Implements a Bayesian graphical ridge data-augmented block Gibbs sampler. The sampler simulates the posterior distribution of precision matrices of a Gaussian Graphical Model. This sampler is proposed in Smith, Arashi, and Bekker (2022) <doi:10.48550/arXiv.2210.16290>.
Version: | 0.1.0 |
Imports: | Rcpp (≥ 1.0.8), RcppArmadillo (≥ 0.11.1.1.0) |
LinkingTo: | Rcpp, RcppArmadillo, RcppProgress |
Suggests: | MASS, pracma |
Published: | 2023-01-30 |
Author: | Jarod Smith |
Maintainer: | Jarod Smith <jarodsmith706 at gmail.com> |
License: | GPL (≥ 3) |
URL: | https://github.com/Jarod-Smithy/baygel |
NeedsCompilation: | yes |
Materials: | README |
CRAN checks: | baygel results |
Reference manual: | baygel.pdf |
Package source: | baygel_0.1.0.tar.gz |
Windows binaries: | r-devel: baygel_0.1.0.zip, r-release: baygel_0.1.0.zip, r-oldrel: baygel_0.1.0.zip |
macOS binaries: | r-release (arm64): baygel_0.1.0.tgz, r-oldrel (arm64): baygel_0.1.0.tgz, r-release (x86_64): baygel_0.1.0.tgz, r-oldrel (x86_64): baygel_0.1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=baygel to link to this page.