
Package ‘gestalt’
October 13, 2022

Title Tools for Making and Combining Functions

Version 0.2.0

Description Provides a suite of function-building tools centered around a
(forward) composition operator, %>>>%, which extends the semantics of the
'magrittr' %>% operator and supports 'Tidyverse' quasiquotation. It enables
you to construct composite functions that can be inspected and transformed as
list-like objects. In conjunction with %>>>%, a compact function constructor,
fn(), and a partial-application constructor, partial(), are also provided;
both support quasiquotation.

License MIT + file LICENSE

URL https://github.com/egnha/gestalt

BugReports https://github.com/egnha/gestalt/issues

Depends R (>= 3.3.0)

Imports rlang (>= 1.0.0), utils

Suggests magrittr (>= 1.5), testthat (>= 3.0.0), knitr, rmarkdown

Collate 'gestalt.R' 'utils.R' 'closure.R' 'compose.R' 'constant.R'
'partial.R' 'fn.R' 'context.R' 'posure.R'

RoxygenNote 7.2.0

VignetteBuilder knitr

Encoding UTF-8

ByteCompile true

Config/testthat/edition 3

NeedsCompilation no

Author Eugene Ha [aut, cre]

Maintainer Eugene Ha <eha@posteo.de>

Repository CRAN

Date/Publication 2022-08-22 15:00:02 UTC

1

https://github.com/egnha/gestalt
https://github.com/egnha/gestalt/issues

2 compose

R topics documented:
compose . 2
constant . 8
context . 10
fn . 13
partial . 16
posure . 18

Index 22

compose Compose Functions

Description

To compose functions,

• Use compose():

compose(f, g, h, ...)

This makes the function that applies f, then g, then h, etc. It has the formals of the first
function applied (namely f). For example, if

fun <- compose(paste, toupper)

then the function fun() has the same signature as paste(), and the call

fun(letters, collapse = ",")

is equivalent to the composite call

toupper(paste(letters, collapse = ","))

• Use `%>>>%`:

f %>>>% g %>>>% h %>>>% ...

It comprehends both the semantics of the magrittr `%>%` operator and quasiquotation. For
example, if

sep <- ""
fun <- sample %>>>% paste(collapse = !!sep)

then the function fun() has the same signature as sample(), and the call

fun(x, size, replace, prob)

is equivalent to the composite call

paste(sample(x, size, replace, prob), collapse = "")

Use as.list() to recover the list of composite functions. For example, both

https://cran.r-project.org/package=magrittr

compose 3

as.list(compose(paste, capitalize = toupper))

as.list(paste %>>>% capitalize: toupper)

return the (named) list of functions list(paste, capitalize = toupper).

Usage

compose(...)

fst %>>>% snd

Arguments

... Functions or lists thereof to compose, in order of application. Lists of functions
are automatically spliced in. Unquoting of names, via !! on the left-hand side
of :=, and splicing, via !!!, are supported.

fst, snd Functions. These may be optionally named using a colon (:), e.g., f %>>>%
nm: g names the g-component "nm" (see ‘Exceptions to the Interpretation of
Calls as Functions’). Quasiquotation and the magrittr `%>%` semantics are
supported (see ‘Semantics of the Composition Operator’, ‘Quasiquotation’ and
‘Examples’).

Value

Function of class CompositeFunction, whose formals are those of the first function applied (as a
closure).

Semantics of the Composition Operator

The `%>>>%` operator adopts the semantics of the magrittr `%>%` operator:

1. Bare names are matched to functions: For example, in a composition like

... %>>>% foo %>>>% ...

the ‘foo’ is matched to the function of that name.

2. Function calls are interpreted as a unary function of a point (.): A call is interpreted as a
function (of a point) in one of two ways:

• If the point matches an argument value, the call is literally interpreted as the body of the
function. For example, in the compositions

... %>>>% foo(x, .) %>>>% ...

... %>>>% foo(x, y = .) %>>>% ...

the ‘foo(x, .)’, resp. ‘foo(x, y = .)’, is interpreted as the function function(..., .
= ..1) foo(x, .), resp. function(..., . = ..1) foo(x, y = .).

• Otherwise, the call is regarded as implicitly having the point as its first argument before
being interpreted as the body of the function. For example, in the compositions

https://cran.r-project.org/package=magrittr
https://cran.r-project.org/package=magrittr

4 compose

... %>>>% foo(x) %>>>% ...

