
discourseGT: An R package to analyze discourse
networks in educational contexts

1 discourseGT Workflow
1.1 General Workflow
The functions of discourseGT were designed to be as modular as possible, making it possible
to only run analyses of interest. Figure 1 represents the general workflow of discourseGT,
and Table 1 describes explicit function names organized by their general uses.

Figure 1: General workflow of discourseGT. The raw data can either be converted to an
igraph object for further analysis or directly passed for NGT analysis. All console output can
be permanently stored to the user’s local disk. Green represents the start of the workflow.
Purple represents steps necessary to generate an igraph object. Blue represents the potential
downstream uses of an igraph object. Orange represents NGT analysis. Red signals the end
of the workflow.

1

Table 1: List of all discourseGT functions

Phase Function Name Parameter(s) Description
Purple tabulate_edges() input – data.frame

or string. Points to
.csv file with talk-turn
data in the question-and-
response format.

silentNodes – integer.
The number of nodes
that do not interact with
others.

Calculates the weighted
edge list from the input
data and number of silent
nodes not captured in the
data.

Purple prepareGraphs() raw_data_input –
list. Output of
tabulate_edges().

project_title – string.
Sets the title of the
project.

weightedGraph -
boolean. TRUE if down-
stream analysis should
account for weighted
edges. Else FALSE.

Prepares the igraph ob-
ject from the weighted
edge list. This is utilized
by several downstream an-
alytical functions.

Blue coreNetAnalysis() ginp – list. Output of
prepareGraphs().

Analyzes the input igraph
object and returns basic
network statistics, as rea-
soned in Chai et al. 2019.

2

Phase Function Name Parameter(s) Description
Blue subgroupsNetAnalysis() ginp – list. Output of

prepareGraphs().

raw_input – data.frame.
Points to the original
talk-turn data in the
question-and-response
format.

normalized – boolean.
Whether or not to nor-
malize the betweenness
centrality values relative
to the graph.

Analyzes the input igraph
object for potential sub-
groups.

Blue summaryNet() netintconfigData
– list. Output of
prepareGraphs().

coreNetAnalysisData
– list. Output of
coreNetAnalysis().

subgroupsNetAnalysisData
– list. Output of
subgroupsNetanalysis().

display – boolean.
Whether or not to print
output to console.

Summarizes the analyti-
cal output from several
other functions into a sin-
gle output.

3

Phase Function Name Parameter(s) Description
Blue basicPlot() ginp – list. Output of

prepareGraphs().

graph_selection_input
– integer. Numerical
value from 0 to 2, in-
clusive, which selects
the graphing algorithm
used. 0 = Fruchterman
Reingold, 1 = Kamada
Kawai, and 2 = Reingold
Tilford.

curvedEdgeLines –
boolean. Whether or not
to curve graph edges.

arrowSizeMultiplier –
numeric. Scales arrow
sizes based on input
factor.

logscale – boolean.
If TRUE, scale graph edges
logarithmically. Else do
not.

logBase – integer.
Logarithmic base to scale
graph edges.

Plots a basic network
graph utilizing the default
R visualization backend.

4

Phase Function Name Parameter(s) Description
Blue plot1Att() data – list. Output of

prepareGraphs().

prop – integer. Rescales
the graph edge sizes.

graphmode – string.
Specifies the graphing
algorithm used. Refer to
gplot.layout for more
options.

attribute – list.
Mapping to the attribute
information.

attribute.label –
string. Name of at-
tribute to display in the
graph.

attribute.node.labels
– list. Mapping to the
node labels.

attribute.nodesize
– integer or list. Map-
ping to universal or
individualized node sizes,
respectively.

Plots a network graph
with a single input at-
tribute. Utilizes the gg-
plot2 [@R-ggplot2] back-
end.

5

Phase Function Name Parameter(s) Description
Blue plot2Att() data – list. Output of

prepareGraphs().

prop – integer. Rescales
the graph edge sizes.

graphmode – string.
Specifies the graphing
algorithm used. Refer to
gplot.layout for more
options.

attribute1 – list.
Mapping to the first
attribute information.

attribute2 – list.
Mapping to the second
attribute information.

attribute1.label –
string. Name of the first
attribute to display in
the graph.

attribute2.label –
string. Name of the sec-
ond attribute to display
in the graph.

attribute.node.labels
– list. Mapping to the
node labels.

attribute.nodesize
– integer or list. Map-
ping to universal or
individualized node sizes,
respectively.

