
Bayesian networks in R with the gRain package

Søren Højsgaard

Aalborg University, Denmark

gRain version 1.4.1 as of 2023-11-21

Contents

1 Introduction 1

2 Example: Chest clinic 2
2.1 Building a network . 2
2.2 Queries to networks . 3

3 A one–minute version of gRain 3
3.1 Specifying a network . 3
3.2 Setting evidence and querying a network . 4

4 Hints and shortcuts 6

5 Conditioning on evidence with zero probability 8

6 Hard and virtual (likelihood) evidence 8
6.1 An excerpt of the chest clinic network . 9
6.2 Specifying hard evidence . 9
6.3 Virtual evidence (also called soft or likelihood evidence) 10
6.4 Specifying virtual evidence . 10
6.5 Extending networks to include other types of variables 11

A Building networks from data 13
A.1 Extracting information from tables . 14
A.2 Using smooth . 15
A.3 Extracting tables . 16

B Brute force computations and why they fail 18

1 Introduction

The gRain package implements Bayesian Networks (hereafter often abbreviated BNs). The name
gRain is an acronym for [gra]phical [i]ndependence [n]etworks. The main reference for gRain is
Højsgaard (2012), see also ‘citation(”gRain”)‘.

Moreover, Højsgaard et al. (2012) gives a broad treatment of graphical models (including Bayesian
networks) More information about the package, other graphical modelling packages and develop-
ment versions is available from

http://people.math.aau.dk/~sorenh/software/gR

1

asiatub

smoke
lung

bronc

either
xray

dysp

Figure 1: Chest clinic example from Lauritzen and Spiegelhalter (1988).

2 Example: Chest clinic

This section reviews the chest clinic example of Lauritzen and Spiegelhalter (1988) (illustrated
in Figure 1) and shows one way of specifying the model in gRain. Lauritzen and Spiegelhalter
(1988) motivate the chest clinic example with the following narrative:

“Shortness–of–breath (dyspnoea) may be due to tuberculosis, lung cancer or bronchitis,
or none of them, or more than one of them. A recent visit to Asia increases the chances
of tuberculosis, while smoking is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X–ray do not discriminate between lung cancer
and tuberculosis, as neither does the presence or absence of dyspnoea.”

2.1 Building a network

The description above involves the following binary variables: α = asia, σ = smoker, τ =
tuberculosis, λ = lung cancer, β = bronchitis, ϵ = either tuberculosis or lung cancer, δ = dyspnoea
and ξ = xray. Each variable is binary and can take the values “yes” and “no”: Note that ϵ is a
logical variable which is true (yes) if either τ or λ are true (yes) and false (no) otherwise. The
connection between the variables is displayed by the DAG (directed acyclic graph) in Figure 1.

A joint probability density factorizing according to a DAG with nodes V can be constructed as
follows: Each node v ∈ V has a set pa(v) of parents and each node v ∈ V has a finite set of states.
A joint distribution over the variables V can be given as

p(V) =
∏

v∈V

p(v|pa(v)) (1)

where p(v|pa(v)) is a function defined on (v, pa(v)). This function satisfies that
∑

v∗ p(v =
v∗|pa(v)) = 1, i.e. that for each configuration of the parents pa(v), the sum over the levels of
v equals one. Hence p(v|pa(v)) becomes the conditional distribution of v given pa(v). In practice
p(v|pa(v)) is specified as a table called a conditional probability table or a CPT for short. Thus,
a Bayesian network can be regarded as a complex stochastic model built up by putting together
simple components (conditional probability distributions). A joint probability density for all eight
variables in Figure 1 can be constructed as

p(V) = p(α)p(σ)p(τ |α)p(λ|σ)p(β|σ)p(ϵ|τ, λ)p(δ|ϵ, β)p(ξ|ϵ). (2)

2

2.2 Queries to networks

Suppose we are given the evidence (sometimes also called “finding”) that a set of variables E ⊂ V
have a specific value e∗. With this evidence, we are often interested in the conditional distribution
p(v|E = e∗) for some of the variables v ∈ V \ E or in p(U |E = e∗) for a set U ⊂ V \ E. Interest
might also be in calculating the probability of a specific event, e.g. the probability of seeing a
specific evidence, i.e. p(E = e∗). Other types of evidence (called soft evidence, virtual evidence or
likelihood evidence) are discussed in Section 6.

