
Package ‘h2o4gpu’
October 13, 2022

Type Package

Title Interface to 'H2O4GPU'

Version 0.3.3

Description Interface to 'H2O4GPU' <https:
//github.com/h2oai/h2o4gpu>, a collection of 'GPU' solvers for machine learning algorithms.

License Apache License 2.0

URL https://github.com/h2oai/h2o4gpu

BugReports https://github.com/h2oai/h2o4gpu/issues

SystemRequirements Python (>= 3.6) with header files and shared
library; H2O4GPU (https://github.com/h2oai/h2o4gpu)

Encoding UTF-8

Depends R (>= 3.1)

Imports utils, magrittr, reticulate (>= 1.4)

RoxygenNote 6.0.1

Suggests testthat, knitr, rmarkdown, Matrix

VignetteBuilder knitr

NeedsCompilation no

Author Yuan Tang [aut] (<https://orcid.org/0000-0001-5243-233X>),
Navdeep Gill [aut, cre],
Erin LeDell [aut],
Vladimir Ovsyannikov [aut],
H2O.ai [cph, fnd]

Maintainer Navdeep Gill <navdeep@h2o.ai>

Repository CRAN

Date/Publication 2021-05-17 22:10:02 UTC

1

https://github.com/h2oai/h2o4gpu
https://github.com/h2oai/h2o4gpu
https://github.com/h2oai/h2o4gpu
https://github.com/h2oai/h2o4gpu/issues
https://orcid.org/0000-0001-5243-233X

2 fit

R topics documented:

fit . 2
fit.h2o4gpu_model . 3
h2o4gpu . 3
h2o4gpu.elastic_net_classifier . 4
h2o4gpu.elastic_net_regressor . 6
h2o4gpu.gradient_boosting_classifier . 8
h2o4gpu.gradient_boosting_regressor . 11
h2o4gpu.kmeans . 14
h2o4gpu.pca . 15
h2o4gpu.random_forest_classifier . 16
h2o4gpu.random_forest_regressor . 18
h2o4gpu.truncated_svd . 20
predict.h2o4gpu_model . 20
transform.h2o4gpu_model . 21

Index 23

fit Generic Method to Train an H2O4GPU Estimator

Description

Generic Method to Train an H2O4GPU Estimator

Generic Method to Transform a Dataset using Trained H2O4GPU Estimator

Usage

fit(object, ...)

transform(object, ...)

Arguments

object The h2o4gpu model object

... Additional arguments (unused for now).

fit.h2o4gpu_model 3

fit.h2o4gpu_model Train an H2O4GPU Estimator

Description

This function builds the model using the training data specified.

Usage

S3 method for class 'h2o4gpu_model'
fit(object, x, y = NULL, ...)

Arguments

object The h2o4gpu model object

x The training data where each column represents a different predictor variable to
be used in building the model.

y A vector of numeric values to be used as response variable in building the model.
Note that if the vector is character or factor, it will be converted to numeric
column (e.g. 0, 1, 2, ...) implicitly. For unsupervised models, this argument can
be ignored or specified as NULL.

... Additional arguments (unused for now).

Examples

Not run:

library(h2o4gpu)

Setup dataset
x <- iris[1:4]
y <- as.integer(iris$Species) - 1

Train the classifier
h2o4gpu.random_forest_classifier() %>% fit(x, y)

End(Not run)

h2o4gpu h2o4gpu in R

Description

h2o4gpu in R

4 h2o4gpu.elastic_net_classifier

Examples

Not run:

library(h2o4gpu)

Setup dataset
x <- iris[1:4]
y <- as.integer(iris$Species) - 1

Initialize and train the classifier
model <- h2o4gpu.random_forest_classifier() %>% fit(x, y)

Make predictions
predictions <- model %>% predict(x)

End(Not run)

h2o4gpu.elastic_net_classifier

Elastic Net Classifier

Description

Elastic Net Classifier

Usage

h2o4gpu.elastic_net_classifier(alpha = 1, l1_ratio = 0.5,
fit_intercept = TRUE, normalize = FALSE, precompute = FALSE,
max_iter = 5000L, copy_X = TRUE, tol = 0.01, warm_start = FALSE,
positive = FALSE, random_state = NULL, selection = "cyclic",
n_gpus = -1L, lambda_stop_early = TRUE, glm_stop_early = TRUE,
glm_stop_early_error_fraction = 1, verbose = FALSE, n_threads = NULL,
gpu_id = 0L, lambda_min_ratio = 1e-07, n_lambdas = 100L, n_folds = 5L,
tol_seek_factor = 0.1, store_full_path = 0L, lambda_max = NULL,
lambdas = NULL, double_precision = NULL, order = NULL,
backend = "h2o4gpu")