Plots a network graph
with two input attributes.
Utilizes the ggplot2 [@R-
ggplot2] backend.

6

Phase Function Name Parameter(s) Description
Orange plotNGTData() data – data.frame or

string. Points to .csv
file with talk-turn data
in the question-and-
response format.

convoMinutes – integer.
Length of conversation,
in minutes.

silentNode – integer.
The number of nodes
that do not interact with
others.

Analyzes non-graph the-
ory statistics and visual-
izes them in three plots.
These are elaborated on in
Chai et al. 2019.

Red writeData() project_name – string.
Sets the title of the
project.

objectfile – list.
The object to be exported
to disk.

dirpath – string.
The location on disk
where the exported file
will be written.

Writes any data object
file as an appropriate for-
mat to a specified user
directory. Images are
saved with a resolution of
300dpi.

1.2 Data Structure
Collecting and formatting data for analysis by discourseGT is based on episodes and talk-
turns [Chai et al., 2019]. Talk-turn data should be recorded as participants speak sequentially,
which can be done with life observations in real time [Chai et al., 2019] or analysis of video
or audio transcripts [Liyanage et al., 2021]. Be prepared to record the duration of the
discussion (in minutes), which is required to determine the number of episode starts and
episode continuations per unit of time. Talk-turn data are collected in a two-column table
that tracks episode starts (ep_start) and episode continuations (ep_cont) and with each
participant in the group assigned a unique identifier, such as a number (Table 2). Each
row should only have a single participant’s identifier entered once either in the ep_start
or ep_cont column. An entry in the ep_start column denotes the beginning of a new
episode. The boundaries of an episode are defined by the researcher and the research question,
although these definitions should be set consistently within a study. It is vital that the column

7

names in the data are explicitly labeled as ep_start and ep_cont, respectively. Raw data
may be prepared using most spreadsheet software or text editors, but it should ultimately
be saved as a comma-separated file (.csv).

Table 2: Formatted talk-turn data ready for discourseGT analysis. In this example, an
episode is defined arbitrarily as a topic (not shown) — that is, each episode is a relevant
discussion on a single topic. There are two episodes. The first episode is three talk-turns long,
with Participant 1 initiating the episode. Participant 3 then spoke, followed by Participant
2. The second episode has two talk-turns, with Participant 4 starting a new episode and
Participant 2 speaking next to complete the overall discussion. It is important to note that
the duration of the conversation (in minutes) is not a part of the table. Rather, it should be
recorded elsewhere for use in NGT analysis.

ep_start ep_cont
1 NA
NA 3
NA 2
4 NA
NA 2

2 Worked Case Example
The discourseGT software package comes equipped with example data. Here, we will utilize
these data to demonstrate its utility in examining discourse networks.

To get started, install the software package through the Comprehensive R Archive Network
(CRAN). Load it using:
library(discourseGT)

2.1 Importing Data
Raw data can be imported using the read.csv() function. For the sake of utilizing the
example data, however, it is useful to duplicate it by assigning its values to a new variable.
Once it has been duplicated, view the head of the data to ensure that it has been properly
imported:
data <- sampleData1
head(data)

ep_start ep_cont
1 1 NA
2 NA 3
3 NA 4
4 NA 1

8

5 NA 2
6 NA 1

2.2 Preparing the igraph Object
Prior to generating the igraph object, a weighted edge list needs to be generated from the
imported raw data. By default, the weight of an edge is defined as the number of times an
edge has occurred between two nodes. Weights can be redefined based on other available
criteria, but this must be done manually.
Calculate the weighted edge list
tabEdge <- tabulate_edges(data, silentNodes = 0)
Check the weighted edge list
head(tabEdge$master)

source target weight
1 1 1 8
2 2 1 25
3 3 1 49
4 4 1 75
5 1 2 28
6 3 2 11

Recall that an igraph object is the core input to many of the modular analytical functions
offered in discourseGT. To generate an igraph object, the following information is required:

• The variable that stores the weighted edge list
• The title of the project. Default: null
• Is the graph weighted? Default: TRUE

prepNet <- prepareGraphs(tabEdge,
project_title = "Sample Data 1",
weightedGraph = TRUE)

The graph settings specified by this function will influence the analytical output of down-
stream functions.

