
1

##

Attaching package: ’igraph’

The following objects are masked from ’package:gRbase’:

##

edges, is dag, topo sort

The following objects are masked from ’package:stats’:

##

decompose, spectrum

The following object is masked from ’package:base’:

##

union

2

Chapter 1

Graphs and Conditional

Independence

As of major version 2 of gRbase, that is versions 2.x.y, gRbase no longer
depends on the packages graph, Rgraphviz, and RBGL packages. Graph func-
tionality in these packages now relies either on the igraph package or on graph
algorithms implemented in gRbase. This document reflects these changes.

As a consequence, this document provides an up-to-date version of Chapter 1
in the book Graphical Models with R (2012); hereafter abbreviated GMwR, see
Højsgaard et al. [2012].

This document also reflects that since GMwR was published in 2012, some
packages that are mentioned in GMwR are no longer on CRAN. This includes
the packages lcd and sna.

In this document it has been emphasized if a function has been imported from
igraph or if it is native function from gRbase by writing ’igraph::this function()’

and ’gRbase::this function()’

One notable feature that is not available in this version of gRbase are functions
related to maximal prime subgraph decomposition. They may be reimplented at
a later stage.

3

4 CHAPTER 1. GRAPHS AND CONDITIONAL INDEPENDENCE

Contents

1 Graphs and Conditional Independence 3

1.1 Introduction . 6
1.2 Graphs . 6

1.2.1 Undirected Graphs . 6
1.2.2 Directed Acyclic Graphs . 14
1.2.3 Mixed Graphs . 19

1.3 Conditional Independence and Graphs . 23
1.4 More About Graphs . 25

1.4.1 Special Properties . 25
1.4.2 The igraph package . 30
1.4.3 Operations on Graphs in Different Representations 36

5

6 CONTENTS

1.1 Introduction

A graph as a mathematical object may be defined as a pair G = (V,E), where V is a set
of vertices or nodes and E is a set of edges. Each edge is associated with a pair of nodes,
its endpoints. Edges may in general be directed, undirected, or bidirected. Graphs are
typically visualized by representing nodes by circles or points, and edges by lines, arrows,
or bidirected arrows. We use the notation α − β, α → β, and α ↔ β to denote edges
between α and β. Graphs are useful in a variety of applications, and a number of packages
for working with graphs are available in R.

In statistical applications we are particularly interested in two special graph types:
undirected graphs and directed acyclic graphs (often called DAGs).

The gRbase package supplements igraph by implementing some algorithms useful
in graphical modelling. gRbase also provides two wrapper functions, ug() and dag(),
for easily creating undirected graphs and DAGs represented either as igraph objects or
adjacency matrices.

The first sections of this chapter describe some of the most useful functions available
when working with graphical models. These come variously from the gRbase and igraph,
but it is not usually necessary to know which.

As statistical objects, graphs are used to represent models, with nodes representing
model variables (and sometimes model parameters) in such a way that the independence
structure of the model can be read directly off the graph. Accordingly, a section of this
chapter is devoted to a brief description of the key concept of conditional independence
and explains how this is linked to graphs. Throughout the book we shall repeatedly return
to this in more detail.

1.2 Graphs

Our graphs have a finite node set V and for the most part they are simple graphs in the
sense that they have no loops nor multiple edges. Two vertices α and β are said to be
adjacent, written α ∼ β, if there is an edge between α and β in G, i.e. if either α − β,
α → β, or α ↔ β.

In this chapter we primarily represent graphs as igraph objects, and except where
stated otherwise, the functions we describe operate on these objects.

1.2.1 Undirected Graphs

An undirected graph may be created using the ug() function. The graph can be specified
using a list of formulas, a single formula or a list of vectors. Thus the following forms are
equivalent:

library(gRbase)

ug0 <- gRbase::ug(~a:b, ~b:c:d, ~e)

1.2. GRAPHS 7

ug0 <- gRbase::ug(~a:b + b:c:d + e)

ug0 <- gRbase::ug(~a*b + b*c*d + e)

ug0 <- gRbase::ug(c("a", "b"), c("b", "c", "d"), "e")

ug0

IGRAPH 3c38e2b UN-- 5 4 --

+ attr: name (v/c)

+ edges from 3c38e2b (vertex names):

[1] a--b b--c b--d c--d

plot(ug0)

8 CONTENTS

ab

c

d

e

The default size of vertices and their labels is quite small. This is easily changed by
setting certain attributes on the graph, see Sect. 1.4.2 for examples. However, to avoid
changing these attributes for all the graphs shown in the following we have defined a small
plot function myplot(). There are also various facilities for controlling the layout. For
example, we may use a layout algorithm called layout.fruchterman.reingold as follows:

myplot <- function(x, layout=layout.fruchterman.reingold(x), ...) {
V(x)$size <- 30

V(x)$label.cex <- 3

plot(x, layout=layout, ...)