Arguments

alpha Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for
the exact mathematical meaning of this parameter.alpha = 0 is equivalent to an
ordinary least square, solved by the :class:LinearRegressionSklearn object.
For numerical reasons, using alpha = 0 with the LassoSklearn object is not ad-
vised. Given this, you should use the :class:LinearRegressionSklearn object.

h2o4gpu.elastic_net_classifier 5

l1_ratio The ElasticNetSklearn mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio
= 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 <
l1_ratio < 1, the penalty is a combination of L1 and L2.

fit_intercept Whether the intercept should be estimated or not. If FALSE, the data is assumed
to be already centered.

normalize This parameter is ignored when fit_intercept is set to FALSE. If TRUE, the
regressors X will be normalized before regression by subtracting the mean and
dividing by the l2-norm. If you wish to standardize, please use :class:h2o4gpu.preprocessing.StandardScaler
before calling fit on an estimator with normalize=FALSE.

precompute Whether to use a precomputed Gram matrix to speed up calculations. The Gram
matrix can also be passed as argument. For sparse input this option is always
TRUE to preserve sparsity.

max_iter The maximum number of iterations

copy_X If TRUE, X will be copied; else, it may be overwritten.

tol The tolerance for the optimization: if the updates are smaller than tol, the opti-
mization code checks the dual gap for optimality and continues until it is smaller
than tol.

warm_start When set to TRUE, reuse the solution of the previous call to fit as initialization,
otherwise, just erase the previous solution.

positive When set to TRUE, forces the coefficients to be positive.

random_state The seed of the pseudo random number generator that selects a random feature to
update. If int, random_state is the seed used by the random number generator; If
RandomState instance, random_state is the random number generator; If NULL,
the random number generator is the RandomState instance used by np.random.
Used when selection == ’random’.

selection If set to ’random’, a random coefficient is updated every iteration rather than
looping over features sequentially by default. This (setting to ’random’) often
leads to significantly faster convergence especially when tol is higher than 1e-4.

n_gpus Number of gpu’s to use in GLM solver.
lambda_stop_early

Stop early when there is no more relative improvement on train or validation.

glm_stop_early Stop early when there is no more relative improvement in the primary and dual
residuals for ADMM.

glm_stop_early_error_fraction

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much).

verbose Print verbose information to the console if set to > 0.

n_threads Number of threads to use in the gpu. Each thread is an independent model
builder.

gpu_id ID of the GPU on which the algorithm should run.
lambda_min_ratio

Minimum lambda ratio to maximum lambda, used in lambda search.

n_lambdas Number of lambdas to be used in a search.

6 h2o4gpu.elastic_net_regressor

n_folds Number of cross validation folds.
tol_seek_factor

Factor of tolerance to seek once below null model accuracy. Default is 1E-1, so
seeks tolerance of 1E-3 once below null model accuracy for tol=1E-2.

store_full_path

Whether to store full solution for all alphas and lambdas. If 1, then during
predict will compute best and full predictions.

lambda_max Maximum Lambda value to use. Default is NULL, and then internally compute
standard maximum

lambdas overrides n_lambdas, lambda_max, and lambda_min_ratio.
double_precision

Internally set unless using _ptr methods. Value can either be 0 (float32) or
1(float64)

order Order of data. Default is NULL, and internally determined (unless using _ptr
methods) whether row ’r’ or column ’c’ major order.

backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-
tribute for actual backend used.

h2o4gpu.elastic_net_regressor

Elastic Net Regressor

Description

Elastic Net Regressor

Usage

h2o4gpu.elastic_net_regressor(alpha = 1, l1_ratio = 0.5,
fit_intercept = TRUE, normalize = FALSE, precompute = FALSE,
max_iter = 5000L, copy_X = TRUE, tol = 0.01, warm_start = FALSE,
positive = FALSE, random_state = NULL, selection = "cyclic",
n_gpus = -1L, lambda_stop_early = TRUE, glm_stop_early = TRUE,
glm_stop_early_error_fraction = 1, verbose = FALSE, n_threads = NULL,
gpu_id = 0L, lambda_min_ratio = 1e-07, n_lambdas = 100L, n_folds = 5L,
tol_seek_factor = 0.1, store_full_path = 0L, lambda_max = NULL,
lambdas = NULL, double_precision = NULL, order = NULL,
backend = "h2o4gpu")

