and a listw object variant of the same
spatial information, the latter being used in a hypothesis test for spatial autocorrelation.
Both of these quantities can be computed from the SpatialPolygonsDataFrame object using
functionality from the spdep package as follows.

R> library("spdep")

R> W.nb <- poly2nb(GGHB.IG, row.names = SMR.av$IG)

R> W.list <- nb2listw(W.nb, style = "B")

R> W <- nb2mat(W.nb, style = "B")

Here W is a binary K×K neighbourhood matrix computed based on sharing a common border,
and W.list is the listw object variant of this spatial information.

5.2. Assessing the presence of residua spatial autocorrelation

The spatio-temporal models in CARBayesST allow for any remaining spatio-temporal auto-
correlation in the disease data after the effects of the known covariates have been accounted
for. Therefore, we assess the presence of spatial autocorrelation in the residuals from a simple
overdispersed Poisson log-linear model that incorporates the covariate effects. This model is
fitted using the code:

R> formula <- observed ~ offset(log(expected)) + jsa + price + pm10

R> model1 <- glm(formula = formula, family = "quasipoisson",

+ data = pollutionhealthdata)

R> resid.glm <- residuals(model1)

R> summary(model1)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.59752496 0.054333524 -10.99735 5.287385e-27

jsa 0.06041994 0.003231475 18.69732 1.467196e-69

price -0.28293191 0.018292049 -15.46748 8.225472e-50

pm10 0.04174701 0.003282156 12.71938 4.344434e-35

R> summary(model1)$dispersion

[1] 4.399561

The results show significant effects of all three covariates on disease risk, as well as substan-
tial overdispersion with respect to the Poisson equal mean and variance assumption (over
dispersion parameter equal to around 4.40). To quantify the presence of spatial autocorre-
lation in the residuals from this model we compute Moran’s I statistic (Moran 1950) and
conduct a permutation test for each year of data separately. The permutation test has the
null hypothesis of no spatial autocorrelation and an alternative hypothesis of positive spatial
autocorrelation, and is conducted using the moran.mc() function from the spdep package.
The test can be implemented for the first year of residuals (2007) using the code below.
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R> moran.mc(x = resid.glm[1:271], listw = W.list, nsim = 10000)

Monte-Carlo simulation of Moran I

data: resid.glm[1:271]

weights: W.list

number of simulations + 1: 10001

statistic = 0.10358, observed rank = 9976, p-value = 0.0025

alternative hypothesis: greater

The estimated Moran’s I statistic is 0.10358 and the p-value is less than 0.05, suggesting strong
evidence of unexplained spatial autocorrelation in the residuals from 2007 after accounting
for the covariate effects. Similar results were obtained for the other years and are not shown
for brevity. We note that residual temporal autocorrelation could be assessed similarly for
each IG, for example by computing the lag-1 autocorrelation coefficient, but with only 5 time
points the resulting estimates would not be reliable. These results show that the assumption
of independence is not valid for these data, and that spatio-temporal autocorrelation should
be allowed for when estimating the covariate effects.

5.3. Spatio-temporal modelling with CARBayesST

We allow for this residual autocorrelation by applying the ST.CARar() model with a first
order temporal autoregressive structure to the data, details of which are given in Section 2.
The model can be fitted with the following one-line function call, and we note that all data
vectors (response, offset and covariates) have to be ordered so that the first K data points
relate to all spatial units at time 1, the next K data points to all spatial units at time 2 and
so on. Here we fit the model 3 times which gives results from 3 independent Markov chains.