For example that a person has recently visited Asia and suffers from dyspnoea, i.e. α = yes and
δ = yes. In the chest clinic example, interest might be in p(λ|e∗), p(τ |e∗) and p(β|e∗), or possibly
in the joint (conditional) distribution p(λ, τ, β|e∗).

3 A one–minute version of gRain

3.1 Specifying a network

A simple way of specifying the model for the chest clinic example is as follows.

1. Specify conditional probability tables (with values as given in Lauritzen and Spiegelhalter
(1988)) (there are other ways of specifying conditional probability tables, see the package
documentation):

yn <- c("yes","no")

a <- cpt(~asia, values=c(1, 99),levels=yn)

t.a <- cpt(~tub|asia, values=c(5, 95, 1, 99),levels=yn)

s <- cpt(~smoke, values=c(5, 5), levels=yn)

l.s <- cpt(~lung|smoke, values=c(1, 9, 1, 99), levels=yn)

b.s <- cpt(~bronc|smoke, values=c(6, 4, 3, 7), levels=yn)

e.lt <- cpt(~either|lung:tub,values=c(1, 0, 1, 0, 1, 0, 0, 1),levels=yn)

x.e <- cpt(~xray|either, values=c(98, 2, 5, 95), levels=yn)

d.be <- cpt(~dysp|bronc:either, values=c(9, 1, 7, 3, 8, 2, 1, 9), levels=yn)

2. Compile list of conditional probability tables.

chest_cpt <- compileCPT(a, t.a, s, l.s, b.s, e.lt, x.e, d.be)

chest_cpt

P(asia)

P(tub | asia)

P(smoke)

P(lung | smoke)

P(bronc | smoke)

P(either | lung tub)

P(xray | either)

P(dysp | bronc either)

The components are arrays, but coercion into dataframes sometimes makes it easier to digest
the components.

chest_cpt$tub

3

asia

tub yes no

yes 0.05 0.01

no 0.95 0.99

chest_cpt$tub |> as.data.frame.table()

tub asia Freq

1 yes yes 0.05

2 no yes 0.95

3 yes no 0.01

4 no no 0.99

Notice: either is a logical node:

chest_cpt$either |> as.data.frame.table()

either lung tub Freq

1 yes yes yes 1

2 no yes yes 0

3 yes no yes 1

4 no no yes 0

5 yes yes no 1

6 no yes no 0

7 yes no no 0

8 no no no 1

3. Create the network:

chest_bn <- grain(chest_cpt)

chest_bn

Independence network: Compiled: TRUE Propagated: FALSE Evidence: FALSE

Default is that the network is compiled at creation time, but if one chooses not to do so,
compilation can be done with:

chest_bn <- compile(chest_bn)

3.2 Setting evidence and querying a network

1. A network can be queried to give marginal probabilities for each of a set of nodes (the default)
or the joint probability for a set of nodes.1 Notice that querygrain() can be abbreviated
qgrain().

querygrain(chest_bn, nodes=c("lung", "bronc"), type="marginal")

$lung

lung

yes no

0.055 0.945

##

$bronc

bronc

yes no

0.45 0.55

1A third type of output exists, see package documentation for details.

