LikertMakeR

synthesise and correlate rating-scale data

Hume Winzar

February 2024

LikertMakeR

LikertMakeR synthesises and correlates Likert-scale and related rating-scale data. You decide the mean and standard deviation, and (optionally) the correlations among vectors, and the package will generate data with those same predefined properties.

The package generates a column of values that simulate the same properties as a rating scale. If multiple columns are generated, then you can use LikertMakeR to rearrange the values so that the new variables are correlated exactly in accord with a user-predefined correlation matrix.

Purpose

The package should be useful for teaching in the Social Sciences, and for scholars who wish to “replicate” rating-scale data for further analysis and visualisation when only summary statistics have been reported.

Motivation

I was prompted to write the functions in LikertMakeR after reviewing too many journal article submissions where authors presented questionnaire results with only means and standard deviations (often only the means), with no apparent understanding of scale distributions, and their impact on scale properties. Hopefully, this tool will help researchers, teachers, and other reviewers, to better think about rating-scale distributions, and the effects of variance, scale boundaries, and number of items in a scale.

Rating scale properties

A Likert scale is the mean, or sum, of several ordinal rating scales. Typically, they are bipolar (usually “agree-disagree”) responses to propositions that are determined to be moderately-to-highly correlated and that capture some facet of a theoretical construct.

Rating scales, such as Likert scales, are not continuous or unbounded.

For example, a 5-point Likert scale that is constructed with, say, five items (questions) will have a summed range of between 5 (all rated ‘1’) and 25 (all rated ‘5’) with all integers in between, and the mean range will be ‘1’ to ‘5’ with intervals of 1/5=0.20. A 7-point Likert scale constructed from eight items will have a summed range between 8 (all rated ‘1’) and 56 (all rated ‘7’) with all integers in between, and the mean range will be ‘1’ to ‘7’ with intervals of 1/8=0.125.

Rating-scale boundaries define minima and maxima for any scale values. If the mean is close to one boundary then data points will gather more closely to that boundary. If the mean is not in the middle of a scale, and if the standard deviation is any more than about 1/4 of the scale range, then the data will be always skewed.


LikertMakeR functions


Using LikertMakeR

Download and Install LikertMakeR

from CRAN

> ```
>
> install.packages("LikertMakeR")
> library(LikertMakeR)
>
> ```

development version from GitHub.

> ```
> 
> library(devtools)
> install_github("WinzarH/LikertMakeR")
> library(LikertMakeR)
>
> ```

Generate synthetic rating-scale data

To synthesise a rating scale with LikertMakeR, the user must input the following parameters:

The previous version of LikertMakeR had a function, lexact(), which was very slow and no more accurate than lfast(). So, lexact() is now deprecated.


lfast()

  • lfast() draws repeated random samples from a scaled Beta distribution. It produces a vector of values with mean and standard deviation correct to two decimal places.

lfast() example

a four-item, five-point Likert scale

x1 <- lfast(
 n = 512,
 mean = 2.5,
 sd = 0.75,
 lowerbound = 1,
 upperbound = 5,
 items = 4
)
#> [1] "best solution in 645 iterations"

an 11-point likelihood-of-purchase scale
lfast()

x3 <- lfast(256, 3, 2, 0, 10)
#> [1] "best solution in 9293 iterations"


lexact()

lexact() Deprecated. lexact() is now simply a wrapper for lfast().


Correlating rating scales

The function, lcor(), rearranges the values in the columns of a data-set so that they are correlated at a specified level. It does not change the values - it swaps their positions within each column so that univariate statistics do not change, but their correlations with other vectors do.

lcor()

lcor() systematically selects pairs of values in a column and swaps their places, and checks to see if this swap improves the correlation matrix. If the revised data-frame produces a correlation matrix closer to the target correlation matrix, then the swap is retained. Otherwise, the values are returned to their original places. This process is iterated across each column.

To create the desired correlated data, the user must define the following parameters:

  • data: a starter data set of rating-scales. Number of columns must match the dimensions of the target correlation matrix.

  • target: the target correlation matrix.

lcor() example

Let’s generate some data: three 5-point Likert scales, each with five items.