... %>>>% foo(x, y(.)) %>>>% ...

the ‘foo(x)’, resp. ‘foo(x, y(.))’, is interpreted as the function function(..., . =
..1) foo(., x), resp. function(..., . = ..1) foo(., x, y(.)).

3. Expressions {...} are interpreted as a function of a point (.): For example, in a composi-
tion

... %>>>% {
foo(.)
bar(.)

} %>>>% ...

the ‘{foo(.); bar(.)}’ is interpreted as the function function(..., . = ..1) {foo(.);
bar(.)}.
Curly braces are useful when you need to circumvent `%>>>%`’s usual interpretation of func-
tion calls. For example, in a composition

... %>>>% {foo(x, y(.))} %>>>% ...

the ‘{foo(x, y(.))}’ is interpreted as the function function(..., . = ..1) foo(x, y(.)).
There is no point as first argument to foo.

Exceptions to the Interpretation of Calls as Functions: As a matter of convenience, some
exceptions are made to the above interpretation of calls as functions:

• Parenthesis (() applies grouping. (In R, `(` is indeed a function.) In particular, expressions
within parentheses are literally interpreted.

• Colon (:) applies naming, according to the syntax ‘<name>: <function>’, where ‘<function>’
is interpreted according to the semantics of `%>>>%`. For example, in
... %>>>% aName: foo %>>>% ...

the function foo is named "aName".
• fn(), namespace operators (`::` , `:::`) and extractors (`$`, `[[`, `[`) are literally in-

terpreted. This allows for list extractors to be applied to composite functions appearing in a
`%>>>%` call (see ’Operate on Composite Functions as List-Like Objects’). For example, the
compositions
paste %>>>% tolower

paste %>>>% base::tolower

(paste %>>>% toupper)[[1]] %>>>% tolower

are equivalent functions.

Quasiquotation

The `%>>>%` operator supports Tidyverse unquoting (via !!). Use it to:

• Enforce immutability: For example, by unquoting res in

res <- "result"
get_result <- identity %>>>% lapply(`[[`, !!res)

compose 5

you ensure that the function get_result() always extracts the component named "result",
even if the binding res changes its value or is removed altogether.

• Interpret the point (.) in the lexical scope: Even though `%>>>%` interprets ‘.’ as a function
argument, you can still reference an object of that name via unquoting. For example,

. <- "point"
is_point <- identity %>>>% {. == !!.}

determines a function that checks for equality with the string "point".

• Name composite functions, programmatically: For example, unquoting nm in

nm <- "aName"
... %>>>% !!nm: foo %>>>% ...

names the ‘foo’-component of the resulting composite function "aName".

• Accelerate functions by fixing constant dependencies: For example, presuming the value
of the call f() is constant and that g is a pure function (meaning that its return value depends
only on its input), both

... %>>>% g(f()) %>>>% ...

... %>>>% g(!!f()) %>>>% ...

would be functions yielding the same values. But the first would compute f() anew with each
call, whereas the second would simply depend on a fixed, pre-computed value of f().

Operate on Composite Functions as List-Like Objects

You can think of a composite function as embodying the (possibly nested) structure of its list of con-
stituent functions. In fact, you can apply familiar index and assignment operations to a composite
function, as if it were this list, getting a function in return. This enables you to leverage composite
functions as structured computations.

Indexing: For instance, the ‘sum’ in the following composite function

f <- abs %>>>% out: (log %>>>% agg: sum)

can be extracted in the usual ways:

f[[2]][[2]]
f[[c(2, 2)]]

foutagg
f[["out"]][["agg"]]
f[["out"]]$agg

f$out[[2]]
f[[list("out", 2)]]

The last form of indexing with a mixed list is handy when you need to create an index program-
matically.
Additionally, you can excise sub-composite functions with [, head(), tail(). For example:

6 compose

• Both f[1] and head(f, 1) get the ‘abs’ as a composite function, namely compose(abs)

• f[2:1] reverses the order of the top-level functions to yield

out: (log %>>>% agg: sum) %>>>% abs

• f$out[c(FALSE, TRUE)] gets the ‘sum’ as a (named) composite function

Subset Assignment: Similarily, subset assignment works as it does for lists. For instance, you
can replace the ‘sum’ with the identity function:

f[[2]][[2]] <- identity

foutagg <- identity
f[["out"]][["agg"]] <- identity

f$out[[2]] <- identity
f[[list("out", 2)]] <- identity

Multiple constituent functions can be reassigned using [<-. For example

f[2] <- list(log)

f["out"] <- list(log)

f[c(FALSE, TRUE)] <- list(log)

all replace the second constituent function with log, so that f becomes abs %>>>% log.