R> library("CARBayesST")

R> chain1 <- ST.CARar(formula = formula, family = "poisson",

+ data = pollutionhealthdata, W = W, burnin = 20000, n.sample = 220000,

+ thin = 100, AR=1)

R> chain2 <- ST.CARar(formula = formula, family = "poisson",

+ data = pollutionhealthdata, W = W, burnin = 20000, n.sample = 220000,

+ thin = 100, AR=1)

R> chain3 <- ST.CARar(formula = formula, family = "poisson",

+ data = pollutionhealthdata, W = W, burnin = 20000, n.sample = 220000,

+ thin = 100, AR=1)

In the above code the covariate and offset component defined by formula is the same as for
the simple Poisson log-linear model fitted earlier, and the neighbourhood matrix W is also
defined above. The ST.CARar() model is run for three parallel Markov chains, each of which
are run for 220,000 MCMC samples with the first 20,000 samples removed as the burn-in
period. The samples are then thinned by 100 to reduce the autocorrelation in the Markov
chains, resulting in 6,000 samples for inference. A summary of one of the Markov chain runs
can be visualised using the print() function developed for CARBayesST as shown below.
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R> print(chain1)

#################

#### Model fitted

#################

Likelihood model - Poisson (log link function)

Latent structure model - Autoregressive CAR model

Regression equation - observed ~ offset(log(expected)) + jsa + price + pm10

############

#### Results

############

Posterior quantities for selected parameters and DIC

Median 2.5% 97.5% n.effective Geweke.diag

(Intercept) -0.6715 -0.8478 -0.4923 668.8 -1.1

jsa 0.0646 0.0547 0.0753 141.5 -1.7

price -0.1961 -0.2389 -0.1525 1334.9 1.4

pm10 0.0357 0.0231 0.0469 573.2 1.3

tau2 0.0584 0.0486 0.0686 1766.7 -0.8

rho.S 0.5536 0.3970 0.7133 1761.7 -1.1

rho.T 0.7584 0.6989 0.8174 1995.3 -0.8

The output from the print() function is split into two sections, the first part (Model fitted)
describes the model that was fitted, while the second part (Results) presents a summary of
the numerical results. This summary includes parameter estimates (column Median), 95%
credible intervals (the columns headed 2.5% and 97.5%) and convergence diagnostics (columns
n.effective and Geweke.diag) for certain parameters, as well as overall model fit measures
such as the DIC. The model object chain1 is a list, and details of its elements are described
in Section 3 of this paper. A list object containing the MCMC samples for each individual
parameter and the fitted values are stored in chain1$samples, and each element of this list
corresponds to a different group of parameters and is stored as a mcmc object from the coda

package. Applying the summary() function to this object yields:

R> summary(chain1$samples)

Length Class Mode

beta 8000 mcmc numeric

phi 2710000 mcmc numeric

rho 4000 mcmc numeric

tau2 2000 mcmc numeric

fitted 2710000 mcmc numeric

Y 1 mcmc logical

Here the Y object is NA as there are no missing Ykt observations in this data set. If there had
been say m missing values, then the Y component of the list would have contained m columns,
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Figure 3: Convergence of the Markov chains.

with each one containing posterior predictive samples for one of the missing observations.
Before making inference from the model you have to ensure the Markov chains appear to
have converged, and one single chain diagnostic is that proposed by Geweke and given in the
model summary above (Geweke.diag). Another method is a traceplot comparing the results
from the multiple chains, which for the regression parameters (beta) can be produced as
follows using functionality from the coda package.

R> library(coda)

R> beta.samples <- mcmc.list(chain1$samples$beta, chain2$samples$beta,

+ chain3$samples$beta)

R> plot(beta.samples)

The plot is shown in Figure 3 and superficially shows good mixing between and convergence
of the chains, as they all have very similar means and show little trend from left to right. The
other commonly used diagnostic is the potential scale reduction factor (PSRF, Gelman et al.

(2013)), and a value less than 1.1 is suggestive of convergence. The PSRF is computed using
the code

R> gelman.diag(beta.samples)

Potential scale reduction factors:

Point est. Upper C.I.