4

2. Likewise, a joint distribution can be obtained (represented as a multi dimensional array):

querygrain(chest_bn, nodes=c("lung", "bronc"), type="joint")

bronc

lung yes no

yes 0.0315 0.0235

no 0.4185 0.5265

3. Evidence can be entered in two different ways:2

chest_ev <- setEvidence(chest_bn,

evidence=list(asia="yes", dysp="yes"))

chest_ev <- setEvidence(chest_bn,

nodes=c("asia", "dysp"), states=c("yes", "yes"))

Also: modify object with

evidence(chest_bn) <- list(asia="yes", dysp="yes")

4. The evidence is a list and can conveniently be displayed as a dataframe:

getEvidence(chest_ev) |> as.data.frame()

nodes is_hard hard_state evi_weight

1 asia TRUE yes 1, 0

2 dysp TRUE yes 1, 0

5. The network can be queried again:

querygrain(chest_ev, nodes=c("lung", "bronc"))

$lung

lung

yes no

0.09952515 0.90047485

##

$bronc

bronc

yes no

0.8114021 0.1885979

6. The probability of observing this evidence under the model is

pEvidence(chest_ev)

[1] 0.004501375

7. The probability of an evidence can be found with only propagation towards the root of
a junction tree. This saves about half the computational effort of propagation. However,
notice that the network is not changed by this operation, so if the network is subsequently
queried, there is no gain in computing time.

2Alternative forms exist; see package documentation for details.

5

pEvidence(chest_bn, evidence=list(asia="yes", dysp="yes"))

[1] 0.004501375

4 Hints and shortcuts

1. An alternative way of specifying a network is by first defining CPTs and then entering values
afterwards. Programmatically, this can be done as:

yn <- c("yes","no")

flist <- c(

~asia, ~tub|asia, ~smoke, ~lung|smoke, ~bronc|smoke, ~either|lung:tub,

~xray|either, ~dysp|bronc:either

)

or

flist <- list("asia", c("tub", "asia"), "smoke", c("lung", "smoke"),

c("bronc", "smoke"), c("either", "tub", "lung"),

c("xray", "either"), c("dysp", "bronc", "either"))

chest_cpt2 <- lapply(flist, function(f){
cpt(f, levels=yn)

})

bn2 <- compileCPT(chest_cpt2) |> grain()

lst2 <- list(asia=c(1, 99),

tub=c(5, 95, 1, 99),

smoke=c(5, 5),

lung=c(1, 9, 1, 99),

bronc=c(6, 4, 3, 7),

either=c(1, 0, 1, 0, 1, 0, 0, 1),

xray=c(98, 2, 5, 95),

dysp=c(9, 1, 7, 3, 8, 2, 1, 9))

bn2 <- replaceCPT(bn2, lst2)

2. Consider querying a network where focus is on marginal distributions (the default). If all
variables have the same levels (as the case is here), the output can be coerced to a dataframe:

querygrain(chest_bn, nodes=c("lung", "bronc"), simplify = TRUE)

yes no

lung 0.055 0.945

bronc 0.450 0.550

In the more general case the output can be coerced to a list of dataframes

querygrain(chest_bn, nodes=c("lung", "bronc"), result="data.frame")

$lung

lung Freq

1 yes 0.055

2 no 0.945

6

##

$bronc

bronc Freq

1 yes 0.45

2 no 0.55

3. A typical use of Bayesian network involves setting evidence and then querying the network
afterwards. This can all be done in one call of querygrain (notice that this does not alter
the network object):

querygrain(chest_bn,

evidence=list(asia="yes", dysp="yes"),

nodes=c("lung", "bronc"), simplify = TRUE)

yes no

lung 0.09952515 0.9004749

bronc 0.81140207 0.1885979

4. Evidence can be also be given as a vector of weights.

querygrain(chest_bn,

evidence=list(asia=c(1,0), dysp=c(1,0)),

nodes=c("lung", "bronc"), simplify = TRUE)

yes no

lung 0.09952515 0.9004749

bronc 0.81140207 0.1885979

The weights must be non-negative but need not sum to one. This is important in connection
with soft evidence (also called likelihood evidence), see Section 6. Above, the weights could
also have been set as c(.1, 0). The important part is that the zero excludes certain states
as being impossible.

