Package 'CongreveLamsdell2016' February 7, 2019 <doi:10.1111/pala.12236>, and analyses of the partition and quartet distance of reconstructed trees from the generative tree, as analysed by Smith (2019) <doi:10.1098/rsbl.2018.0632>. URL https://github.com/ms609/CongreveLamsdell2016 BugReports https://github.com/ms609/Quartet/issues Copyright Data from Congreve & Lamsdell (2016) released under a CC0 license <doi:10.5061/dryad.7dq0j/1>. **License** GPL (>= 2) **Encoding UTF-8** Language en-GB **Depends** R (>= 3.4.0) **Imports** Ternary Suggests ape, bookdown, knitr, phangorn, Quartet, rmarkdown, TreeSearch (> 0.2.0), usethis LazyData true ByteCompile true VignetteBuilder knitr RoxygenNote 6.1.1 NeedsCompilation no Author Martin R. Smith [aut, cre, cph] (<https://orcid.org/0000-0001-5660-1727>), Curtis R. Congreve [cph, dtc], James C. Lamsdell [cph, dtc] Maintainer Martin R. Smith <martin.smith@durham.ac.uk> Title Distance Metrics for Trees Generated by Congreve and Lamsdell **Description** Includes the 100 datasets simulated by Congreve and Lamsdell (2016) **Version** 1.0.1 **Date** 2019-02-06 **Repository** CRAN **Date/Publication** 2019-02-07 14:13:31 UTC 2 clColours # **R** topics documented: | clCI | | | | | | | | | | | | | | | | | | 2 | |--------------------------------|-----|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---| | $cl Colours \ \dots \ \dots$ | | | | | | | | | | | | | | | | | | 2 | | clInitializeTernaryQuarts | s . | | | | | | | | | | | | | | | | | 3 | | clPhyDat | | | | | | | | | | | | | | | | | | 4 | | clPlotQuartets | | | | | | | | | | | | | | | | | | 4 | | $clReference Tree \ . \ . \ .$ | | | | | | | | | | | | | | | | | | 6 | | $clResults \dots \dots \dots$ | | | | | | | | | | | | | | | | | | 7 | Index 10 clCI Consistency indices # Description Consistency indices of Congreve & Lamsdell datasets. # Usage clCI # **Format** An object of class numeric of length 100. clColours Default colours for analyses. # Description Default colours for analyses. # Usage clColours # **Format** An object of class character of length 8. ${\tt clInitializeTernaryQuarts}$ Initialize ternary plots for quartet plotting # Description Sets up a blank ternary plot ready for analytical results to be added. # Usage ``` clInitializeTernaryQuarts(zoom = 1, padding = 0.1, gridLines = 10, fontSize = 1, gridCol = "#DBDBDB", backgroundCol = "#FDFDFE", xLim = c(0, 1/zoom) - 0.01, yLim = c(0.5 - (1/zoom), 0.5), isometric = TRUE) clInitializeTernarySplits(fontSize = 1, xLim = NULL, yLim = NULL, gridCol = "#DBDBDB", backgroundCol = "#FDFDFE", padding = 0.1, isometric = TRUE) ``` # Arguments | ZOOM | Level of magnification (times), used to adjust ticks and scale. | |---------------|--| | padding | Padding, passed to TernaryPlot. | | gridLines | Number of grid lines, passed to TernaryPlot as grid.lines. | | fontSize | Font size, passed to TernaryPlot as lab.cex. | | gridCol | Colour, passed to TernaryPlot as grid.col. | | backgroundCol | Background colour, passed to TernaryPlot as col. | | xLim, yLim | x and y limits, passed to TernaryPlot as xlim, ylim. | | isometric | Logical specifying whether plot should be isometric, passed to TernaryPlot as isometric. | # **Functions** • clInitializeTernarySplits: Initialize ternary plots for partition plotting. 4 clPlotQuartets clPhyDat 100 simulated data matrices #### Description Contains the 100 simulated matrices generated by Congreve & Lamsdell (2016) using a heterogeneous Markov-k model, generated from the clReferenceTree topology, with all branches sharing an equal length. #### Usage clPhyDat clMatrices #### **Format** - clPhyDat: A list with 100 entries, each comprising a phyDat object of 55 characters for 22 taxa. - clMatrices: A list with 100 entries, each comprising a list of character tokens for each simulated character, as read from raw nexus files using ape::read.nexus.data. The four dummy 'characters' have been removed. #### Source http://datadryad.org/resource/doi:10.5061/dryad.7dq0j #### References - Congreve, C. R. & Lamsdell, J. C. (2016). Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology 59(3), 447–465. doi: 10.1111/pala.12236. - Congreve, C. R. & Lamsdell, J. C. (2016). Data from: Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Dryad Digital Repository. doi: 10.5061/dryad.7dq0j. clPlotQuartets Plot results # **Description** Plots the results of the analyses of the Congreve & Lamsdell (2016) datasets. cIPlotQuartets 5 #### Usage ``` clPlotQuartets(dataset, tree, cex = 1.1, pch = 2, col = CongreveLamsdell2016::clColours, ...) clPlotAverageQuartets(dataset, cex = 1.1, pch = 2, col = CongreveLamsdell2016::clColours, ...) clPlotTheseAverageQuartets(dataset, cex = 1.1, pch = 2, col = "black", ...) clPlotSplits(dataset, tree, cex = 1.1, pch = 2, col = CongreveLamsdell2016::clColours, ...) clPlotTheseAverageSplits(dataset, cex = 1.1, pch = 2, col = "black", ...) clPlotTheseBestAverageSplits(dataset, cex = 1.1, pch = 2, col = "black", ...) clPlotAverageSplits(dataset, cex = 1.1, pch = 2, col = CongreveLamsdell2016::clColours, ...) clPlotBestAverageSplits(dataset, cex = 1.1, pch = 2, col = CongreveLamsdell2016::clColours, ...) ``` # Arguments dataset Dataset to plot, for example clBootGcQuartets. tree Integer specifying which tree to plot. cex, pch, ... Graphical parameters to pass to JoinTheDots. col Named vector specifying colours to use to plot each analysis, named to match names(dataset). #### Value Returns invisible. #### **Functions** - clPlotAverageQuartets: Plots average across all 100 trees. - clPlotTheseAverageQuartets: Plot average for single dataset across all 100 trees. - clPlotSplits: Splits equivalent of clPlotQuartets. - clPlotTheseAverageSplits: Splits equivalent of clPlotTheseAverageQuartets. - clPlotTheseBestAverageSplits: Splits equivalent of clPlotTheseBestAverageQuartets. - clPlotAverageSplits: Splits equivalent of clPlotAverageQuartets. - clPlotBestAverageSplits: Splits equivalent of clPlotAverageQuartets. 6 clReferenceTree #### Author(s) Martin R. Smith clReferenceTree Tree topology for matrix simulation # **Description** The tree topology used to generate the matrices in clMatrices Congreve & Lamsdell (2016). # Usage clReferenceTree #### **Format** A single phylogenetic tree saved as an object of class phylo. #### **Source** Congreve & Lamsdell (2016). # References - Congreve, C. R. & Lamsdell, J. C. (2016). Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Palaeontology 59(3), 447–465. doi: 10.1111/pala.12236. - Congreve, C. R. & Lamsdell, J. C. (2016). Data from: Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. Dryad Digital Repository. doi: 10.5061/dryad.7dq0j. # **Examples** ``` library(ape) # Contains tree plotting functions data(clReferenceTree) plot(clReferenceTree) ``` clResults 7 clResults Congreve and Lamsdell tree distances # Description Distance of CL trees from generative tree. #### Usage ``` clBremPartitions clMkvPartitions clMkvQuartets clBootFreqPartitions ``` clBremQuartets clJackFreqPartitions clBootFreqQuartets clJackFreqQuartets clBootGcPartitions clBootGcQuartets clJackGcPartitions clJackGcQuartets #### **Format** An object of class list of length 7. # **Details** For each of the 100 matrices generated by Congreve & Lamsdell (2016), I conducted phylogenetic analysis under different methods: - Mkv: using the Markov K model in MrBayes; - eq: using equal weights in TNT; - k1, k2, k3, k5, kX: using implied weights in TNT, with the concavity constant (k) set to 1, 2, 3, 5, or 10; 8 clResults • kC: by taking the strict consensus of all trees recovered by implied weights parsimony analysis under the k values 2, 3, 5 and 10 (but not 1). For each analysis, I recorded the strict