Other List Methods: The generic methods unlist(), length(), names() also apply to com-
posite functions. In conjunction with compose(), you can use unlist() to “flatten” composi-
tions. For example

compose(unlist(f, use.names = FALSE))

gives a function that is identical to

abs %>>>% log %>>>% sum

Composite Functions Balance Speed and Complexity

The speed of a composite function made by compose() or `%>>>%` (regardless of its nested depth)
is on par with a manually constructed serial composition. This is because compose() and `%>>>%`
are associative, semantically and operationally. For instance, triple compositions,

compose(f, g, h)
f %>>>% g %>>>% h

compose(f, compose(g, h))
f %>>>% (g %>>>% h)

compose(compose(f, g), h)
(f %>>>% g) %>>>% h

compose 7

are all implemented as the same function. Lists of functions are automatically “flattened” when
composed.

Nevertheless, the original nested structure of constituent functions is faithfully recovered by as.list().
In particular, as.list() and compose() are mutually invertible: as.list(compose(fs)) is the
same as fs, when fs is a (nested) list of functions. (But note that the names of the list of composite
functions is always a character vector; it is never NULL.)

See Also

constant(); combined with `%>>>%`, this provides a lazy, structured alternative to the magrittr
`%>%` operator.

Examples

Functions are applied in the order in which they are listed
inv <- partial(`/`, 1) # reciprocal
f0 <- compose(abs, log, inv)
stopifnot(all.equal(f0(-2), 1 / log(abs(-2))))

Alternatively, compose using the `%>>>%` operator
f1 <- abs %>>>% log %>>>% {1 / .}
stopifnot(all.equal(f1(-2), f0(-2)))

Not run:
Transform a function to a JSON function
library(jsonlite)

By composing higher-order functions:
jsonify <- {fromJSON %>>>% .} %>>>% {. %>>>% toJSON}

By directly composing with input/output transformers:
jsonify <- fn(f ~ fromJSON %>>>% f %>>>% toJSON)
End(Not run)

Formals of initial function are preserved
add <- function(a, b = 0) a + b
stopifnot(identical(formals(compose(add, inv)), formals(add)))

Compositions can be provided by lists, in several equivalent ways
f2 <- compose(list(abs, log, inv))
f3 <- compose(!!! list(abs, log, inv))
f4 <- compose(abs, list(log, inv))
f5 <- compose(abs, !!! list(log, inv))
stopifnot(

all.equal(f2, f0), all.equal(f2(-2), f0(-2)),
all.equal(f3, f0), all.equal(f3(-2), f0(-2)),
all.equal(f4, f0), all.equal(f4(-2), f0(-2)),
all.equal(f5, f0), all.equal(f5(-2), f0(-2))

)

compose() and as.list() are mutally invertible
f6 <- compose(abs, as.list(compose(log, inv)))

https://cran.r-project.org/package=magrittr

8 constant

stopifnot(
all.equal(f6, f0), all.equal(f6(-2), f0(-2))

)
fs <- list(abs, log, inv)
stopifnot(all.equal(check.attributes = FALSE,

as.list(compose(fs)), fs,
))

`%>>>%` supports names, magrittr `%>%` semantics, and quasiquotation
sep <- ""
scramble <- shuffle: sample %>>>% paste(collapse = !!sep)
nonsense <- scramble(letters)
stopifnot(

nchar(nonsense) == 26L,
identical(letters, sort(strsplit(nonsense, sep)[[1]])),
identical(scramble$shuffle, sample)

)

constant Values as Functions

Description

A constant is a fixed value that incorporates its very computation. This is none other than a function
that computes a fixed value when called without arguments. constant() declares such a function
as a bona fide constant by transforming it to a function that caches the value of its void call (i.e.,
constant() memoizes void functions).