5. Nodes on which evidence is given are not reported unless exclude=FALSE

querygrain(chest_bn,

evidence=list(asia=c(1, 0), dysp=c(1, 0)),

nodes=c("lung", "bronc", "asia", "dysp"),

exclude=FALSE, simplify = TRUE)

yes no

asia 1.00000000 0.0000000

lung 0.09952515 0.9004749

bronc 0.81140207 0.1885979

dysp 1.00000000 0.0000000

6. If nodes are not specified, queries for all nodes without evidence are reported.

querygrain(chest_bn,

evidence=list(asia="yes", dysp="yes"),

simplify = TRUE)

yes no

tub 0.08775096 0.9122490

lung 0.09952515 0.9004749

either 0.18229985 0.8177001

7

bronc 0.81140207 0.1885979

smoke 0.62591986 0.3740801

xray 0.21953886 0.7804611

If nodes are not specified and exclude=FALSE, then queries for all nodes are reported.

querygrain(chest_bn,

evidence=list(asia="yes", dysp="yes"),

exclude = FALSE, simplify = TRUE)

yes no

asia 1.00000000 0.0000000

tub 0.08775096 0.9122490

lung 0.09952515 0.9004749

either 0.18229985 0.8177001

bronc 0.81140207 0.1885979

smoke 0.62591986 0.3740801

dysp 1.00000000 0.0000000

xray 0.21953886 0.7804611

5 Conditioning on evidence with zero probability

Consider setting the evidence

chest_bn3 <- setEvidence(chest_bn, evidence=list(either="no", tub="yes"))

Under the model, this specific evidence has zero probability: either is true if tub is true or lung is
true (or both). Hence the specific evidence is impossible and therefore, all conditional probabilities
are (under the model) undefined:

pEvidence(chest_bn3)

[1] 0

querygrain(chest_bn3, nodes=c("lung", "bronc"), type="joint")

bronc

lung yes no

yes NaN NaN

no NaN NaN

6 Hard and virtual (likelihood) evidence

Below we describe how to work with virtual evidence (also known as soft evidence or likelihood
evidence) in gRain. This is done via the function setEvidence().

The clique potential representation in a Bayesian network gives

p(x) ∝ ψ(x) =
∏

C

ψC(xC).

Here we recall that the whole idea in computations with Bayesian networks is to avoid calcula-
tion the product on the right hand side above. Instead computations are based on propagation

8

(multiplying, dividing and summing clique potentials ψC in an appropriate order, and such an ap-
propriate order comes from a junction tree). The normalizing constant, say c =

∑
x ψ(x), comes

out of propagation as a “by product”.

Suppose a set of nodes E are known to have a specific value, i.e. xE = x∗E . This is called hard
evidence. The probability of the event xE = x∗E is

p(xE = x∗E) = Ep{I(xE = x∗E)} =
∑

x

I(xE = x∗E)p(x) =
1

c

∑

x

I(xE = x∗E)ψ(x)

The computations are based on modifying the clique potentials ψC by giving value zero to states in
ψC which are not consistent with xE = x∗E . This can be achieved with an indicator function, say

LC(xC) such that we obtain a set of new potentials ψ̃C(x) = LC(xC)ψC(xC). Propagation with
these new potentials gives, as a by product, c̃ =

∑
ψ̃(x) where ψ̃(x) =

∏
C ψ̃C(xC). Consequently,

we have p(xE = x∗E) = c̃/c.

In a more general setting we may have non–negative weights L(x) for each value of x. We may
calculate

Ep{L(X)} =
∑

x

L(x)p(x)

If L(X) factorizes as L(X) =
∏

C LC(XC) then the computations are carried out as outlined
above, i.e. by the message passing scheme.

6.1 An excerpt of the chest clinic network

Consider the following excerpt of the chest clinic network.

yn <- c("yes", "no")

a <- cpt(~asia, values=c(1, 99), levels=yn)

t.a <- cpt(~tub|asia, values=c(5, 95, 1, 99), levels=yn)

plist1 <- compileCPT(list(a, t.a))

chest1 <- grain(plist1)

querygrain(chest1, simplify = TRUE)

yes no

asia 0.0100 0.9900

tub 0.0104 0.9896

6.2 Specifying hard evidence

Suppose we want to make a diagnosis about tuberculosis given the evidence that a person has
recently been to Asia. The function setEvidence() can be used for this purpose. The following
forms are equivalent

setEvidence(chest1, evidence=list(asia="yes"))

Independence network: Compiled: TRUE Propagated: TRUE Evidence: TRUE

We call such evidence hard evidence because the state of the variables are known with certainty.