1.2. GRAPHS 9

return(invisible())

}

The graph ug0i is then displayed with:

myplot(ug0)

a

b

c
d

e

Per default the ug() function returns an igraph object, but the option result="matrix"
lead it to return an adjacency matrix instead. For example,

10 CONTENTS

ug0i <- gRbase::ug(~a:b + b:c:d + e, result="matrix")

ug0i

a b c d e

a 0 1 0 0 0

b 1 0 1 1 0

c 0 1 0 1 0

d 0 1 1 0 0

e 0 0 0 0 0

Different represents of a graph can be obtained by coercion:

as(ug0, "matrix")

a b c d e

a 0 1 0 0 0

b 1 0 1 1 0

c 0 1 0 1 0

d 0 1 1 0 0

e 0 0 0 0 0

as(ug0, "dgCMatrix")

5 x 5 sparse Matrix of class "dgCMatrix"

a b c d e

a . 1 . . .

b 1 . 1 1 .

c . 1 . 1 .

d . 1 1 . .

e

as(ug0i, "igraph")

IGRAPH e0b67ed UN-- 5 4 --

+ attr: name (v/c), label (v/c)

+ edges from e0b67ed (vertex names):

[1] a--b b--c b--d c--d

Edges can be added and deleted using the addEdge() and removeEdge() functions:

Using gRbase

ug0a <- gRbase::addEdge("a", "c", ug0)

ug0a <- gRbase::removeEdge("c", "d", ug0)

1.2. GRAPHS 11

Using igraph

ug0a <- igraph::add_edges(ug0, c("a", "c"))

ug0a <- igraph::delete_edges(ug0, c("c|d"))

The nodes and edges of a graph can be retrieved with nodes() and edges() functions.

Using gRbase

gRbase::nodes(ug0)

[1] "a" "b" "c" "d" "e"

gRbase::edges(ug0) |> str()

List of 5

$ a: chr "b"

$ b: chr [1:3] "a" "c" "d"

$ c: chr [1:2] "b" "d"

$ d: chr [1:2] "b" "c"

$ e: chr(0)

Using igraph

igraph::V(ug0)

+ 5/5 vertices, named, from 3c38e2b:

[1] a b c d e

igraph::V(ug0) |> attr("names")

[1] "a" "b" "c" "d" "e"

igraph::E(ug0)

+ 4/4 edges from 3c38e2b (vertex names):

[1] a--b b--c b--d c--d

igraph::E(ug0) |> attr("vnames")

[1] "a|b" "b|c" "b|d" "c|d"

gRbase::maxClique(ug0) ## |> str()

$maxCliques

12 CONTENTS

$maxCliques[[1]]

[1] "e"

##

$maxCliques[[2]]

[1] "a" "b"

##

$maxCliques[[3]]

[1] "b" "c" "d"

gRbase::get_cliques(ug0) |> str()

List of 3

$: chr "e"

$: chr [1:2] "a" "b"

$: chr [1:3] "b" "c" "d"

Using igraph

igraph::max_cliques(ug0) |>

lapply(function(x) attr(x, "names")) |> str()

List of 3

$: chr "e"

$: chr [1:2] "a" "b"

$: chr [1:3] "b" "c" "d"

A path (of length n) between α and β in an undirected graph is a set of vertices
α = α0, α1, . . . , αn = β where αi−1 − αi for i = 1, . . . , n. If a path nα = α0, α1, . . . , αn = β

has α = β then the path is said to be a cycle of length n. nnn A subset D ⊂ V in an
undirected graph is said to separate A ⊂ V from B ⊂ V if every path between a vertex in
A and a vertex in B contains a vertex from D.

gRbase::separates("a", "d", c("b", "c"), ug0)

[1] TRUE

This shows that {b, c} separates {a} and {d}.
The graph G0 = (V0, E0) is said to be a subgraph of G = (V,E) if V0 ⊆ V and E0 ⊆ E.

For A ⊆ V , let EA denote the set of edges in E between vertices in A. Then GA = (A,EA)
is the subgraph induced by A. For example

ug1 <- gRbase::subGraph(c("b", "c", "d", "e"), ug0)

1.2. GRAPHS 13

ug12 <- igraph::subgraph(ug0, c("b", "c", "d", "e"))

par(mfrow=c(1,2), mar=c(0,0,0,0))

myplot(ug1); myplot(ug12)

b

c
d

e

b

c

d

e

The boundary bd(α) = adj(α) is the set of vertices adjacent to α and for undirected
graphs the boundary is equal to the set of neighbours ne(α). The closure cl(α) is bd(α) ∪
{α}.