Arguments

alpha Constant that multiplies the penalty terms. Defaults to 1.0. See the notes for
the exact mathematical meaning of this parameter.alpha = 0 is equivalent to an
ordinary least square, solved by the :class:LinearRegressionSklearn object.
For numerical reasons, using alpha = 0 with the LassoSklearn object is not ad-
vised. Given this, you should use the :class:LinearRegressionSklearn object.

h2o4gpu.elastic_net_regressor 7

l1_ratio The ElasticNetSklearn mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio
= 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 <
l1_ratio < 1, the penalty is a combination of L1 and L2.

fit_intercept Whether the intercept should be estimated or not. If FALSE, the data is assumed
to be already centered.

normalize This parameter is ignored when fit_intercept is set to FALSE. If TRUE, the
regressors X will be normalized before regression by subtracting the mean and
dividing by the l2-norm. If you wish to standardize, please use :class:h2o4gpu.preprocessing.StandardScaler
before calling fit on an estimator with normalize=FALSE.

precompute Whether to use a precomputed Gram matrix to speed up calculations. The Gram
matrix can also be passed as argument. For sparse input this option is always
TRUE to preserve sparsity.

max_iter The maximum number of iterations

copy_X If TRUE, X will be copied; else, it may be overwritten.

tol The tolerance for the optimization: if the updates are smaller than tol, the opti-
mization code checks the dual gap for optimality and continues until it is smaller
than tol.

warm_start When set to TRUE, reuse the solution of the previous call to fit as initialization,
otherwise, just erase the previous solution.

positive When set to TRUE, forces the coefficients to be positive.

random_state The seed of the pseudo random number generator that selects a random feature to
update. If int, random_state is the seed used by the random number generator; If
RandomState instance, random_state is the random number generator; If NULL,
the random number generator is the RandomState instance used by np.random.
Used when selection == ’random’.

selection If set to ’random’, a random coefficient is updated every iteration rather than
looping over features sequentially by default. This (setting to ’random’) often
leads to significantly faster convergence especially when tol is higher than 1e-4.

n_gpus Number of gpu’s to use in GLM solver.
lambda_stop_early

Stop early when there is no more relative improvement on train or validation.

glm_stop_early Stop early when there is no more relative improvement in the primary and dual
residuals for ADMM.

glm_stop_early_error_fraction

Relative tolerance for metric-based stopping criterion (stop if relative improve-
ment is not at least this much).

verbose Print verbose information to the console if set to > 0.

n_threads Number of threads to use in the gpu. Each thread is an independent model
builder.

gpu_id ID of the GPU on which the algorithm should run.
lambda_min_ratio

Minimum lambda ratio to maximum lambda, used in lambda search.

n_lambdas Number of lambdas to be used in a search.

8 h2o4gpu.gradient_boosting_classifier

n_folds Number of cross validation folds.
tol_seek_factor

Factor of tolerance to seek once below null model accuracy. Default is 1E-1, so
seeks tolerance of 1E-3 once below null model accuracy for tol=1E-2.

store_full_path

Whether to store full solution for all alphas and lambdas. If 1, then during
predict will compute best and full predictions.

lambda_max Maximum Lambda value to use. Default is NULL, and then internally compute
standard maximum

lambdas overrides n_lambdas, lambda_max, and lambda_min_ratio.
double_precision

Internally set unless using _ptr methods. Value can either be 0 (float32) or
1(float64)

order Order of data. Default is NULL, and internally determined (unless using _ptr
methods) whether row ’r’ or column ’c’ major order.

backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-
tribute for actual backend used.