2.3 Running Graph Theory Analysis
discourseGT offers graph theory-based analytics via two separate functions. The first,
coreNetAnalysis(), will perform core operations that produce the parameters. It will count
the number of nodes, and edges, calculate edge weights, average graph degree, modularity,
centrality, and related graph theory parameters. To run the function and store it in a
variable:
coreNet <- coreNetAnalysis(prepNet)

9

The second, subgroupsNetAnalysis(), utilizes the Girvan-Newman algorithm to detect
subgroups within the overall network [Girvan and Newman, 2002], such that:
subNet <- subgroupsNetAnalysis(prepNet, raw_input = data,

normalized = TRUE)

2.4 Generating Summaries
While it is possible to display the generated igraph object, core network statistics, and
subgroup statistics as separate outputs, it can be helpful to view them as an overall summary
of a network’s graph theory analytics. Furthermore, combining all of these outputs into a
single variable is a necessary step in exporting them as a single text file. The summaryNet()
function will combine the outputs from prepareGraphs(), coreNetAnalysis(), and
subgroupsNetAnalysis() as such:
summaryData <- summaryNet(netintconfigData = prepNet,

coreNetAnalysisData = coreNet,
subgroupsNetAnalysisData = subNet,
display = TRUE)

================== BEGIN SUMMARY ==================
discourseGT R Package - Production
Package Version: [1] '1.1.8.9000'
Graph Results - Project Summary
##
---------------PROJECT DETAILS---------------
Name of Project: Sample Data 1
Summary Results Generated On: [1] "2023-07-07 19:15:37 PDT"
##
---------------GRAPH CONFIGURATION---------------
Weighted Graph: TRUE
##
---------------CORE PARAMETERS ANALYSIS---------------
Number of Edges: 12
Number of Nodes: 4
Weighted Edges: 465
Graph Adjacency Matrix:
4 x 4 sparse Matrix of class "dgCMatrix"
1 2 3 4
1 . 28 47 74
2 25 . 13 14
3 49 11 . 52
4 75 13 52 .
##
Network Density: 1
Average Degree: 6

10

Strong/Weak Interactions:
1 2 3 4
1 1 1 1
##
Unrestricted Modularity:
##
---------------GRAPH CENTRALITY---------------
Degree Centrality:
$res
[1] 6 6 6 6
##
$centralization
[1] 0
##
$theoretical_max
[1] 12
##
##
Articulation Points List:
+ 0/4 vertices, named, from 91abd58:
##
Reciprocity: 1
##
---------------SUBGROUPS AND MODULARITY---------------
Girvan-Newman Subgroups Detection:
IGRAPH clustering edge betweenness, groups: 1, mod: 0
+ groups:
$`1`
[1] "1" "2" "3" "4"
##
##
Betweeness:
1 2 3 4
0 1 0 0
##
Normalized Betweeness: TRUE
##
Group Core Members:
1 2 3 4
6 6 6 6
##
Graph Symmetry of Members:
$mut
[1] 6
##

11

$asym
[1] 0
##
$null
[1] 0
##
##
Graph Connectedness Census:
##
4
1
##
Neighborhood List for Each Adjacent Node:
[[1]]
+ 4/4 vertices, named, from 91abd58:
[1] 1 2 3 4
##
[[2]]
+ 4/4 vertices, named, from 91abd58:
[1] 2 1 3 4
##
[[3]]
+ 4/4 vertices, named, from 91abd58:
[1] 3 1 2 4
##
[[4]]
+ 4/4 vertices, named, from 91abd58:
[1] 4 1 2 3
##
##
Transitivity/Clustering Coefficients:
Local Transitivity values:
[1] 1 1 1 1
Global Transitivity values:
[1] 1
##
##
================== END SUMMARY ==================

2.5 Basic Visualization
discourseGT offers several methods to visualize networks. For a basic network graph,
basicPlot() should be used, and its parameters should be modified to suit the needs of the
user. These options include modifications to the plotting algorithm, edge curvature, arrow
size, and edge weight scaling.

12

Its default plotting algorithm is Fruchterman Reingold, denoted by 0 [Fruchterman and
Reingold, 1991]. This is typically the best option to use because it attempts to minimize
edge intersections in the final plot, improving readabiliy. Other projections include Kamada
Kawai [Kamada and Kawai, 1989] and Reingold Tilford [Reingold and Tilford, 1981], denoted
by 1 and 2, respectively.