Combine %>>>% with constant() for a lazy, structured alternative to the magrittr `%>%` operator
(see ‘Examples’).

Usage

constant(f)

variable(f)

Arguments

f Function, or symbol or name (string) thereof, that can be called without argu-
ments. (NB: constant() itself does not check whether f() is indeed a valid
call.)

Value

constant() yields a function without formal arguments that returns the (cached, visibility-preserving)
value of the void call f().

variable() is the inverse transformation of constant(): it recovers the underlying (uncached)
function of a constant function.

https://en.wikipedia.org/wiki/Memoization
https://cran.r-project.org/package=magrittr

constant 9

See Also

%>>>%

Examples

Function with a constant return value
val <- {message("Computing from scratch"); mtcars} %>>>%

split(.$cyl) %>>>%
lapply(function(data) lm(mpg ~ wt, data)) %>>>%
lapply(summary) %>>>%
sapply(`[[`, "r.squared")

With every invocation, `val()` is computed anew:
val()
val()

Declaring `val` as a constant ensures that its value is computed only once.
On subsequent calls, the computed value is simply fetched:
const <- constant(val)
const()
const()

As values, `val()` and `const()` are identical. But `const()`, moreover,
has structure, namely the function `const`:
const

For instance, you can inspect the intermediate summaries:
head(const, -1)()

Which can itself be a constant:
summ <- constant(head(const, -1))
summ()
summ()

Not run:
Think of `%>>>%` combined with `constant()` as a lazy, structured
alternative to the magrittr `%>%` operator.
library(magrittr)

val2 <- mtcars %>%
split(.$cyl) %>%
lapply(function(data) lm(mpg ~ wt, data)) %>%
lapply(summary) %>%
sapply(`[[`, "r.squared")

`val2` and `const()` are identical values. But whereas `val2` is computed
immediately and carries no structure, `const` embodies the process that
produces its value, and allows you to defer its realization to the
invocation `const()`.
stopifnot(identical(val2, const()))
End(Not run)

10 context

Use `variable()` to recover the original (\dQuote{variable}) function
val_var <- variable(const)
stopifnot(identical(val_var, val))
val_var()
val_var()

context Run an Action in an Ordered Context

Description

Programming in R typically involves:

1. Making a context: assigning values to names.

2. Performing an action: evaluating an expression relative to a context.

let() and run() enable you to treat these procedures as reusable, composable components.

• let() makes a context: it lazily binds a sequence of ordered named expressions to a child of
a given environment (by default, the current one).
For instance, in an environment env where z is in scope,

let(env, x = 1, y = x + 2, z = x * y * z)

is equivalent to calling

local({
x <- 1
y <- x + 2
z <- x * y * z
environment()

})

except let() binds the named expressions lazily (as promises) and comprehends tidyverse
quasiquotation.

• run() performs an action: it evaluates an expression relative to an environment (by default,
the current one) and, optionally, a sequence of lazily evaluated ordered named expressions.
For instance, in an environment env where x is in scope,

run(env, x + y + z, y = x + 2, z = x * y * z)

is equivalent to calling

local({
y <- x + 2
z <- x * y * z
x + y + z

})

except run(), like let(), binds y and z lazily and comprehends quasiquotation.

context 11

Usage

let(`_data` = parent.frame(), ...)

run(`_data` = parent.frame(), `_expr`, ...)

Arguments

_data Context of named values, namely an environment, list or data frame; if a list
or data frame, it is interpreted as an environment (like the envir argument of
eval()).

... Named expressions. An expression looks up values to the left of it, and takes
precedence over those in `_data`. Quasiquotation of names and expressions is
supported (see ‘Examples’).

‘_expr‘ Expression to evaluate (“run”). Quasiquotation is supported.

Value

run() returns the evaluation of `_expr` in the combined environment of `_data` and

let() returns an environment where the bindings in ... are in scope, as promises, as if they were
assigned from left to right in a child of the environment defined by `_data`.

Composing Contexts

Contexts, as made by let(), have an advantage over ordinary local assignments because contexts
are both lazy and composable. Like assignments, the order of named expressions in a context is
significant.