9

6.3 Virtual evidence (also called soft or likelihood evidence)

Suppose we do not know with certainty whether a patient has recently been to Asia (perhaps the
patient is too ill to tell). However the patient (if he/she is Caucasian) may be unusually tanned
and this lends support to the hypothesis of a recent visit to Asia.

To accommodate this setting we create an extended network with an extra node for which we
enter evidence.

However, it is NOT necessary to do so in practice, because we may equivalently enter the virtual
evidence in the original network.

We can then introduce a new variable guess asia with asia as its only parent.

g.a <- cpt(~guess_asia+asia, levels=yn,

values=c(.8, .2, .1, .9))

This reflects the assumption that for patients who have recently been to Asia we would (correctly)
guess so in 80% of the cases, whereas for patients who have not recently been to A we would
(erroneously) guess that they have recently been to Asia in 10% of the cases.

plist2 <- compileCPT(list(a, t.a, g.a))

chest2 <- grain(plist2)

querygrain(chest2, simplify = TRUE)

yes no

asia 0.0100 0.9900

tub 0.0104 0.9896

guess_asia 0.1070 0.8930

Now specify the guess or judgment, that the person has recently been to Asia:

querygrain(chest2, evidence=list(guess_asia="yes"),

simplify=TRUE, exclude = FALSE)

yes no

asia 0.07476636 0.9252336

tub 0.01299065 0.9870093

guess_asia 1.00000000 0.0000000

6.4 Specifying virtual evidence

The same guess or judgment can be specified as virtual evidence (also called likelihood evidence)
for the original network:

chest1_ve <- chest1 |> setEvidence(evidence=list(asia=c(.8, .1)))

chest1_ve |> querygrain(simplify = TRUE)

yes no

tub 0.01299065 0.9870093

getEvidence(chest1_ve, short=FALSE)

$nodes

[1] "asia"

##

$is_hard

[1] FALSE

10

##

$hard_state

[1] NA

##

$evi_weight

$evi_weight[[1]]

asia

yes no

0.8 0.1

##

##

attr(,"class")

[1] "grain_evidence" "list"

This also means that specifying that specifying asia=’yes’ can be done as

querygrain(chest1, evidence=list(asia=c(1, 0)), simplify=T)

yes no

tub 0.05 0.95

6.5 Extending networks to include other types of variables

gRain only handles discrete variables with a finite state space, but using likelihood evidence it
is possible to work with networks with both discrete and continuous variables (or other types of
variables). This is possible only when he networks have a specific structure. This is possible when
no discrete variable has non–discrete parents.

Take a simple example: Form a Bayesian network for variables x = (x1, x2). Conceptually augment
this network with additional variables y = (y1, y2) where y1|x1 = k ∼ N(µk, v) and y2|x2 =
k ∼ Poi(λk) for k = 1, 2. Also we make the assumption that y1 and y2 are independent given
x = (x1, x2). This gives the DAG below:

plot(dag(~y1:x1 + x2:x1 + y2:x2))

x1
y1

x2

y2

A Bayesian network for x can be constructed as:

11

u <- list(x1=yn, x2=yn)

x1 <- cpt(~x1, values=c(1, 3), levels=yn)

x2 <- cpt(~x2|x1, values=c(1, 3, 3, 1), levels=yn)

bn <- grain(compileCPT(x1, x2))

querygrain(bn, simplify=TRUE)

yes no

x1 0.250 0.750

x2 0.625 0.375

The augmentation of y|x can go along these lines: The parameters describing y|x are set to be:

v <- 2

mu <- c(mu1=2, mu2=5)

lambda <- c(lambda1=0, lambda2=7)