14 CONTENTS

gRbase::adj(ug0, "c")

$c

[1] "b" "d"

gRbase::closure("c", ug0)

[1] "c" "b" "d"

1.2.2 Directed Acyclic Graphs

A directed graph as a mathematical object is a pair G = (V,E) where V is a set of vertices
and E is a set of directed edges, normally drawn as arrows. A directed graph is acyclic if
it has no directed cycles, that is, cycles with the arrows pointing in the same direction all
the way around. A DAG is a directed graph that is acyclic.

A DAG may be created using the dag() function. The graph can be specified by a list
of formulas or by a list of vectors. The following statements are equivalent:

dag0 <- gRbase::dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f)

dag0 <- gRbase::dag(~a + b*a + c*a*b + d*c*e + e*a + g*f)

dag0 <- gRbase::dag(~a + b|a + c|a*b + d|c*e + e|a + g|f)

dag0 <- gRbase::dag("a", c("b", "a"), c("c", "a", "b"), c("d", "c", "e"),

c("e", "a"), c("g", "f"))

dag0

IGRAPH afaf71d DN-- 7 7 --

+ attr: name (v/c)

+ edges from afaf71d (vertex names):

[1] a->b a->c b->c c->d e->d a->e f->g

Note that ~a means that "a" has no parents while ~d*b*c means that "d" has parents
"b" and "c". Instead of “*”, a “:” can be used in the specification. If the specified graph
contains cycles then dag() returns NULL.

Per default the dag() function returns an igraph object, but the option result="matrix"
leads it to return an adjacency matrix instead.

myplot(dag0)

1.2. GRAPHS 15

a

b
c d

e

fg

The nodes and edges of a DAG can be retrieved with the nodes() and edges() func-
tions.

gRbase::nodes(dag0)

[1] "a" "b" "c" "d" "e" "f" "g"

gRbase::edges(dag0) |> str()

List of 7

16 CONTENTS

$ a: chr [1:3] "b" "c" "e"

$ b: chr "c"

$ c: chr "d"

$ d: chr(0)

$ e: chr "d"

$ f: chr "g"

$ g: chr(0)

Thus edges() gives the children of each node. Alternatively a list of (ordered) pairs
can be optained with edgeList()

edgeList(dag0) |> str()

List of 7

$: chr [1:2] "a" "b"

$: chr [1:2] "a" "c"

$: chr [1:2] "a" "e"

$: chr [1:2] "b" "c"

$: chr [1:2] "c" "d"

$: chr [1:2] "e" "d"

$: chr [1:2] "f" "g"

The vpar() function returns a list, with an element for each node together with its
parents:

vpardag0 <- gRbase::vpar(dag0)

vpardag0 |> str()

List of 7

$ a: chr "a"

$ b: chr [1:2] "b" "a"

$ c: chr [1:3] "c" "a" "b"

$ d: chr [1:3] "d" "c" "e"

$ e: chr [1:2] "e" "a"

$ f: chr "f"

$ g: chr [1:2] "g" "f"

vpardag0$c

[1] "c" "a" "b"

A path (of length n) from α to β is a sequence of vertices α = α0, . . . , αn = β such that
αi−1 → αi is an edge in the graph. If there is a path from α to β we write α 7→ β. The

1.2. GRAPHS 17

parents pa(β) of a node β are those nodes α for which α → β. The children ch(α) of a
node α are those nodes β for which α → β. The ancestors an(β) of a node β are the nodes
α such that α 7→ β. The ancestral set an(A) of a set A is the union of A with its ancestors.
The ancestral graph of a set A is the subgraph induced by the ancestral set of A.

gRbase::parents("d", dag0)

[1] "c" "e"

gRbase::children("c", dag0)

[1] "d"

gRbase::ancestralSet(c("b", "e"), dag0)

[1] "a" "b" "e"

ag <- gRbase::ancestralGraph(c("b", "e"), dag0)

myplot(ag)

18 CONTENTS

a

b

e

An important operation on DAGs is to (i) add edges between the parents of each
node, and then (ii) replace all directed edges with undirected ones, thus returning an
undirected graph. This operation is used in connection with independence interpretations
of the DAG, see Sect. 1.3, and is known as moralization. This is implemented by the
moralize() function:

dag0m <- gRbase::moralize(dag0)

myplot(dag0m)

1.2. GRAPHS 19

ab

c

d

e

f

g

1.2.3 Mixed Graphs

Although the primary focus of this book is on undirected graphs and DAGs, it is also useful
to consider mixed graphs. These are graphs with at least two types of edges, for example
directed and undirected, or directed and bidirected.