For example, you can string together contexts to make larger ones:

foo <-
let(a = ., b = a + 2) %>>>%
let(c = a + b) %>>>%
run(a + b + c)

foo(1)
#> [1] 8

Earlier bindings can be overriden by later ones:

bar <-
foo[1:2] %>>>% # Collect the contexts of 'foo()'
let(c = c - 1) %>>>% # Override 'c'
run(a + b + c)

bar(1)
#> [1] 7

Bindings are promises; they are only evaluated on demand:

12 context

run(let(x = a_big_expense(), y = "avoid a big expense"), y)
#> [1] "avoid a big expense"

Remark

“Contexts” as described here should not be confused with “contexts” in R’s internal mechanism.

See Also

with() is like run(), but more limited because it doesn’t support quasiquotation or provide a means
to override local bindings.

Examples

Miles-per-gallon of big cars
mtcars$mpg[mtcars$cyl == 8 & mtcars$disp > 350]
run(mtcars, mpg[cyl == 8 & disp > 350])
run(mtcars, mpg[big_cars], big_cars = cyl == 8 & disp > 350)

'let()' makes a reusable local context for big cars
cars <- let(mtcars, big = cyl == 8 & disp > 350)

eval(quote(mpg[big]), cars) # Quoting restricts name lookup to 'cars'
run(cars, mpg[big]) # The same, but shorter and more transparent

run(cars, wt[big])
mtcars$wt[mtcars$cyl == 8 & mtcars$disp > 350]

Precedence of names is from right to left ("bottom-up"):
a <- 1000
run(`_expr` = a + b, a = 1, b = a + 2) # 4: all references are local
run(list(a = 1), a + b, b = a + 2) # 4: 'b' references local 'a'
run(let(a = 1, b = a + 2), a + b) # 4: 'b' references local 'a'
run(let(a = 1, b = a + 2), a + b, a = 0) # 3: latter 'a' takes precedence
run(list(a = 1, b = a + 2), a + b) # 1003: 'b' references global 'a'

Bound expressions are lazily evaluated: no error unless 'x' is referenced
run(`_expr` = "S'all good, man.", x = stop("!"))
run(let(x = stop("!")), "S'all good, man.")
let(x = stop("!")) # Environment binding 'x'
try(let(x = stop("!"))$x) # Error: !

Quasiquotation is supported
a <- 1
run(let(a = 2), a + !!a) #> [1] 3
run(let(a = 1 + !!a, b = a), c(a, b)) #> [1] 2 2

https://cran.r-project.org/doc/manuals/r-release/R-ints.html#Contexts

fn 13

fn Function Declarations with Quasiquotation

Description

fn() enables you to create (anonymous) functions, of arbitrary call signature. Use it in place of the
usual function() invocation whenever you want to:

• Be concise: The function declarations

fn(x, y = 1 ~ x + y)

function(x, y = 1) x + y

are equivalent.

• Enforce immutability: By enabling Tidyverse quasiquotation, fn() allows you to “burn in”
values at the point of function creation. This guards against changes in a function’s enclosing
environment. (See ‘Use Unquoting to Make Robust Functions’.)

fn_() is a variant of fn() that does not comprehend quasiquotation. It is useful when you want
unquoting (`!!`) or splicing (`!!!`) operators in the function body to be literally interpreted, rather
than immediately invoked. (See ‘Quasiquotation’ for a complementary way to literally interpret
unquoting and splicing operators in fn().)

Usage

fn(..., ..env = parent.frame())

fn_(..., ..env = parent.frame())

Arguments

... Function declaration, which supports quasiquotation.

..env Environment in which to create the function (i.e., the function’s enclosing envi-
ronment).

Value

A function whose enclosing environment is ..env.

Function Declarations

A function declaration is an expression that specifies a function’s arguments and body, as a
comma-separated expression of the form

arg1, arg2, ..., argN ~ body

or

14 fn

arg1, arg2, ..., argN, ~body

(Note in the second form that the body is a one-sided formula. This distinction is relevant for
argument splicing, see ‘Quasiquotation’.)

• To the left of ~, you write a conventional function-argument declaration, just as in function(<arguments>):
each of arg1, arg2, . . . , argN is either a bare argument (e.g., x or ...) or an argument with
default value (e.g., x = 1).

• To the right of ~, you write the function body, i.e., an expression of the arguments.