## generate uncorrelated synthetic data
n <- 128
lowerbound <- 1
upperbound <- 5
items <- 5

mydat3 <- data.frame(
 x1 = lfast(n, 2.5, 0.75, lowerbound, upperbound, items),
 x2 = lfast(n, 3.0, 1.50, lowerbound, upperbound, items),
 x3 = lfast(n, 3.5, 1.00, lowerbound, upperbound, items)
)
#> [1] "best solution in 994 iterations"
#> [1] "best solution in 763 iterations"
#> [1] "best solution in 1724 iterations"

The first six observations from this data-frame are:

#>    x1  x2  x3
#> 1 2.6 3.4 4.4
#> 2 2.8 1.0 3.2
#> 3 2.2 5.0 3.2
#> 4 4.0 1.4 3.8
#> 5 1.6 5.0 3.8
#> 6 2.2 5.0 2.0

And the first and second moments (to 3 decimal places) are:

#>         x1  x2    x3
#> mean 2.502 3.0 3.500
#> sd   0.750 1.5 0.999

We can see that the data have first and second moments very close to what is expected.

The synthetic data have low correlations:

#>        x1     x2    x3
#> x1  1.000  0.038 -0.01
#> x2  0.038  1.000 -0.13
#> x3 -0.010 -0.130  1.00

Now, let’s define a target correlation matrix:


## describe a target correlation matrix

tgt3 <- matrix(
 c(
 1.00, 0.85, 0.75,
 0.85, 1.00, 0.65,
 0.75, 0.65, 1.00
 ),
 nrow = 3
)

So now we have a data-frame with desired first and second moments, and a target correlation matrix.


## apply lcor() function

new3 <- lcor(mydat3, tgt3)

The first column of the new data-frame will not change, but values of the other columns are rearranged.

The first six observations from this data-frame are:

#>    V1 V2  V3
#> 1 4.2  5 5.0
#> 2 1.0  1 1.4
#> 3 1.4  1 1.6
#> 4 3.6  5 4.8
#> 5 4.2  5 5.0
#> 6 1.2  1 1.8

And the new data frame is correlated close to our desired correlation matrix; here presented to 3 decimal places:

#>      V1   V2   V3
#> V1 1.00 0.85 0.75
#> V2 0.85 1.00 0.65
#> V3 0.75 0.65 1.00

Generate a correlation matrix from Cronbach’s Alpha

makeCorrAlpha()

makeCorrAlpha(), constructs a random correlation matrix of given dimensions and predefined Cronbach’s Alpha.

To create the desired correlation matrix, the user must define the following parameters:

  • items: or “k” - the number of rows and columns of the desired correlation matrix.

  • alpha: the target value for Cronbach’s Alpha

  • variance: a notional variance coefficient to affect the spread of values in the correlation matrix. Default = ‘0.5’. A value of ‘0’ produces a matrix where all off-diagonal correlations are equal. Setting ‘variance = 1.0’ gives a wider range of values.

makeCorrAlpha() is volatile

Random values generated by makeCorrAlpha() are highly volatile. makeCorrAlpha() may not generate a feasible (positive-definite) correlation matrix, especially when

  • variance is high relative to

    • desired Alpha, and

    • desired correlation dimensions

makeCorrAlpha() will inform the user if the resulting correlation matrix is positive definite, or not.

If the returned correlation matrix is not positive-definite, a feasible solution may be still possible, and often is. The user is encouraged to try again, possibly several times, to find one.

makeCorrAlpha() examples

Four variables, alpha = 0.85, variance = default

## define parameters 
 items <- 4
 alpha <- 0.85
 # variance <- 0.5 ## by default

## apply makeCorrAlpha() function
 set.seed(42)
 
 cor_matrix_4 <- makeCorrAlpha(items, alpha)
#> correlation values consistent with desired alpha in 2261 iterations
#> The correlation matrix is positive definite

makeCorrAlpha() produced the following correlation matrix (to three decimal places):

#>       [,1]  [,2]  [,3]  [,4]
#> [1,] 1.000 0.445 0.481 0.577
#> [2,] 0.445 1.000 0.632 0.647
#> [3,] 0.481 0.632 1.000 0.735
#> [4,] 0.577 0.647 0.735 1.000
test output with Helper functions

## using helper function alpha()

 alpha(cor_matrix_4)
#> [1] 0.8500036
 
## using helper function eigenvalues() 

eigenvalues(cor_matrix_4, 1)