A sequence of vertices v1, v2, . . . vk, vk+1 is called a path if for each i = 1 . . . k, either
vi − vi+1, vi ↔ vi+1 or vi → vi+1. If vi − vi+1 for each i the path is called undirected, if
vi → vi+1 for each i it is called directed, and if vi → vi+1 for at least one i it is called
semi-directed. If vi = vk+1 it is called a cycle.

20 CONTENTS

Mixed graphs are represented in the igraph package as directed graphs with multiple
edges. In this sense they are not simple. A convenient way of defining them (in lieu of
model formulae) is to use adjacency matrices. We can construct such a matrix as follows:

adjm <- matrix(c(0, 1, 1, 1,

1, 0, 0, 1,

1, 0, 0, 1,

0, 1, 0, 0), byrow=TRUE, nrow=4)

rownames(adjm) <- colnames(adjm) <- letters[1:4]

adjm

a b c d

a 0 1 1 1

b 1 0 0 1

c 1 0 0 1

d 0 1 0 0

Note that igraph interprets symmetric entries as double-headed arrows and thus does
not distinguish between bidirected and undirected edges. However we can persuade igraph
to display undirected instead of bidirected edges:

gG1 <- gG2 <- as(adjm, "igraph")

lay <- layout.fruchterman.reingold(gG1)

E(gG2)$arrow.mode <- c(2,0)[1+is.mutual(gG2)]

par(mfrow=c(1,2), mar=c(0,0,0,0))

myplot(gG1, layout=lay); myplot(gG2, layout=lay)

1.2. GRAPHS 21

a

b

c

d

a

b

c

d

A chain graph is a mixed graph with no bidirected edges and no semi-directed cycles.
Such graphs form a natural generalisation of undirected graphs and DAGs, as we shall see
later. The following example is from Frydenberg [1990]:

d1 <- matrix(0, 11, 11)

d1[1,2] <- d1[2,1] <- d1[1,3] <- d1[3,1] <- d1[2,4] <- d1[4,2] <-

d1[5,6] <- d1[6,5] <- 1

d1[9,10] <- d1[10,9] <- d1[7,8] <- d1[8,7] <- d1[3,5] <-

d1[5,10] <- d1[4,6] <- d1[4,7] <- 1

d1[6,11] <- d1[7,11] <- 1

22 CONTENTS

rownames(d1) <- colnames(d1) <- letters[1:11]

cG1 <- as(d1, "igraph")

E(cG1)$arrow.mode <- c(2,0)[1+is.mutual(cG1)]

myplot(cG1, layout=layout.fruchterman.reingold)

a

b c

d

e
fg

h
i

j
k

The components of a chain graph G are the connected components of the graph formed
after removing all directed edges from G. All edges within a component are undirected,
and all edges between components are directed. Also, all arrows between any two compo-
nents have the same direction. The graph constructed by identifying its nodes with the
components of G, and joining two nodes with an arrow whenever there is an arrow between
the corresponding components in G, is a DAG, the so-called component DAG of G, written
GC .

The anterior set of a vertex set S ⊆ V is defined in terms of the component DAG.
Write the set of components of G containing S as Sc. Then the anterior set of S in G is
defined as the union of the components in the ancestral set of Sc in GC . The anterior graph
of S ⊆ V is the subgraph of G induced by the anterior set of S.

The moralization operation is also important for chain graphs. Similar to DAGs, un-
married parents of the same chain components are joined and directions are then removed.

1.3. CONDITIONAL INDEPENDENCE AND GRAPHS 23

1.3 Conditional Independence and Graphs

The concept of statistical independence is presumably familiar to all readers but that of
conditional independence may be less so. Suppose that we have a collection of random vari-
ables (Xv)v∈V with a joint density. Let A, B and C be subsets of V and let XA = (Xv)v∈A
and similarly for XB and XC . Then the statement that XA and XB are conditionally inde-
pendent given XC , written A⊥⊥B |C, means that for each possible value of xC of XC , XA

and XB are independent in the conditional distribution given XC = xc. So if we write f()
for a generic density or probability mass function, then one characterization of A⊥⊥B |C
is that

f(xA, xB | xC) = f(xA | xC)f(xB | xC).