Quasiquotation

All parts of a function declaration support Tidyverse quasiquotation:

• To unquote values (of arguments or parts of the body), use !!:

z <- 0
fn(x, y = !!z ~ x + y)
fn(x ~ x > !!z)

• To unquote argument names (with default value), use := (definition operator):

arg <- "y"
fn(x, !!arg := 0 ~ x + !!as.name(arg))

• To splice in a (formal) list of arguments, use !!!:

NB: Body is a one-sided formula
fn(!!!alist(x, y = 0), ~ x + y)

Splicing allows you to treat a complete function declaration as a unit:

soma <- alist(x, y = 0, ~ x + y)
fn(!!!soma)

• To write literal unquoting operators, use QUQ(), QUQS(), which read as “quoted unquoting,”
“quoted unquote-splicing,” resp. (cf. fn_()):

library(dplyr)

my_summarise <- fn(df, ... ~ {
groups <- quos(...)
df %>%
group_by(QUQS(groups)) %>%
summarise(a = mean(a))

})

(Source: Programming with dplyr)

https://dplyr.tidyverse.org/articles/programming.html

fn 15

Use Unquoting to Make Robust Functions

Functions in R are generally impure, i.e., the return value of a function will not in general be
determined by the value of its inputs alone. This is because, by design, a function may depend on
objects in its lexical scope, and these objects may mutate between function calls. Normally this
isn’t a hazard.

However, if you are working interactively and sourcing files into the global environment, or us-
ing a notebook interface like Jupyter or R Notebook, it can be tricky to ensure that you haven’t
unwittingly mutated an object that an earlier function depends upon.

You can use unquoting to guard against such mutations.

Example: Consider the following function:

a <- 1
foo <- function(x) x + a

What is the value of foo(1)? It is not necessarily 2, because the value of a may have changed
between the creation of foo() and the calling of foo(1):

foo(1) #> [1] 2

a <- 0

foo(1) #> [1] 1

In other words, foo() is impure because the value of foo(x) depends not only on the value of x
but also on the externally mutable value of a.
With fn(), you can unquote a to “burn in” its value at the point of creation:

a <- 1
foo <- fn(x ~ x + !!a)

Now foo() is a pure function, unaffected by changes to a in the lexical scope:

foo(1) #> [1] 2

a <- 0

foo(1) #> [1] 2

Examples

fn(x ~ x + 1)
fn(x, y ~ x + y)
fn(x, y = 2 ~ x + y)
fn(x, y = 1, ... ~ log(x + y, ...))

to specify '...' in the middle, write '... = '
fn(x, ... = , y ~ log(x + y, ...))

use one-sided formula for constant functions or commands
fn(~ NA)

https://en.wikipedia.org/wiki/Pure_function
https://adv-r.hadley.nz/functions.html#lexical-scoping
https://jupyter.org
https://bookdown.org/yihui/rmarkdown/notebook.html

16 partial

fn(~ message("!"))

unquoting is supported (using `!!` from rlang)
zero <- 0
fn(x = !!zero ~ x > !!zero)

formals and function bodies can also be spliced in
f <- function(x, y) x + y
g <- function(y, x, ...) x - y
frankenstein <- fn(!!!formals(f), ~ !!body(g))
stopifnot(identical(frankenstein, function(x, y) x - y))

mixing unquoting and literal unquoting is possible
(Assume dplyr is available, which provides group_by() and `%>%`.)
summariser <- quote(mean)
my_summarise <- fn(df, ... ~ {

groups <- quos(...)
df %>%
group_by(QUQS(groups)) %>% # literal unquote-splice
summarise(a = `!!`(summariser)(a)) # substitute `mean`

})
my_summarise

Use fn_() with fn() as a concise way to force ("pin down") bindings
For example, the 'x' is immutable in the function produced by call_upon():
call_upon <- fn_(x ~ fn(f ~ f(!!x)))
sapply(list(sin, cos), call_upon(0)) # [1] 0 1

Return-value checking, as a functional transformation
enforce <- fn_(condition ~

fn(x ~ {
stopifnot(!!substitute(condition))
x

})
)
no_nan <- enforce(!is.nan(x))
log_strict <- fn(x ~ no_nan(log(x)))
log_strict(2) # [1] 0.6931472
try(log_strict(-1)) # Error: !is.nan(x) is not TRUE

partial Fix a Number of Arguments to a Function

Description

partial() enables partial application: given a function, it fixes the value of selected arguments to
produce a function of the remaining arguments.

departial() undoes the application of partial() by returning the original function.

https://en.wikipedia.org/wiki/Partial_application

partial 17

Usage

partial(..f, ...)

departial(..f)

Arguments

..f Function.