[1,] 1.00 1.00

[2,] 1.01 1.04

[3,] 1.00 1.02
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[4,] 1.00 1.01

Multivariate psrf

1.02

which again suggests that the 3 chains are sufficient for making inference. The key interest
in this analysis is the effects of the covariates on disease risk, which for Poisson models are
typically presented as relative risks. The relative risk for an ǫ unit increase in a covariate with
regression parameter βs is given by the transformation exp(ǫβs), and a relative risk of 1.02
corresponds to a 2% increased risk if the covariate increased by ǫ. The code below computes
the posterior median and 95% credible intervals for the relative risks associated with a one
unit increase in each covariate, which are all realistic increases given the variation observed
in the data in Figure 1.

R> beta.samples <- rbind(chain1$samples$beta[ ,-1], chain2$samples$beta[ ,-1],

+ chain3$samples$beta[ ,-1])

R> t(round(apply(exp(beta.samples), 2, quantile, c(0.5, 0.025, 0.975)), 3))

50% 2.5% 97.5%

[1,] 1.067 1.056 1.078

[2,] 0.822 0.789 0.859

[3,] 1.036 1.023 1.048

The output above shows that the posterior median and 95% credible interval for the relative
risk of a 1µgm−3 increase in PM10 is 1.036 (1.023, 1.048), suggesting that such an increase
corresponds to 3.5% additional hospital admissions. The corresponding relative risk for a
one percent increase in JSA is 1.067 (1.056, 1.078), while for a one hundred thousand pounds
increase in property price (the units for the property price data were in hundreds of thousands)
the risk is 0.822 (0.789, 0.859). Thus, we find that increased air pollution concentrations are
related, at this ecological level, to increased respiratory hospitalisation, while decreased socio-
economic deprivation, as measured by both property price and JSA, is related to decreased
risks of hospital admission.

6. Example 2 - Monitoring the changing state of the housing market

This second example focuses on the state of the housing market, specifically property sales,
and aims to quantify its changing trend over time in an era that encompassed the global
financial crisis that began in late 2007.

6.1. Data and exploratory analysis

The study region is the same as for the first example, namely the set of K = 271 intermediate
geographies that make up the Greater Glasgow and Clyde health board. The data also
come from the same source (Scottish Statistics, http://statistics.gov.scot/), and include
yearly observations of the number of property sales Ykt in each IG (indexed by k) and year

http://statistics.gov.scot/
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(indexed by t). Additionally, we have the total number of properties nkt in each IG and
year that will be used in the model as the offset term. We use the following Poisson log-
linear model for these data, Ykt ∼ Poisson(nktθkt), where θkt is the rate of property sales as a
proportion of the total number of properties. We note that we have not used a binomial model
here as a single property could sell more than once in a year, meaning that each property
does not constitute a Bernoulli trial. Thus θkt is not strictly the proportion of properties
that sell in a year, but is on approximately the same scale for interpretation purposes. These
data are available in the CARBayesdata package in the object salesdata, as is the spatial
polygon information for the Greater Glasgow and Clyde health board study region (in the
object GGHB.IG). These data can be loaded using the following commands.

R> library("CARBayesdata")

R> library("sp")

R> data("GGHB.IG")

R> data("salesdata")

R> head(salesdata)

IG year sales stock

1 S02000260 2003 122 2002

2 S02000261 2003 54 908

3 S02000262 2003 83 1693

4 S02000263 2003 65 1198

5 S02000264 2003 124 2305

6 S02000265 2003 37 1109

The data.frame salesdata contains 4 columns, the intermediate geography code (IG), the
year the data relate to (year), the number of property sales (sales, Ykt) and the total number
of properties (stock, nkt). We visualise the temporal trend in the raw rate of property sales
as a proportion of the total number of properties using boxplots via the ggplot2 package as
shown below.