Edge curvature defaults to TRUE so that differences in talk-turn taking between nodes can
be distinguished. Consider two participants, represented as Node A and Node B. It is
entirely possible for Node A to talk after Node B more than Node B talks after Node A.
Consequently, the two edges that point in each direction will have different weights, and
these can only be visually seen if they are curved instead of overlapping. On the other hand,
graphs without curved edges may improve clarity. This can be especially favorable when
plotting an unweighted graph.

To modify arrow sizes, a multiplier can be passed to arrowSizeMultiplier. The default
value is 1. Any values <1.0 will shrink the arrow, and vice versa. Again, this feature is
added to improve readability in specific cases.

Lastly, edge weight scaling is best used for improved visualization of larger, weighted datasets.
Due to the increase in raw edges, default plotting may yield unreadable results. We imple-
mented Equation 1 to do so according to a linear scale. This method allows for users to
visually compare talk-turn frequencies within a graph, which is not as intuitive with other
forms of scaling.

y = (scaledMax − scaledMin) ⋅ (eachEdgeWeight − rawMin)
rawMax − rawMin + scaledMin (1)

Here, each edge weight is individually scaled to a new value 𝑦. scaledMax and scaledMin
are the user-defined boundaries of a new scale for all weighted edges. 𝑟𝑎𝑤𝑀𝑖𝑛 and 𝑟𝑎𝑤𝑀𝑎𝑥
are the minimum and maximum edge weights that are extracted from the raw data via the
prepareGraphs() function. 𝑒𝑎𝑐ℎ𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡 refers to the weight of each unique edge.

For users, scaledMax must be greater than or equal to scaledMin. These variables may also
be set to equal, non-zero values to produce an unweighted version of the graph.

Note that while both scaledMin and scaledMax can theoretically be set to 0, we advise
against this because the resulting graph will appear to have no edges. Likewise, if scaledMin
is set to 0 while scaledMax is a non-zero value, the resulting graph will appear to have no
edges where the most infrequent talk-turns occurred. This may have some functionality
depending on the user’s use-case.

Below is an example of a graph that uses the Fruchterman Reingold projection, linearly
scales the dataset to new weighted edge boundaries of [1, 10], and applies a scale of 2 to
the arrow sizes.
basicPlot(prepNet, graph_selection_input = 0, curvedEdgeLines = TRUE,

arrowSizeMultiplier = 2, scaledEdgeLines = TRUE, scaledMin = 1,
scaledMax = 10)

13

1

2

3

4

Sample Data 1

In this plot, it can be easily seen that the fewest number of talk-turns relative to the entire
discourse network occurred between Nodes 2 and 3 as well as Nodes 2 and 4. Nodes 1 and
2 shared the next fewest number of talk-turns, followed by Nodes 1 and 3 and Nodes 3 and
4. Nodes 1 and 4 shared the greatest number of talk-turns between them. In each of these
node pairs, the conversation appeared to travel equally between the nodes involved, as the
edges of similar thickness indicate. Note that we cannot view any attribute data about the
nodes here.

2.6 Attribute Visualization
To add attributes to a network graph, the plot1Att() and plot2Att() functions can be
used. These functions utilize the ggplot2 backend with GGally [Wickham et al., 2021,
Schloerke et al. [2021]], giving them an appearance distinct from the previously discussed
basicPlot() function.

Before starting, ensure that a properly formatted data.frame with attributes is in the
working environment. Displayed below is an example attribute dataset included with dis-

14

courseGT:
attData <- attributeData
head(attData)

node gender ethnicity current_gpa first_generation stem_major
1 1 female white 3.56 no yes
2 2 male white 3.26 yes no
3 3 female asian 3.46 no yes
4 4 male african_american 3.60 yes yes
major course_reason class_level number_prior_ap residency
1 bioengineering major junior 0 CA
2 political_science ge senior 2 CA
3 biology major sophomore 3 CA
4 chemistry elective junior 4 WA
sat_score
1 1323
2 1449
3 1228
4 1494

Note that the first column, node, contains each node name that was included in the initial
imported data. This is a crucial aspect to the attribute data because it identifies attributes
associated with particular nodes for plot1Att() and/or plot2Att().

Similarly to the basicPlot() function, the attribute plotting functions include options to
modify the overall projection, albeit less granular. These include edge scaling, node sizes,
and plotting algorithm.

Edge weight scaling can be modified by changing the value of prop, and node sizes can be
modified by changing the value of attribute.nodesize. Each of these have a default value
of 20, although this is arbitrary. The user should find the best settings that suit their use
case.