An equivalent characterization [Dawid, 1998] is that the joint density of (XA, XB, XC)
factorizes as

f(xA, xB, xC) = g(xA, xC)h(xB, xC), (1.1)

that is, as a product of two functions g() and h(), where g() does not depend on xB and
h() does not depend on xA. This is known as the factorization criterion.

Parametric models for (Xv)v∈V may be thought of as specifying a set of joint densities
(one for each admissible set of parameters). These may admit factorisations of the form
just described, giving rise to conditional independence relations between the variables.
Some models give rise to patterns of conditional independences that can be represented as
an undirected graph. More specifically, let G = (V,E) be an undirected graph with cliques
C1, . . . Ck. Consider a joint density f() of the variables in V . If this admits a factorization
of the form

f(xV) =
k∏

i=1

gi(xCi
)

for some functions g1() . . . gk() where gj() depends on x only through xCj
then we say that

f() factorizes according to G.

If all the densities under a model factorize according to G, then G encodes the condi-
tional independence structure of the model, through the following result (the global Markov
property): whenever sets A and B are separated by a set C in the graph, then A⊥⊥B |C
under the model. Thus for example

24 CONTENTS

myplot(ug0)

a

b c

d

e

gRbase::separates("a", "d", "b", ug0)

[1] TRUE

shows that under a model with this dependence graph, a⊥⊥ d | b.
If we want to find out whether two variable sets are marginally independent, we ask

whether they are separated by the empty set, which we specify using a character vector of
length zero:

gRbase::separates("a", "d", character(0), ug0)

[1] FALSE

Model families that admit suitable factorizations are described in later chapters in this
book. These include: log-linear models for multivariate discrete data, graphical Gaussian
models for multivariate Gaussian data, and mixed interaction models for mixed discrete
and continuous data.

Other models give rise to patterns of conditional independences that can be represented
by DAGs. These are models for which the variable set V may be ordered in such way that
the joint density factorizes as follows

f(xV) =
∏

v∈V

f(xv | xpa(v)) (1.2)

for some variable sets {pa(v)}v∈V such that the variables in pa(v) precede v in the ordering.
Again the vertices of the graph represent the random variables, and we can identify the
sets pa(v) with the parents of v in the DAG.

1.4. MORE ABOUT GRAPHS 25

With DAGs, conditional independence is represented by a property called d-separation.
That is, whenever sets A and B are d-separated by a set C in the graph, then A⊥⊥B |C
under the model. The notion of d-separation can be defined in various ways, but one
characterisation is as follows: A and B are d-separated by a set C if and only if they are
separated in the graph formed by moralizing the anterior graph of A ∪ B ∪ C.

So we can easily define a function to test this:

d_separates <- function(a, b, c, dag_) {
##ag <- ancestralGraph(union(union(a, b), c), dag_)

ag <- ancestralGraph(c(a, b, c), dag_)

separates(a, b, c, moralize(ag))

}
d_separates("c", "e", "a", dag0)

[1] TRUE

So under dag0 it holds that c⊥⊥ e | a.
Still other models correspond to patterns of conditional independences that can be

represented by a chain graph G. There are several ways to relate Markov properties to
chain graphs. Here we describe the so-called LWF Markov properties, associated with
Lauritzen, Wermuth and Frydenberg.

For these there are two levels to the factorization requirements. Firstly, the joint density
needs to factorize in a way similar to a DAG, i.e.

f(xV) =
∏

C∈C

f(xC | xpa(C))

where C is the set of components of G. In addition, each conditional density f(xC | xpa(C))
must factorize according to an undirected graph constructed in the following way. First
form the subgraph of G induced by C ∪ pa(C), drop directions, and then complete pa(C)
(that is, add edges between all vertices in pa(C))).

For densities which factorize as above, conditional independence is related to a property
called c-separation: that is, A⊥⊥B |C whenever sets A and B are c-separated by C in the
graph. The notion of c-separation in chain graphs is similar to that of d-separation in
DAGs. A and B are c-separated by a set C if and only if they are separated in the graph
formed by moralizing the anterior graph of A ∪ B ∪ C.

1.4 More About Graphs

1.4.1 Special Properties

A node in an undirected graph is simplicial if its boundary is complete.

26 CONTENTS

gRbase::is.simplicial("b", ug0)

[1] FALSE

gRbase::simplicialNodes(ug0)

[1] "a" "c" "d" "e"

To obtain the connected components of a graph:

gRbase::connComp(ug0) |> str()

List of 2

$: chr [1:4] "a" "b" "c" "d"

$: chr "e"

Using igraph

igraph::components(ug0) |> str()

List of 3

$ membership: Named num [1:5] 1 1 1 1 2

..- attr(*, "names")= chr [1:5] "a" "b" "c" "d" ...