R> salesdata <- salesdata %>% mutate(salesprop = salesdata$sales / salesdata$stock)

R> library(ggplot2)

R> ggplot(salesdata, aes(x = factor(year), y = salesprop)) +

+ geom_boxplot(fill="red", alpha=0.7) +

+ scale_x_discrete(name = "Year") +

+ scale_y_continuous(name = "Sales proportion") +

+ theme(text=element_text(size=16), plot.title=element_text(size=18, face="bold"))

This produces the boxplot shown in Figure 4, where the global financial crisis began in 2007.
The plot shows a clear step-change in property sales between 2007 and 2008, as sales were
increasing up to and including 2007 before markedly decreasing in subsequent years. Sales
in the last year of 2013 show slight evidence of increasing relative to the previous 4 years,
possibly suggesting the beginning of an upturn in the market. Also there appears to be a
change in the level of spatial variation from year to year, with larger amounts of spatial
variation observed before the global financial crisis. The spatial pattern in the average (over
time) rate of property sales as a proportion of the total number of properties is computed
using the code below.
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Figure 4: Boxplots showing the temporal trend in the raw rate of property sales as a proportion
of the total number of properties between 2003 and 2013.

R> library(dplyr)

R> group_IG <- group_by(salesdata, IG)

R> salesprop <- summarise(group_IG, salesproprtion.mean = mean(salesprop))

R> GGHB.IG@data$sales <- salesprop$salesproprtion.mean

This variable can be mapped using the code below, and the result is displayed in Figure 5.

R> library(rgdal)

R> GGHB.IG <- spTransform(GGHB.IG, CRS("+proj=longlat +datum=WGS84 +no_defs"))

R> library(leaflet)

R> colours <- colorNumeric(palette = "YlOrRd", domain = GGHB.IG@data$sales)

R> map1 <- leaflet(data=GGHB.IG) %>%

+ addTiles() %>%

+ addPolygons(fillColor = ~colours(sales), color="", weight=1,

+ fillOpacity = 0.7) %>%

+ addLegend(pal = colours, values = GGHB.IG@data$sales, opacity = 1,

+ title="Sales") %>%

+ addScaleBar(position="bottomleft")

R> map1

The map shows a largely similar pattern to that seen for respiratory disease risk in Fig-
ure 2, with areas that exhibit relatively high sales rates largely being the same ones that
exhibit relatively low disease risk. Figures 4 and 5 highlight the change in temporal dy-
namics and the spatial structure in property sales in Glasgow. Therefore we now apply the
ST.CARsepspatial() model from CARBayesST and proposed by Napier et al. (2016) to more
formally quantify these features. This model is chosen because it allows the level of spatial
variation to change each year, a feature of the data that is illustrated by Figure 4.
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Figure 5: Map showing the average (between 2003 to 2013) raw rate of property sales as a
proportion of the total number of properties.

6.2. Quantifying the changing temporal trends and spatial patterns in sales

rates

Before fitting the model we need to create the neighbourhood matrix using the following code:

R> library("spdep")

R> W.nb <- poly2nb(GGHB.IG, row.names = salesprop$salesproprtion.mean)

R> W <- nb2mat(W.nb, style = "B")

Then the model can be fitted using the code below, where inference this time is based on
2,000 post burn-in and thinned MCMC samples from 1 Markov chain.

R> library("CARBayesST")

R> formula <- sales ~ offset(log(stock))

R> chain1 <- ST.CARsepspatial(formula = formula, family = "poisson",

+ data = salesdata, W = W, burnin = 20000, n.sample = 220000,

+ thin = 100)

Convergence of the Markov chain can be assessed using traceplots and the Geweke diagnostic
outlined in the previous section, which are not shown for brevity. Also not shown for brevity
is a summary of the fitted model, which as before can be obtained using the print() function.
The model represents the estimated rate of property sales by

θkt = exp(β1 + φkt + δt),
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which is the sum of an overall intercept term β1, a space-time effect φkt with a time period
specific variance, and a region-wide temporal trend δt. The mean and standard deviation of
{θkt} over space for each year is computed by the following code, which produces the posterior
median and a 95% credible interval for each quantity for each year.