Suppose we observe y1 = y∗
1
. Then

p(x|y1 = y∗
1
) ∝ p(x1)p(x2|x1)p(y1 = y∗

1
|x1) = p(x1)p(x2|x1)L1(x1)

where L1(x1) denotes the likelihood. In a Bayesian network setting this corresponds to changing
p(x1) as

p(x1)← p(x1)L1(x1)

and then carry on with propagation. This can be achieved in different ways. One is by setting the
likelihood as evidence:

y1 <- 1 # Observed value for y1

lik1 <- dnorm(y1, mean=mu, sd=sqrt(v))

querygrain(bn, exclude = FALSE,

evidence=list(x1=lik1), simplify = TRUE)

yes no

x1 0.9340965 0.06590353

x2 0.2829518 0.71704823

An alternative is to explicitly modify the CPT which specifies p(x1):

x1_upd <- getgrain(bn, "cptlist")$x1 * lik1

bn2 <- replaceCPT(bn, list(x1=x1_upd))

querygrain(bn2)

$x1

x1

yes no

0.93409647 0.06590353

##

$x2

x2

yes no

0.2829518 0.7170482

A final remark: The conditional distribution of y1 is normal, but the unconditional distribution is
a mixture of normals. Likewise, the conditional distribution of y2 is poisson, but the unconditional
distribution is a mixture of two poisson distributions. Evidence on, say y1 changes the belief in
x1 and x2 and this in turn changes the distribution of y2 (evidence changes the mixture weights.)

12

set.seed(2022)

nsim <- 1000

xsim1 <- simulate(bn, nsim)

head(xsim1)

x1 x2

1 yes no

2 no yes

3 yes no

4 no yes

5 yes no

6 no yes

xsim2 <- simulate(bn2, nsim)

head(xsim2)

x1 x2

1 yes no

2 yes no

3 yes no

4 yes no

5 yes no

6 yes no

par(mfrow=c(1,2))

y2sim <- rpois(n=nsim, lambda=lambda[xsim1$x2])

y22sim <- rpois(n=nsim, lambda=lambda[xsim2$x2])

y2sim |> hist(prob=T, ylim=c(0, .4), breaks=10)

y22sim |> hist(prob=T, ylim=c(0, .4), breaks=10)

Histogram of y2sim

y2sim

D
e
n
s
it
y

0 2 4 6 8 10 14

0
.0

0
.3

Histogram of y22sim

y22sim

D
e
n
s
it
y

0 5 10 15

0
.0

0
.3

The joint distribution is
p(x, y1, y2) = p(x)p(y1|x)p(y2|x)

Suppose the interest is in the distribution of x given y1 = y∗
1
and y2 = y∗

2
. We then have

p(x|y∗
1
, y∗

2
) ∝ p(x)p(y∗

1
|x)p(y∗

2
|x) = p(x)L1(x)L2(x)

A Building networks from data

The following two graphs specify the same model:

13

dG <- dag(~A:B + B:C, result="igraph")

uG <- ug(~A:B + B:C, result="igraph")

par(mfrow=c(1,2)); plot(dG); plot(uG)

B

A

C A

B

C

Suppose data is

dat <- tabNew(c("A", "B", "C"), levels=c("lev1", "lev2"), #levels=c(2,2,2),

values=c(0, 0, 2, 3, 1, 2, 1, 4))

class(dat)

[1] "array"

A network can be built from data using:

gr.dG <- compile(grain(dG, data=dat))

gr.uG <- compile(grain(uG, data=dat))

However, when there are zeros in the table, care must be taken.

A.1 Extracting information from tables

In the process of creating networks, conditional probability tables are extracted when the graph is
a dag and clique potentials are extracted when the graph is a chordal (i.e. triangulated) undirected
graph. This takes place as follows (internally):

extractCPT(dat, dG) |> c() ## FIXME: Printing problem

$B

C

B lev1 lev2

lev1 0 0.375

lev2 1 0.625

##

$A

B

A lev1 lev2

lev1 0.3333333 0.3

lev2 0.6666667 0.7

##

14

$C

C

lev1 lev2

0.3846154 0.6153846

extractPOT(dat, uG) |> c() ## FIXME: Printing problem

[[1]]

B

A lev1 lev2

lev1 0.07692308 0.2307692

lev2 0.15384615 0.5384615

##

[[2]]

B

C lev1 lev2

lev1 0 0.5

lev2 1 0.5

The conditional probability table P (A|B) contains NaNs because

P (A|B = B1) =
n(A,B = B1)∑
A n(A,B = B1)

=
0

0
= NaN

For this reason the network gr.dG above will fail to compile whereas gr.uG will work, but it may
not give the expected results.