$ csize : num [1:2] 4 1

$ no : int 2

If a cycle α = α0, α1, . . . , αn = α has adjacent elements αi ∼ αj with j ̸∈ {i− 1, i+ 1}
then it is said to have a chord. If it has no chords it is said to be chordless. A graph with
no chordless cycles of length ≥ 4 is called triangulated or chordal :

gRbase::is.triangulated(ug0)

[1] TRUE

igraph::is_chordal(ug0)

$chordal

[1] TRUE

##

$fillin

NULL

##

$newgraph

NULL

1.4. MORE ABOUT GRAPHS 27

Triangulated graphs are of special interest for graphical models as they admit closed-
form maximum likelihood estimates and allow considerable computational simplification
by decomposition.

A triple (A,B,D) of non–empty disjoint subsets of V is said to decompose G into GA∪D

and GB∪D if V = A ∪ B ∪D where D is complete and separates A and B.

gRbase::is.decomposition("a", "d", c("b", "c"), ug0)

[1] FALSE

Note that although {d} is complete and separates {a} and {b, c} in ug0, the condition
fails because V ̸= {a, b, c, d}.

A graph is decomposable if it is complete or if it can be decomposed into decomposable
subgraphs. A graph is decomposable if and only if it is triangulated.

An ordering of the nodes in a graph is called a perfect ordering if bd(i)∩ {1, . . . , i− 1}
is complete for all i. Such an ordering exists if and only if the graph is triangulated.
If the graph is triangulated, then a perfect ordering can be obtained with the maximum
cardinality search (or mcs) algorithm. The mcs() function will produce such an ordering
if the graph is triangulated; otherwise it will return NULL.

myplot(ug0)

a

b

c

d

e

gRbase::mcs(ug0)

[1] "a" "b" "c" "d" "e"

28 CONTENTS

igraph::max_cardinality(ug0)

$alpha

[1] 5 4 2 3 1

##

$alpham1

+ 5/5 vertices, named, from 3c38e2b:

[1] e c d b a

igraph::max_cardinality(ug0)$alpham1 |> attr("names")

[1] "e" "c" "d" "b" "a"

Sometimes it is convenient to have some control over the ordering given to the variables:

gRbase::mcs(ug0, root=c("d", "c", "a"))

[1] "d" "c" "b" "a" "e"

Here mcs() tries to follow the ordering given and succeeds for the first two variables
but then fails afterwards.

The cliques of a triangulated undirected graph can be ordered as (C1, . . . , CQ) to have
the running intersection property (also called a RIP ordering). The running intersection
property is that Cj ∩ (C1 ∪ . . . ∪ Cj−1) ⊂ Ci for some i < j for j = 2, . . . , Q. We define
the sets Sj = Cj ∩ (C1 ∪ . . . ∪ Cj−1) and Rj = Cj \ Sj with S1 = ∅. The sets Sj are called
separators as they separate Rj from (C1 ∪ . . . ∪ Cj−1) \ Sj. Any clique Ci where Sj ⊂ Ci

with i < j is a possible parent of Ci. The rip() function returns such an ordering if the
graph is triangulated (otherwise, it returns list()):

gRbase::rip(ug0)

cliques

1 : a b

2 : b c d

3 : e

separators

1 :

2 : b

3 :

parents

1 : 0

2 : 1

3 : 0

1.4. MORE ABOUT GRAPHS 29

If a graph is not triangulated it can be made so by adding extra edges, so called fill-ins,
using triangulate():

ug2 <- gRbase::ug(~a:b:c + c:d + d:e + a:e)

ug2 <- gRbase::ug(~a:b:c + c:d + d:e + e:f + a:f)

gRbase::is.triangulated(ug2)

[1] FALSE

igraph::is_chordal(ug2) |> str()

List of 3

$ chordal : logi FALSE

$ fillin : NULL

$ newgraph: NULL

myplot(ug2)

a

b

c

d

e

f

ug3 <- gRbase::triangulate(ug2)

gRbase::is.triangulated(ug3)

[1] TRUE

30 CONTENTS

zzz <- igraph::is_chordal(ug2, fillin=TRUE, newgraph=TRUE)

V(ug2)[zzz$fillin]

+ 4/6 vertices, named, from 3a6c240:

[1] d a e a

ug32 <- zzz$newgraph

par(mfrow=c(1,3), mar=c(0,0,0,0))

lay <- layout.fruchterman.reingold(ug2)

myplot(ug2, layout=lay);

myplot(ug3, layout=lay);

myplot(ug32, layout=lay)

a

b
c

d

e f

a

b
c

d

e f

a

b
c

d

e f

The Markov blanket of a vertex v in a DAG may be defined as the minimal set that
d-separates v from the remaining variables. It is easily derived as the set of neighbours to
v in the moral graph of G. For example, the Markov blanket of vertex e in dag0 is

adj(moralize(dag0), "e")

It is easily seen that the Markov blanket of v is the union of v’s parents, v’s children,
and the parents of v’s children.