... Argument values of ..f to fix, specified by name or position. Captured as qu-
osures. Unquoting and splicing are supported (see ‘Examples’). Argument val-
ues may match the ... argument of ..f (if present), but only when specified by
name.

Details

Even while partial() truncates formals, it remains compatible with functions that use missing()
to test whether a specified argument was supplied in a call. For example, draw3 <- partial(sample,
size = 3) works as a function that randomly draws three elements, even though sample() invokes
missing(size) and draw3() has the form function(x, replace, prob) {...}.

Because partially applied functions call the original function in an ad hoc environment, impure
functions that depend on the calling context as a value, rather than as a lexical scope, may not
be amenable to partial(). For example, partial(ls, all.names = TRUE)() is not equivalent
to ls(all.names = TRUE), because ls() inspects the calling environment to produce its value,
whereas partial(ls, all.names = TRUE)() calls ls(all.names = TRUE) from an (ephemeral)
evaluation environment.

Value

partial() returns a function whose formals are a truncation of the formals of ..f (as a closure)
by the fixed arguments. NB the original default values do not appear in the formals of a partialized
function, but are nonetheless applied when the function is called.

The function partial(..f) is identical to ..f.

In conformance with R’s calling convention, fixed argument values are lazy promises. Moreover,
when forced, they are tidily evaluated. Lazy evaluation of fixed arguments can be overridden via
unquoting, see ‘Examples’.

When ..f is a partially applied function, departial(..f) is the (closure of) the underlying func-
tion. For ordinary (non-partially applied) functions, departial(..f) is identical to ..f.

Examples

Arguments can be fixed by name
draw3 <- partial(sample, size = 3)
draw3(letters)

Arguments can be fixed by position
draw3 <- partial(sample, , 3)
draw3(letters)

18 posure

Use departial() to recover the original function
stopifnot(identical(departial(draw3), sample))

Lazily evaluate argument values by default
The value of 'n' is evaluated whenever rnd() is called.
rnd <- partial(runif, n = rpois(1, 5))
replicate(4, rnd(), simplify = FALSE) # variable length

Eagerly evaluate argument values with unquoting (`!!`)
The value of 'n' is fixed when 'rnd_eager' is created.
rnd_eager <- partial(runif, n = !!rpois(1, 5))
len <- length(rnd_eager())
reps <- replicate(4, rnd_eager(), simplify = FALSE) # constant length
stopifnot(all(vapply(reps, length, integer(1)) == len))

Mix evaluation schemes by combining lazy evaluation with unquoting (`!!`)
Here 'n' is lazily evaluated, while 'max' is eagerly evaluated.
rnd_mixed <- partial(runif, n = rpois(1, 5), max = !!sample(10, 1))
replicate(4, rnd_mixed(), simplify = FALSE)

Arguments to fix can be spliced
args_eager <- list(n = rpois(1, 5), max = sample(10, 1))
rnd_eager2 <- partial(runif, !!!args_eager)
replicate(4, rnd_eager2(), simplify = FALSE)

Use rlang::exprs() to selectively evaluate arguments to fix
args_mixed <- rlang::exprs(n = rpois(1, 5), max = !!sample(10, 1))
rnd_mixed2 <- partial(runif, !!!args_mixed)
replicate(4, rnd_mixed2(), simplify = FALSE)

partial() truncates formals by the fixed arguments, omits default values
foo <- function(x, y = x, ..., z = "z") NULL
stopifnot(

identical(formals(partial(foo)),
formals(foo)),

identical(formals(partial(foo, x = 1)),
formals(function(y, ..., z) NULL)),

identical(formals(partial(foo, x = 1, y = 2)),
formals(function(..., z) NULL)),

identical(formals(partial(foo, x = 1, y = 2, z = 3)),
formals(function(...) NULL))

)

Nevertheless, partial() remembers default argument values when called
f <- function(x, y = x) c(x, y)
p <- partial(f, x = 1)
stopifnot(identical(p(), c(1, 1)))

posure Variable Composite Functions

posure 19

Description

posure() enables you to create efficient variable (i.e., parameterized) composite functions.