R> trend.median <- data.frame(Year=2003:2013, array(NA, c(11, 3)))

R> colnames(trend.median) <- c("Year", "Median", "LCI", "UCI")

R> trend.sd <- data.frame(Year=2003:2013, array(NA, c(11, 3)))

R> colnames(trend.sd) <- c("Year", "Median", "LCI", "UCI")

R> for(i in 1:11)

+ {

+ posterior <- exp(chain1$samples$phi[ , ((i-1) * 271 + 1):(i * 271)] +

+ matrix(rep(chain1$samples$beta + chain1$samples$delta[ , i], 271),

+ ncol = 271, byrow = FALSE))

+ trend.median[i, 2:4] <- quantile(apply(posterior, 1, mean),

+ c(0.5, 0.025, 0.975))

+ trend.sd[i, 2:4] <- quantile(apply(posterior, 1, sd),

+ c(0.5, 0.025, 0.975))

+ }

The temporal trends in the average rate of property sales and its level of spatial variation can
be plotted by the following code, and the result is displayed in Figure 6.

R> medianplot <- ggplot(aes(x = factor(year), y = salesprop),

+ data=salesdata) +

+ geom_jitter(color="blue") +

+ scale_x_discrete(name = "Year") +

+ scale_y_continuous(name = "Average sales rate") +

+ geom_line(data=trend.median, mapping=aes(x=factor(Year), y=Median,

+ group=1), colour="red", lwd=1) +

+ geom_line(data=trend.median, mapping=aes(x=factor(Year), y=LCI,

+ group=1)) +

+ geom_line(data=trend.median, mapping=aes(x=factor(Year), y=UCI,

+ group=1)) +

+ ggtitle("(a) - Average sales rate") +

+ theme(text=element_text(size=16), plot.title=element_text(size=18,

+ face="bold"))

R> sdplot <- ggplot() +

+ scale_x_discrete(name = "Year") +

+ scale_y_continuous(name = "Spatial standard deviation") +

+ geom_line(data=trend.sd, mapping=aes(x=factor(Year), y=Median,

+ group=1), colour="red", lwd=1) +

+ geom_line(data=trend.sd, mapping=aes(x=factor(Year), y=LCI,

+ group=1)) +

+ geom_line(data=trend.sd, mapping=aes(x=factor(Year), y=UCI,

+ group=1)) +
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Figure 6: Posterior median (red) and 95% credible interval (black) for the temporal trend in:
(a) region-wide average property sales rates; and (b) spatial standard deviation in property
sales rates. In panel (a) the blue dots are the raw sales proportions for each area and year
(jittered in the x direction to improve the presentation).

+ ggtitle("(b) - Variation in the sales rate") +

+ theme(text=element_text(size=16), plot.title=element_text(size=18,

+ face="bold"))

R> library(gridExtra)

R> grid.arrange(medianplot, sdplot, nrow=2, ncol=1)

The figure shows that both the region-wide average (panel (a)) and the level of spatial varia-
tion (as measured by the spatial standard deviation, panel (b)) in the rates of property sales
show similar underlying trends, with maximum values just before the global financial crisis in
2007, and then decreases afterwards. This provides some empirical evidence that the global
financial crisis negatively affected the housing market in Greater Glasgow, with average sales
rates dropping from around 5.0% (0.05) in 2007 to 3% (0.03) in 2009. The spatial standard
deviation also dropped from 0.045 to 0.01 over the same three-year period, suggesting that
the global financial crisis had the effect of reducing the disparity in sales rates in different
regions of Greater Glasgow.
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7. Discussion

CARBayesST is the first software package dedicated to fitting spatio-temporal CAR type
models to areal unit data, with inference in a Bayesian setting using MCMC simulation.
Future development of the software will focus on extending the number of spatio-temporal
models that can be implemented, giving the user an even wider set of modelling tools for
both univariate and multivariate spatio-temporal data.
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