#> cor_matrix_4  is positive-definite
#> 
#> Eigenvalues:
#>  2.771181 0.5922674 0.3851331 0.2514183
#> [1] 2.7711812 0.5922674 0.3851331 0.2514183

twelve variables, alpha = 0.90, variance = 1


## define parameters 
 items <- 12
 alpha <- 0.90
 variance <- 1.0

## apply makeCorrAlpha() function
 set.seed(42) 

 cor_matrix_12 <- makeCorrAlpha(items, alpha, variance)
#> correlation values consistent with desired alpha in 26735 iterations
#> The correlation matrix is positive definite
-

makeCorrAlpha() produced the following correlation matrix (to two decimal places):

#>        [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7]  [,8] [,9] [,10] [,11] [,12]
#>  [1,]  1.00 -0.31 -0.26 -0.25 -0.17 -0.16 -0.08 -0.05 0.04  0.07  0.08  0.10
#>  [2,] -0.31  1.00  0.10  0.17  0.19  0.19  0.20  0.20 0.21  0.25  0.34  0.34
#>  [3,] -0.26  0.10  1.00  0.35  0.36  0.36  0.37  0.41 0.42  0.42  0.43  0.45
#>  [4,] -0.25  0.17  0.35  1.00  0.45  0.46  0.46  0.46 0.48  0.49  0.49  0.52
#>  [5,] -0.17  0.19  0.36  0.45  1.00  0.52  0.53  0.53 0.54  0.58  0.59  0.60
#>  [6,] -0.16  0.19  0.36  0.46  0.52  1.00  0.61  0.62 0.64  0.65  0.66  0.67
#>  [7,] -0.08  0.20  0.37  0.46  0.53  0.61  1.00  0.67 0.67  0.70  0.71  0.72
#>  [8,] -0.05  0.20  0.41  0.46  0.53  0.62  0.67  1.00 0.74  0.77  0.79  0.81
#>  [9,]  0.04  0.21  0.42  0.48  0.54  0.64  0.67  0.74 1.00  0.83  0.88  0.91
#> [10,]  0.07  0.25  0.42  0.49  0.58  0.65  0.70  0.77 0.83  1.00  0.92  0.92
#> [11,]  0.08  0.34  0.43  0.49  0.59  0.66  0.71  0.79 0.88  0.92  1.00  0.95
#> [12,]  0.10  0.34  0.45  0.52  0.60  0.67  0.72  0.81 0.91  0.92  0.95  1.00
test output

 alpha(cor_matrix_12)
#> [1] 0.9000022

 eigenvalues(cor_matrix_12, 1) |> round(3)

#> cor_matrix_12  is positive-definite
#> 
#> Eigenvalues:
#>  6.6755 1.414525 0.935596 0.6735671 0.5536723 0.5100483 0.3867301 0.3380953 0.2605829 0.1603447 0.05985932 0.03147918
#>  [1] 6.675 1.415 0.936 0.674 0.554 0.510 0.387 0.338 0.261 0.160 0.060 0.031

Generate a dataframe of rating scales from a correlation matrix and predefined moments

makeItems()

makeItems() generates a dataframe of random discrete values from a scaled Beta distribution so the data replicate a rating scale, and are correlated close to a predefined correlation matrix.

Generally, means, standard deviations, and correlations are correct to two decimal places.

makeItems() is a wrapper function for

  • lfast(), which takes repeated samples selecting a vector that best fits the desired moments, and

  • lcor(), which rearranges values in each column of the dataframe so they closely match the desired correlation matrix.

To create the desired dataframe, the user must define the following parameters:

  • n: number of observations

  • dfMeans: a vector of length ‘k’ of desired means of each variable

  • dfSds: a vector of length ‘k’ of desired standard deviations of each variable

  • lowerbound: a vector of length ‘k’ of values for the lower bound of each variable (For example, ‘1’ for a 1-5 rating scale)

  • upperbound: a vector of length ‘k’ of values for the upper bound of each variable (For example, ‘5’ for a 1-5 rating scale)

  • cormatrix: a target correlation matrix with ‘k’ rows and ‘k’ columns.

makeItems() examples


## define parameters

 n <- 128
 dfMeans <- c(2.5, 3.0, 3.0, 3.5)
 dfSds <- c(1.0, 1.0, 1.5, 0.75)
 lowerbound <- rep(1, 4)
 upperbound <- rep(5, 4)
 
 corMat <- matrix(
 c(
 1.00, 0.25, 0.35, 0.45,
 0.25, 1.00, 0.70, 0.75,
 0.35, 0.70, 1.00, 0.85,
 0.45, 0.75, 0.85, 1.00
 ),
 nrow = 4, ncol = 4
 )