The default plotting algorithm is again Fruchterman Reingold for its readability
[Fruchterman and Reingold, 1991]. Here, however, this option is indicated by pass-
ing fruchtermanreingold into the function. Other projections can be found with
gplot.layout.

Lastly, it is important to note that only 1 or 2 attributes can be plotted at once. These cases
should utilize the plot1Att() and plot2Att() functions, respectively.

Below is an example of an attribute graph with larger-than-default edge sizes and smaller-
than-default node sizes. It utilizes the Fruchterman Reingold projection.
plot1Att(prepNet,

prop = 40,
graphmode = "fruchtermanreingold",
attribute = attData$ethnicity,

15

attribute.label = "Ethnicity",
attribute.node.labels = attData$node,
attribute.nodesize = 16)

Registered S3 method overwritten by 'GGally':
method from
+.gg ggplot2

$g2plot

1

2

3

4

Ethnicity

african_american

asian

white

Sample Data 1

##
$saveDataVar

16

[1] 1

To plot a second attribute to a network, utilize plot2Att() with the aforementioned notation.
The following graph showcases the network with both ethnic and gender data:
plot2Att(prepNet,

prop = 40,
graphmode = "fruchtermanreingold",
attribute1 = attData$ethnicity,
attribute2 = attData$gender,
attribute1.label = "Ethnicity",
attribute2.label = "Gender",
attribute.node.labels = attData$node,
attribute.nodesize = 16)

$g2plot

17

1

2

3

4

Gender

female

male

Ethnicity

african_american

asian

white

Sample Data 1

##
$saveDataVar
[1] 2

2.7 Customizable Visualization
Further graph customizability, such as node placements, can be achieved with Cytoscape, an
open-source network plotting software [Shannon et al., 2003]. In order to utilize this method:

1. Download & install Cytoscape.
2. Install RCy3 [Pico et al., 2021] using the BiocManager package [Morgan and Ramos,

2021].

18

3. Plot the igraph object and modify it in Cytoscape.

Assuming that Cytoscape is installed, install and load RCy3 to properly link it to R. This
can be done by:
install.packages("BiocManager")
BiocManager::install("RCy3")
library(RCy3)

To plot a graph, first ensure that a new Cytoscape session is loaded. Then, utilize the
following command to send an igraph object to the GUI:
createNetworkFromIgraph(prepNet$graph)

The graph will now appear in Cytoscape, where further modifications can be made.

2.8 Running Non-Graph Theory Analysis
Recall that discourseGT does not require an igraph object to produce NGT analysis. Rather,
plotNGTData() utilizes the raw, two column data to generate its output. Additionally,

19

it requires the duration of the conversation (in minutes) and the number of silent nodes
(i.e. participants who did not speak at all) in the discourse network. The function outputs
the previously-discussed NGT parameters and three individual graphs. The raw data are
also exported alongside the graphs, giving the user greater flexibility in creating their own
NGT visualizations.
options(width = 60)
plotNGTData(data = data, convoMinutes = 90, silentNodes = 0)

$ngt_std_stats1
participant ep_start ep_cont total_count
1 1 27 131 158
2 2 6 46 52
3 3 11 104 115
4 4 20 121 141
total_edges_in_out edge_by_part ep_starts_hour
1 314 157 18.000000
2 104 52 4.000000
3 230 115 7.333333
4 282 141 13.333333
ep_conts_hour
1 87.33333
2 30.66667
3 69.33333
4 80.66667
##
$ngt_std_stats2
length_of_ep freq_of_ep
1 2 13
2 3 6
3 4 5
4 5 3
5 6 5
6 7 6
7 8 4
8 9 4
9 10 3
10 11 3
11 12 4
12 14 1
13 15 2
14 16 1
15 18 2
16 20 2
17 1 0

20

18 13 0
19 17 0
20 19 0
##
$ngt_adv_stats
participant normalized_turn_ratio indv_SDI_arg SDI
1 1 1.3505376 -0.3666006 1.318946
2 2 0.4473118 -0.2449920 1.318946
3 3 0.9892473 -0.3455207 1.318946
4 4 1.2129032 -0.3618325 1.318946
SEI
1 0.9514183
2 0.9514183
3 0.9514183
4 0.9514183
##
$episodes_plot