A.2 Using smooth

To illustrate what goes on, we can extract the distributions from data as follows:

p.A_B <- tabDiv(dat, tabMarg(dat, "B")) ## p(A|B)

p.B <- tabMarg(dat, "B") / sum(dat) ## p(B)

p.AB2 <- tabMult(p.A_B, p.B) ## P(AB)

However, the result is slightly misleading because tabDiv sets 0/0 = 0. In grain there is a smooth
argument that will add a small number to the cell entries before extracting tables, i.e.

P (A|B = B1) =
n(A,B = B1) + ϵ∑
A(n(A,B = B1) + ϵ)

=
ϵ

2ϵ
= 0.5

and

P (B) =

∑
A(n(A,B) + ϵ)∑
AB(n(A,B) + ϵ)

We can mimic this as follows:

e <- 1e-2

(dat.e <- dat + e)

, , C = lev1

##

B

A lev1 lev2

lev1 0.01 2.01

lev2 0.01 3.01

15

##

, , C = lev2

##

B

A lev1 lev2

lev1 1.01 1.01

lev2 2.01 4.01

pe.A_B <- tabDiv(dat.e, tabMarg(dat.e, "B"))

pe.B <- tabMarg(dat.e, "B") / sum(dat.e)

pe.AB <- tabMult(pe.A_B, pe.B)

However this resulting joint distribution is different from what is obtained from the adjusted table
itself

dat2.e <- dat.e / sum(dat.e)

(dat2.e - pe.AB) |> ftable()

C lev1 lev2

A B

lev1 lev1 0.0000000 -0.0764526

lev2 0.0764526 0.0000000

lev2 lev1 0.0000000 -0.0764526

lev2 0.0764526 0.0000000

This difference appears in the gRain networks.

A.3 Extracting tables

One can do

gr.dG <- grain(dG, data=dat, smooth=e)

which (internally) corresponds to

extractCPT(dat, dG, smooth=e) |> c()

$B

C

B lev1 lev2

lev1 0.001992032 0.3753117

lev2 0.998007968 0.6246883

##

$A

B

A lev1 lev2

lev1 0.3344371 0.3003992

lev2 0.6655629 0.6996008

##

$C

C

lev1 lev2

0.3847926 0.6152074

16

We get

querygrain(gr.dG, exclude=FALSE, simplify=TRUE)

lev1 lev2

C 0.3847926 0.6152074

B 0.2316611 0.7683389

A 0.3082845 0.6917155

querygrain(gr.uG, exclude=FALSE, simplify=TRUE)

lev1 lev2

A 0.3076923 0.6923077

B 0.2307692 0.7692308

C 0.3846154 0.6153846

However, if we condition on B=lev1 we get:

querygrain(gr.dG, evidence=list(B="lev1"), exclude=FALSE, simplify=TRUE)

lev1 lev2

C 0.003308796 0.9966912

B 1.000000000 0.0000000

A 0.334437086 0.6655629

querygrain(gr.uG, evidence=list(B="lev1"), exclude=FALSE, simplify=TRUE)

lev1 lev2

A 0.3333333 0.6666667

B 1.0000000 0.0000000

C 0.0000000 1.0000000

so the “problem” with zero entries shows up in a different place. However, the answer is not
necessarily wrong; the answer simply states that P (A|B = lev1) is undefined. To “remedy” we
can use the smooth argument:

gr.uG <- grain(uG, data=dat, smooth=e)

which (internally) corresponds to

extractPOT(dat, uG, smooth=e) |> c()