1.4.2 The igraph package

It is possible to create igraph objects using the graph.formula() function:

1.4. MORE ABOUT GRAPHS 31

ug4 <- graph.formula(a -- b:c, c--b:d, e -- a:d)

ug4

IGRAPH 34035f5 UN-- 5 6 --

+ attr: name (v/c)

+ edges from 34035f5 (vertex names):

[1] a--b a--c a--e b--c c--d d--e

myplot(ug4)

a

b

c

d

e

The same graph may be created from scratch as follows:

ug4.2 <- graph.empty(n=5, directed=FALSE)

V(ug4.2)$name <- V(ug4.2)$label <- letters[1:5]

ug4.2 <- add.edges(ug4.2, 1+c(0,1, 0,2, 0,4, 1,2, 2,3, 3,4))

ug4.2

IGRAPH 2c58479 UN-- 5 6 --

+ attr: label (v/c), name (v/c)

+ edges from 2c58479 (vertex names):

[1] a--b a--c a--e b--c c--d d--e

The graph is displayed using the plot() function, with a layout determined using
the graphopt method. A variety of layout algorithms are available: type ?layout for an
overview. Note that per default the nodes are labelled 0, 1, . . . and so forth. We show how
to modify this shortly.

As mentioned previously we have created a custom function myplot() which creates
somewhat more readable plots:

32 CONTENTS

myplot(ug4, layout=layout.graphopt)

Objects in igraph graphs are defined in terms of node and edge lists. In addition, they
have attributes : these belong to the vertices, the edges or to the graph itself. The following
example sets a graph attribute, layout, and two vertex attributes, label and color. These
are used when the graph is plotted. The name attribute contains the node labels.

ug4$layout <- layout.graphopt(ug4)

V(ug4)$label <- V(ug4)$name

V(ug4)$color <- "red"

V(ug4)[1]$color <- "green"

V(ug4)$size <- 40

V(ug4)$label.cex <- 3

plot(ug4)

a

b

c

d e

Note the use of array indices to access the attributes of the individual vertices. Cur-
rently, the indices are zero-based, so that V(ug4)[1] refers to the second node (B). (This
may change). Edges attributes are accessed similarly, using a container structure E(ug4):
also here the indices are zero-based (currently).

It is easy to extend igraph objects by defining new attributes. In the following example
we define a new vertex attribute, discrete, and use this to color the vertices.

ug5 <- set.vertex.attribute(ug4, "discrete", value=c(T, T, F, F, T))

V(ug5)[discrete]$color <- "green"

V(ug5)[!discrete]$color <- "red"

plot(ug5)

1.4. MORE ABOUT GRAPHS 33

a

b

c

d e

A useful interactive drawing facility is provided with the tkplot() function. This
causes a pop-up window to appear in which the graph can be manually edited. One use of
this is to edit the layout of the graph: the new coordinates can be extracted and re-used
by the plot() function. For example

> tkplot(ug4)

2

The tkplot() function returns a window id (here 2). While the popup window is open,
the current layout can be obtained by passing the window id to the tkplot.getcoords()
function, as for example

34 CONTENTS

xy <- tkplot.getcoords(2)

plot(g, layout=xy)

It is straightforward to reuse layout information with igraph objects. The layout
functions when applied to graphs return a matrix of (x, y) coordinates:

layout.fruchterman.reingold(ug4)

[,1] [,2]

[1,] 2.314 1.1431

[2,] 3.467 1.1399

[3,] 2.808 0.1934

[4,] 1.695 -0.4303

[5,] 1.164 0.5885

Most layout algorithms use a random generator to choose an initial configuration. Hence
if we set the layout attribute to be a layout function, repeated calls to plot will use different
layouts. For example, after

ug4$layout <- layout.fruchterman.reingold

repeated invocations of plot(ug4) will use different layouts. In contrast, after

ug4$layout <- layout.fruchterman.reingold(ug4)

the layout will be fixed. The following code fragment illustrates how two graphs with
the same vertex set may be plotted using the same layout.