## apply makeItems() function
 df <- makeItems(
 n = n, 
 means = dfMeans, 
 sds = dfSds, 
 lowerbound = lowerbound, 
 upperbound = upperbound, 
 cormatrix = corMat
 )
#> [1] "best solution in 16384 iterations"
#> [1] "best solution in 16384 iterations"
#> [1] "best solution in 727 iterations"
#> [1] "best solution in 16384 iterations"

## test the function
 head(df); tail(df)
#>   V1 V2 V3 V4
#> 1  2  1  1  2
#> 2  2  1  1  2
#> 3  4  5  5  5
#> 4  4  5  5  5
#> 5  2  1  1  2
#> 6  3  3  4  4
#>     V1 V2 V3 V4
#> 123  2  2  1  3
#> 124  2  3  1  3
#> 125  3  4  4  4
#> 126  4  3  2  4
#> 127  1  4  2  4
#> 128  1  3  3  4
 apply(df, 2, mean) |> round(3)
#>  V1  V2  V3  V4 
#> 2.5 3.0 3.0 3.5
 apply(df, 2, sd) |> round(3)
#>    V1    V2    V3    V4 
#> 1.004 1.004 1.501 0.753
 cor(df) |> round(3)
#>       V1   V2   V3    V4
#> V1 1.000 0.25 0.35 0.448
#> V2 0.250 1.00 0.70 0.750
#> V3 0.350 0.70 1.00 0.850
#> V4 0.448 0.75 0.85 1.000

Generate a dataframe from Cronbach’s Alpha and predefined moments

This is a two-step process:

  1. apply makeCorrAlpha() to generate a correlation matrix from desired alpha,

  2. apply makeItems() to generate rating-scale items from the correlation matrix and desired moments

So required parameters are:

Step 1: Generate a correlation matrix


## define parameters
k <- 6
alpha <- 0.85

## generate correlation matrix
set.seed(42)
myCorr <- makeCorrAlpha(k, alpha)
#> correlation values consistent with desired alpha in 2425 iterations
#> The correlation matrix is positive definite

## display correlation matrix
myCorr |> round(3)
#>       [,1]  [,2]  [,3]  [,4]  [,5]  [,6]
#> [1,] 1.000 0.123 0.314 0.394 0.422 0.433
#> [2,] 0.123 1.000 0.453 0.455 0.480 0.486
#> [3,] 0.314 0.453 1.000 0.531 0.537 0.639
#> [4,] 0.394 0.455 0.531 1.000 0.657 0.671
#> [5,] 0.422 0.480 0.537 0.657 1.000 0.690
#> [6,] 0.433 0.486 0.639 0.671 0.690 1.000

### checking Cronbach's Alpha
alpha(myCorr)
#> [1] 0.8499957

Step 2: Generate dataframe


## define parameters
n <- 256
myMeans    <- c(2.75, 3.00, 3.00, 3.25, 3.50, 3.5)
mySds      <- c(1.00, 0.75, 1.00, 1.00, 1.00, 1.5)
lowerbound <- rep(1, k)
upperbound <- rep(5, k)

## Generate Items
myItems <- makeItems(n, myMeans, mySds, lowerbound, upperbound, myCorr)
#> [1] "best solution in 2617 iterations"
#> [1] "best solution in 30 iterations"
#> [1] "best solution in 2383 iterations"
#> [1] "best solution in 271 iterations"
#> [1] "best solution in 10740 iterations"
#> [1] "best solution in 4776 iterations"

## resulting data frame
head(myItems)
#>   V1 V2 V3 V4 V5 V6
#> 1  3  1  2  1  1  1
#> 2  4  4  4  5  5  5
#> 3  5  5  5  5  5  5
#> 4  1  1  2  1  1  1
#> 5  5  5  5  5  5  5
#> 6  1  1  1  1  1  1
tail(myItems)
#>     V1 V2 V3 V4 V5 V6
#> 251  3  4  2  4  2  5
#> 252  2  4  4  3  3  5
#> 253  3  3  4  4  4  5
#> 254  2  3  4  4  3  1
#> 255  3  4  3  4  5  5
#> 256  3  3  4  3  4  4

## means and standard deviations
myMoments <- data.frame(
  means = apply(myItems, 2, mean) |> round(3),
  sds = apply(myItems, 2, sd) |> round(3)
) |> t()
myMoments
#>          V1    V2    V3    V4    V5  V6
#> means 2.750 3.000 3.000 3.250 3.500 3.5
#> sds   0.998 0.751 1.002 0.998 1.002 1.5