0

5

10

2 3 4 5 6 7 8 9 10 11 12 14 15 16 18 20 1 13 17 19

Length of Episodes

F
re

qu
en

cy
 o

f E
pi

so
de

s

##
$qvr_plot

21

1

2

3

4

0

25

50

75

0 5 10 15
Episode Starts per hour

E
pi

so
de

 C
on

tin
ua

tio
ns

 p
er

 h
ou

r

##
$ntr_plot

22

0.0

0.5

1.0

1 4 3 2
Participants

N
or

m
al

iz
ed

 T
ur

n
R

at
io

##
$saveDataVar
[1] 3

2.9 Exporting to Disk
The writeData() function accepts specific discourseGT function output and exports it as a
permanent file to a specified directory on the user’s disk. It can save the generated summary
object, any plots, and weighted edge lists. Images will automatically export as a .tiff at
300 DPI, and console output will be exported as a .txt file.

The following example exports the generated summary to disk:
writeData("Sample Data 1", summaryData, dirpath = tempdir())

References
Albert Chai, Joshua P. Le, Andrew S. Lee, and Stanley M. Lo. Applying graph theory to

examine the dynamics of student discussions in small-group learning. CBE - Life Sciences
Education, 18, 2019. doi: 10.1187/cbe.18-11-0222.

T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement.
Software - Practice and Experience, 21:1129–1164, 1991. doi: 10.1002/spe.4380211102.

23

M. Girvan and M. E. J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99:7821–7826, 2002. doi: 10.1073/pnas
.122653799.

Tomihisa Kamada and Satoru Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7–15, 1989. ISSN 0020-0190. doi: https://doi.org/
10.1016/0020-0190(89)90102-6. URL http://www.sciencedirect.com/science/article/pii/
0020019089901026.

Dilhara Liyanage, Stanley M. Lo, and Sally S. Hunnicutt. Student discourse networks and
instructor facilitation in process oriented guided inquiry physical chemistry classes. Chem.
Educ. Res. Pract., 22:93–104, 2021. doi: 10.1039/D0RP00031K. URL http://dx.doi.org
/10.1039/D0RP00031K.

Martin Morgan and Marcel Ramos. BiocManager: Access the Bioconductor Project Package
Repository. Bioconductor, 2021. URL https://cran.r-project.org/web/packages/BiocMan
ager/index.html. R package version 1.30.16.

Alex Pico, Tanja Muetze, Paul Shannon, Ruth Isserlin, Shraddha Pai, Julia Gustavsen, and
Georgi Kolishovski. Functions to Access and Control Cytoscape. Bioconductor, 2021. URL
https://bioconductor.org/packages/release/bioc/html/RCy3.html. R package version
2.12.4.

Edward M. Reingold and John S. Tilford. Tidier drawings of trees. IEEE Transactions on
Software Engineering, 7(2), 1981.

Barret Schloerke, Jason Crowley, Di Cook, Francois Briatte, Moritz Marbach, Edwin Thoen,
Amos Elberg, and Joseph Larmarange. GGally: Extension to ’ggplot2’, 2021. URL https:
//CRAN.R-project.org/package=GGally. R package version 2.1.2.

Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang, Daniel
Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. Cytoscape: a software envi-
ronment for integrated models of biomolecular interaction networks. Genome Research,
13:2498–2504, 2003. URL https://www.cytoscape.org/.

Hadley Wickham, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi,
Claus Wilke, and Kara Woo. ggplot2: Create Elegant Data Visualisations Using the
Grammar of Graphics, 2021. URL https://CRAN.R-project.org/package=ggplot2. R
package version 3.3.5.

24

http://www.sciencedirect.com/science/article/pii/0020019089901026
http://www.sciencedirect.com/science/article/pii/0020019089901026
http://dx.doi.org/10.1039/D0RP00031K
http://dx.doi.org/10.1039/D0RP00031K
https://cran.r-project.org/web/packages/BiocManager/index.html
https://cran.r-project.org/web/packages/BiocManager/index.html
https://bioconductor.org/packages/release/bioc/html/RCy3.html
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=GGally
https://www.cytoscape.org/
https://CRAN.R-project.org/package=ggplot2

	discourseGT Workflow
	General Workflow
	Data Structure

	Worked Case Example
	Importing Data
	Preparing the igraph Object
	Running Graph Theory Analysis
	Generating Summaries
	Basic Visualization
	Attribute Visualization
	Customizable Visualization
	Running Non-Graph Theory Analysis
	Exporting to Disk