For instance, say you have a composite function such as

function(..., b = 2, n) {
(sample %>>>% log(base = b) %>>>% rep(n))(...)

}

Alternatively, expressed with the magrittr %>%:
function(..., b = 2, n) {
sample(...) %>% log(base = b) %>% rep(n)

}

which varies according to the values of b and n. You can express this more succinctly with
posure(), by dropping the placeholder argument (‘...’):

posure(b = 2, n ~ {
sample %>>>% log(base = b) %>>>% rep(n)

})

This creates a function with same formals and return values.

But the posure() version is more efficient because it creates the composite function just once,
rather than anew with each function call. Morever, it is robuster than the functionally equivalent
construction with the magrittr `%>%` because posure() validates the constituent functions (see
‘Examples’).

Usage

posure(..., ..env = parent.frame())

Arguments

... Function declaration whose body must be a function composition expressed us-
ing %>>>%. Quasiquotation is supported. The syntax is that of fn() (see ‘Func-
tion Declarations’) except that declaring ‘...’ among ... is ambiguous.

..env Environment in which to create the function. (You should rarely need to set
this.)

Details

posure() curries composite functions. However, the main significance of posure() is its effi-
ciency, which is achieved via non-standard scoping semantics (transparent to the caller). posure()
creates the given composite function once. When the resulting variable composite function is called,
its dependencies are dynamically bound to its localized lexical scope, for fast lookup, then removed
when the function exits. Thus a posure is a (parameterized) closure that is partially dynamically
scoped. (This portmanteau is due to Henry Stanley.)

https://cran.r-project.org/package=magrittr
https://en.wikipedia.org/wiki/Currying
https://github.com/henryaj

20 posure

Value

Function with formals function (..., <composite_function_dependencies>), where <composite_function_dependencies>
stands for the formals captured by the dots of posure(). In particular, a call of the form

posure(a, b = value ~ f(a, b) %>>>% g(a, b))

produces a function with the same formals and return values as

function(..., a, b = value) {
(f(a, b) %>>>% g(a, b))(...)

}

See Also

%>>>%, fn(), partial().

Examples

foo <- posure(b = 2, n ~ {
sample %>>>% log(base = b) %>>>% rep(n)

})

A posure is a composite function with dependencies:
foo

set.seed(1)
foo(2^(1:10), size = 2, n = 3)
#> [1] 3 4 3 4 3 4

set.seed(1)
rep(log(sample(2^(1:10), size = 2), base = 2), 3)
#> [1] 3 4 3 4 3 4

However, a 'posure()' does the composition upfront, so it is faster
than the equivalent function defined using the magrittr pipe:

library(magrittr) # Provides the pipe %>%

foo_pipe <- function(..., b = 2, n) {
sample(...) %>% log(base = b) %>% rep(n)

}

set.seed(1)
foo_pipe(2^(1:10), size = 2, n = 3)
#> [1] 3 4 3 4 3 4

Moreover, posures are safer than functions defined using the pipe,
because '%>>>%' validates constituent functions:
try(posure(b = 2, n ~ log(Base = b) %>>>% rep(n)))
Error: unused argument (Base = b)

posure 21

try(posure(b = 2 ~ my_sample %>>>% log(base = b)))
Error: object 'my_sample' not found

Index

[, 5
%>>>% (compose), 2
%>>>%, 8, 9, 19, 20

as.list(), 2, 7

closure, 19
compose, 2
composite functions, 19
constant, 8
constant(), 7
context, 10

departial (partial), 16

enclosing environment, 13
eval(), 11
extracted, 5
extractors, 4

fn, 13
fn(), 4, 19, 20
fn_ (fn), 13
formals, 2, 3, 17, 19, 20
function(), 13

head(), 5

length(), 6
let (context), 10

missing(), 17

names(), 6

partial, 16
partial(), 20
posure, 18
promises, 10, 11, 17

Quasiquotation, 3, 11, 19
quasiquotation, 2, 10, 13, 14

quosures, 17

run (context), 10

splicing, 3, 14, 17

tail(), 5
tidily evaluated, 17

unlist(), 6
Unquoting, 3, 17
unquoting, 4

variable (constant), 8

with(), 12

22

	compose
	constant
	context
	fn
	partial
	posure
	Index