ug5 <- gRbase::ug(~A*B*C + B*C*D + D*E)

ug6 <- gRbase::ug(~A*B + B*C + C*D + D*E)

lay.fr <- layout.fruchterman.reingold(ug5)

ug6$layout <- ug5$layout <- lay.fr

V(ug5)$size <- V(ug6)$size <- 50

V(ug5)$label.cex <- V(ug6)$label.cex <- 3

par(mfrow=c(1,2), mar=c(0,0,0,0))

plot(ug5); plot(ug6)

1.4. MORE ABOUT GRAPHS 35

A

B

C

D

E

A

B

C

D

E

An overview of attributes used in plotting can be obtained by typing ?igraph.plotting.
A final example illustrates how more complex graphs can be displayed:

em1 <- matrix(c(0, 1, 1, 0,

0, 0, 0, 1,

1, 0, 0, 1,

0, 1, 0, 0), nrow=4, byrow=TRUE)

iG <- graph.adjacency(em1)

V(iG)$shape <- c("circle", "square", "circle", "square")

V(iG)$color <- rep(c("red", "green"), 2)

V(iG)$label <- c("A", "B", "C", "D")

E(iG)$arrow.mode <- c(2,0)[1 + is.mutual(iG)]

E(iG)$color <- rep(c("blue", "black"), 3)

E(iG)$curved <- c(T, F, F, F, F, F)

iG$layout <- layout.graphopt(iG)

myplot(iG)

36 CONTENTS

A

B

C

D

1.4.3 Operations on Graphs in Different Representations

The gRbase package has a function querygraph() which provides a common interface
to the graph operations for undirected graphs and DAGs illustrated above. Moreover,
querygraph() works on graphs represented as igraph objects and adjacency matrices.
The general syntax is

args(querygraph)

function (object, op, set = NULL, set2 = NULL, set3 = NULL)

NULL

For example, we obtain:

ug_ <- gRbase::ug(~a:b + b:c:d + e)

gRbase::separates("a", "d", c("b", "c"), ug_)

[1] TRUE

gRbase::querygraph(ug_, "separates", "a", "d", c("b", "c"))

[1] TRUE

gRbase::qgraph(ug_, "separates", "a", "d", c("b", "c"))

[1] TRUE

Bibliography

Søren Højsgaard, David Edwards, and Steffen Lauritzen. Graphical models with R.
Springer, 2012.

M. Frydenberg. The chain graph Markov property. Scandinavian Journal of Statistics, 17:
333–353, 1990.

A. P. Dawid. Conditional independence. In Samuel Kotz, Campbell B. Read, and David L.
Banks, editors, Encyclopedia of Statistical Sciences, Update Volume 2, pages 146–155.
Wiley-Interscience, New York, 1998.

37

Index

addEdge()[graph], 10
dag()[gRbase], 6, 14
edgeList()[gRbase], 16
edges()[graph], 11, 15, 16
graph.formula()[igraph], 30
mcs()[gRbase], 27, 28
moralize()[gRbase], 18
myplot()[gRbase], 31
myplot(), 8
nodes()[graph], 11, 15
plot()[igraph], 31, 33
querygraph()[gRbase], 36
removeEdge()[graph], 10
rip()[gRbase], 28
tkplot()[igraph], 33
tkplot.getcoords()[igraph], 33
triangulate()[gRbase], 29
ug()[gRbase], 6, 9
vpar()[gRbase], 16

adjacency matrix, 6, 36
adjacent nodes, 6
ancestors, 16
ancestral graph, 16
ancestral set, 16
anterior graph, 22
anterior set, 22

boundary, 13

c-separation, 25
chain graph components, 22
chain graphs, 21
children, 16
chordal graphs, 26
chordless cycles, 26

closure, 13
component DAG, 22
conditional independence, 23
connected components, 26
cycle, 19

d-separation, 24
DAG, 14
decomposable graphs, 27
decomposition, 27
directed acyclic graph, 14
directed edges, 14
directed graph, 14
directed path, 19

edges, 6

factorizaton criterion, 23
fill–ins, 28

global Markov property, 23

induced subgraph, 12

Markov blanket, 30
maximum cardinality search, 27
mixed graphs, 19
moralization, 18, 22

neighbours, 13
nodes, 6

parents, 16
path, 16, 19
perfect vertex ordering, 27

RIP ordering, 28
running intersection property, 28

38

INDEX 39

semi-directed path, 19
separation, 12
separators, 28
simple graphs, 6
simplicial node, 25
subgraph, 12

triangulated graphs, 26

undirected path, 19

vertices, 6