consensus of all optimal trees, and also the consensus of trees that were suboptimal by a specified degree. I then calculated, of the total number of quartets or partitions that were resolved in the reference tree, how many were the same or different in the tree that resulted from the phylogenetic analysis, and how many were not resolved in this tree (r2). The data object contains a list whose elements are named after the methods, as listed above. Each list entry is a three-dimensional array, whose dimensions are: - 1. The suboptimality of the tree. Different measures of node support are employed: - Mkv: Posterior probabilities, at 2.5% intervals (50%, 52.5%, ... 97.5%, 100%). - Brem: Bremer supports: the consensus of all trees that are (equal weights) 0, 1, 19, 20 steps less optimal than the optimal tree (implied weights: the consensus of all trees that are 0.73^(19:0) less optimal than the optimal tree). - Boot: Bootstrap supports (symmetric resampling, p = 0.33). - Jack: Jackknife supports (p = 0.36). Boot and Jack results are reported both as the frequency of splits among replicates, and using the gc (Groups Present / Contradicted) measure (Goloboff *et al.* 2003); frequency columns correspond to 100%, 97.5%, 95% ... 0% support; gc columns correspond to 100%, 95%, ... 0% present, 5%, 10%, ... 100% contradicted. - 2. Counts of the condition of each quartet or partition: - Q: The total number of quartets defined on 22 taxa. - N: The total number of partitions present, counting each tree separately. - P1: The number of partitions in tree 1 (the reconstructed tree). - P2: The number of partitions in tree 2 (the generative tree). - s: The number of quartets or partitions resolved identically in each tree. * d: The number of quartets resolved differently in each tree. - d1: The number of partitions resolved in tree 1, but contradicted by tree 2. - d2: The number of partitions resolved in tree 2, but contradicted by tree 1. - r1: The number of partitions or quartets resolved in tree 1 that are neither present in nor contradicted by tree 2. - r2: The number of partitions or quartets resolved in tree 2 that are neither present in nor contradicted by tree 1. - u: The number of quartets that are not resolved in either tree. - 3. The number of the matrix, from 1 to 100. #### Source Congreve, C. R. & Lamsdell, J. C. (2016). Implied weighting and its utility in palaeontological datasets: a study using modelled phylogenetic matrices. *Palaeontology* 59(3), 447–465. doi: 10.1111/pala.12236. clResults 9 # References Goloboff, P. A., J. S. Farris, M. Källersjö, B. Oxelman, M. J. Ramírez, and C. A. Szumik. 2003. Improvements to resampling measures of group support. *Cladistics* 19, 324–332. doi: 10.1016/S07483007(03)000604. # See Also clMatrices, clReferenceTree. # **Index** ``` *Topic datasets clPlotTheseBestAverageSplits clCI, 2 (clPlotQuartets), 4 clColours, 2 clReferenceTree, 4, 6, 9 clPhyDat, 4 clResults, 7 clReferenceTree, 6 invisible, 5 clResults, 7 JoinTheDots, 5 clBootFreqPartitions (clResults), 7 clBootFreqQuartets (clResults), 7 clBootGcPartitions (clResults), 7 clBootGcQuartets, 5 clBootGcQuartets (clResults), 7 clBremPartitions (clResults), 7 clBremQuartets (clResults), 7 clCI, 2 clColours, 2 clInitializeTernaryQuarts, 3 clInitializeTernarySplits (clInitializeTernaryQuarts), 3 clJackFreqPartitions (clResults), 7 clJackFreqQuartets (clResults), 7 clJackGcPartitions (clResults), 7 clJackGcQuartets(clResults), 7 clMatrices, 6, 9 clMatrices (clPhyDat), 4 clMkvPartitions (clResults), 7 clMkvQuartets (clResults), 7 clPhyDat, 4 clPlotAverageQuartets(clPlotQuartets), clPlotAverageSplits (clPlotQuartets), 4 clPlotBestAverageSplits (clPlotQuartets), 4 clPlotQuartets, 4 clPlotSplits(clPlotQuartets), 4 clPlotTheseAverageQuartets (clPlotQuartets), 4 clPlotTheseAverageSplits ``` (clPlotQuartets), 4