## Cronbach's Alpha of data frame
alpha(NULL, myItems)
#> [1] 0.8498222

Summary plots of new data frame


Helper functions

likertMakeR() includes two additional functions that may be of help when examining parameters and output.

alpha()

alpha() accepts, as input, either a correlation matrix or a dataframe. If both are submitted, then the correlation matrix is used by default, with a message to that effect.

alpha() examples


## define parameters
df <- data.frame(
  V1 = c(4, 2, 4, 3, 2, 2, 2, 1),
  V2 = c(3, 1, 3, 4, 4, 3, 2, 3),
  V3 = c(4, 1, 3, 5, 4, 1, 4, 2),
  V4 = c(4, 3, 4, 5, 3, 3, 3, 3)
)

corMat <- matrix(
  c(
    1.00, 0.35, 0.45, 0.75,
    0.35, 1.00, 0.65, 0.55,
    0.45, 0.65, 1.00, 0.65,
    0.75, 0.55, 0.65, 1.00
  ),
  nrow = 4, ncol = 4
)

## apply function examples
alpha(cormatrix = corMat)
#> [1] 0.8395062
alpha(data = df)
#> [1] 0.8026658
alpha(NULL, df)
#> [1] 0.8026658
alpha(corMat, df)
#> Warning: Both cormatrix and data present.
#>                 
#> Using cormatrix by default.
#> [1] 0.8395062

eigenvalues()

eigenvalues() calculates eigenvalues of a correlation matrix, reports on whether the matrix is positive-definite, and optionally produces a scree plot.

eigenvalues() examples


## define parameters
correlationMatrix <- matrix(
  c(
    1.00, 0.25, 0.35, 0.45,
    0.25, 1.00, 0.70, 0.75,
    0.35, 0.70, 1.00, 0.85,
    0.45, 0.75, 0.85, 1.00
  ),
  nrow = 4, ncol = 4
)

## apply function
evals <- eigenvalues(cormatrix = correlationMatrix)
#> correlationMatrix  is positive-definite
#> 
#> Eigenvalues:
#>  2.748499 0.8122627 0.3048151 0.1344231

print(evals)
#> [1] 2.7484991 0.8122627 0.3048151 0.1344231
eigenvalues() function with optional scree plot

 evals <- eigenvalues(correlationMatrix, 1)

#> correlationMatrix  is positive-definite
#> 
#> Eigenvalues:
#>  2.748499 0.8122627 0.3048151 0.1344231

Alternative methods & packages

LikertMakeR is intended for synthesising & correlating rating-scale data with means, standard deviations, and correlations as close as possible to predefined parameters. If you don’t need your data to be close to exact, then other options may be faster or more flexible.

Different approaches include:

sampling from a truncated normal distribution

Data are sampled from a normal distribution, and then truncated to suit the rating-scale boundaries, and rounded to set discrete values as we see in rating scales.

See Heinz (2021) for an excellent and short example using the following packages:

sampling with a predetermined probability distribution


 n <- 128
 sample(1:5, n, replace = TRUE,
 prob = c(0.1, 0.2, 0.4, 0.2, 0.1)
 )

marginal model specification

Marginal model specification extends the idea of a predefined probability distribution to multivariate and correlated data-frames.


References

Grønneberg, S., Foldnes, N., & Marcoulides, K. M. (2022). covsim: An R Package for Simulating Non-Normal Data for Structural Equation Models Using Copulas. Journal of Statistical Software, 102(1), 1–45. doi:10.18637/jss.v102.i03

Heinz, A. (2021), Simulating Correlated Likert-Scale Data In R: 3 Simple Steps (blog post) https://glaswasser.github.io/simulating-correlated-likert-scale-data/

Lalovic, M. (2021), responsesR: Simulate Likert scale item responses (on GitHub) https://github.com/markolalovic/responsesR

Matta, T.H., Rutkowski, L., Rutkowski, D. & Liaw, Y.L. (2018), lsasim: an R package for simulating large-scale assessment data. Large-scale Assessments in Education 6, 15. doi:10.1186/s40536-018-0068-8

Touloumis, A. (2016), Simulating Correlated Binary and Multinomial Responses under Marginal Model Specification: The SimCorMultRes Package, The R Journal 8:2, 79-91. doi:10.32614/RJ-2016-034