[[1]]

B

A lev1 lev2

lev1 0.07745399 0.2308282

lev2 0.15414110 0.5375767

##

[[2]]

B

C lev1 lev2

lev1 0.003311258 0.5

lev2 0.996688742 0.5

Notice that the results are not exactly identical:

querygrain(gr.dG, exclude=FALSE, simplify=TRUE)

lev1 lev2

C 0.3847926 0.6152074

B 0.2316611 0.7683389

A 0.3082845 0.6917155

17

querygrain(gr.uG, exclude=FALSE, simplify=TRUE)

lev1 lev2

A 0.3082822 0.6917178

B 0.2315951 0.7684049

C 0.3849693 0.6150307

querygrain(gr.dG, evidence=list(B="lev1"), exclude=FALSE, simplify=TRUE)

lev1 lev2

C 0.003308796 0.9966912

B 1.000000000 0.0000000

A 0.334437086 0.6655629

querygrain(gr.uG, evidence=list(B="lev1"), exclude=FALSE, simplify=TRUE)

lev1 lev2

A 0.334437086 0.6655629

B 1.000000000 0.0000000

C 0.003311258 0.9966887

B Brute force computations and why they fail

The gRain package makes computations as those outlined above in a very efficient way; please
see the references. However, it is in this small example also possible to make the computations
directly: We can construct the joint distribution (an array with 28 = 256 entries) directly as:

joint <- tabListMult(chest_cpt)

dim(joint)

[1] 2 2 2 2 2 2 2 2

joint |> as.data.frame.table() |> head()

xray smoke asia tub lung dysp bronc either Freq

1 yes yes yes yes yes yes yes yes 1.32300e-05

2 no yes yes yes yes yes yes yes 2.70000e-07

3 yes no yes yes yes yes yes yes 6.61500e-07

4 no no yes yes yes yes yes yes 1.35000e-08

5 yes yes no yes yes yes yes yes 2.61954e-04

6 no yes no yes yes yes yes yes 5.34600e-06

This will clearly fail even moderate size problems: For example, a model with 80 nodes each with
10 levels will give a joint state space with 1080 states; that is about the number of atoms in the
universe. Similarly, 265 binary variables will result in a joint state space of about the same size.
Yet, gRain has been used successfully in models with tens of thousand variables. The “trick” in
gRain is to make all computations without ever forming the joint distribution.

However, we can do all the computations by brute force methods as we will illustrate here:

Marginal distributions are

tabMarg(joint, "lung")

lung

yes no

0.055 0.945

tabMarg(joint, "bronc")

18

bronc

yes no

0.45 0.55

Conditioning on evidence can be done in different ways: The conditional density is a 6–way slice
of the original 8–way joint distribution:

ev <- list(asia="yes", dysp="yes")

cond1 <- tabSlice(joint, slice=ev)

cond1 <- cond1 / sum(cond1)

dim(cond1)

[1] 2 2 2 2 2 2

tabMarg(cond1, "lung")

lung

yes no

0.09952515 0.90047485

tabMarg(cond1, "bronc")

bronc

yes no

0.8114021 0.1885979

Alternatively, multiply all entries not consistent by zero and all other entries by one and then
marginalize:

cond2 <- tabSliceMult(joint, slice=ev)

cond2 <- cond2 / sum(cond2)

dim(cond2)

[1] 2 2 2 2 2 2 2 2

tabMarg(cond2, "lung")

lung

yes no

0.09952515 0.90047485

tabMarg(cond2, "bronc")

bronc

yes no

0.8114021 0.1885979

References

Søren Højsgaard. Graphical independence networks with the gRain package for R. Journal of

Statistical Software, 46(10):1–26, 2012. URL http://www.jstatsoft.org/v46/i10/.

Søren Højsgaard, David Edwards, and Steffen L. Lauritzen. Graphical Models with R. Springer,
2012. ISBN 978-1-4614-2299-0.

Steffen L. Lauritzen and David Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. J. Roy. Stat. Soc. Ser. B, 50(2):157–224,
1988.

19