h2o4gpu.gradient_boosting_classifier

Gradient Boosting Classifier

Description

Gradient Boosting Classifier

Usage

h2o4gpu.gradient_boosting_classifier(loss = "deviance", learning_rate = 0.1,
n_estimators = 100L, subsample = 1, criterion = "friedman_mse",
min_samples_split = 2L, min_samples_leaf = 1L,
min_weight_fraction_leaf = 0, max_depth = 3L, min_impurity_decrease = 0,
min_impurity_split = NULL, init = NULL, random_state = NULL,
max_features = "auto", verbose = 0L, max_leaf_nodes = NULL,
warm_start = FALSE, presort = "auto", colsample_bytree = 1,
num_parallel_tree = 1L, tree_method = "gpu_hist", n_gpus = -1L,
predictor = "gpu_predictor", objective = "binary:logistic",
booster = "gbtree", n_jobs = 1L, gamma = 0L, min_child_weight = 1L,
max_delta_step = 0L, colsample_bylevel = 1L, reg_alpha = 0L,
reg_lambda = 1L, scale_pos_weight = 1L, base_score = 0.5,
missing = NULL, backend = "h2o4gpu", ...)

h2o4gpu.gradient_boosting_classifier 9

Arguments

loss loss function to be optimized. ’deviance’ refers to deviance (= logistic regres-
sion) for classification with probabilistic outputs. For loss ’exponential’ gradient
boosting recovers the AdaBoost algorithm.

learning_rate learning rate shrinks the contribution of each tree by learning_rate. There is
a trade-off between learning_rate and n_estimators.

n_estimators The number of boosting stages to perform. Gradient boosting is fairly robust to
over-fitting so a large number usually results in better performance.

subsample The fraction of samples to be used for fitting the individual base learners. If
smaller than 1.0 this results in Stochastic Gradient Boosting. subsample inter-
acts with the parameter n_estimators. Choosing subsample < 1.0 leads to a
reduction of variance and an increase in bias.

criterion The function to measure the quality of a split. Supported criteria are "fried-
man_mse" for the mean squared error with improvement score by Friedman,
"mse" for mean squared error, and "mae" for the mean absolute error. The de-
fault value of "friedman_mse" is generally the best as it can provide a better
approximation in some cases.

min_samples_split

The minimum number of samples required to split an internal node:
min_samples_leaf

The minimum number of samples required to be at a leaf node:
min_weight_fraction_leaf

The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node. Samples have equal weight when sam-
ple_weight is not provided.

max_depth maximum depth of the individual regression estimators. The maximum depth
limits the number of nodes in the tree. Tune this parameter for best performance;
the best value depends on the interaction of the input variables.

min_impurity_decrease

A node will be split if this split induces a decrease of the impurity greater than
or equal to this value.

min_impurity_split

Threshold for early stopping in tree growth. A node will split if its impurity is
above the threshold, otherwise it is a leaf.

init An estimator object that is used to compute the initial predictions. init has to
provide fit and predict. If NULL it uses loss.init_estimator.

random_state If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If NULL, the
random number generator is the RandomState instance used by np.random.

max_features The number of features to consider when looking for the best split:

verbose Enable verbose output. If 1 then it prints progress and performance once in a
while (the more trees the lower the frequency). If greater than 1 then it prints
progress and performance for every tree.

10 h2o4gpu.gradient_boosting_classifier

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined
as relative reduction in impurity. If NULL then unlimited number of leaf nodes.

warm_start When set to TRUE, reuse the solution of the previous call to fit and add more
estimators to the ensemble, otherwise, just erase the previous solution.

presort Whether to presort the data to speed up the finding of best splits in fitting. Auto
mode by default will use presorting on dense data and default to normal sorting
on sparse data. Setting presort to true on sparse data will raise an error.

colsample_bytree

Subsample ratio of columns when constructing each tree.
num_parallel_tree

Number of trees to grow per round

tree_method The tree construction algorithm used in XGBoost Distributed and external mem-
ory version only support approximate algorithm. Choices: ‘auto’, ‘exact’, ‘ap-
prox’, ‘hist’, ‘gpu_exact’, ‘gpu_hist’ ‘auto’: Use heuristic to choose faster one.
- For small to medium dataset, exact greedy will be used. - For very large-
dataset, approximate algorithm will be chosen. - Because old behavior is always
use exact greedy in single machine, - user will get a message when approxi-
mate algorithm is chosen to notify this choice. ‘exact’: Exact greedy algorithm.
‘approx’: Approximate greedy algorithm using sketching and histogram. ‘hist’:
Fast histogram optimized approximate greedy algorithm. It uses some perfor-
mance improvements such as bins caching. ‘gpu_exact’: GPU implementation
of exact algorithm. ‘gpu_hist’: GPU implementation of hist algorithm.

n_gpus Number of gpu’s to use in GradientBoostingClassifier solver. Default is -1.

predictor The type of predictor algorithm to use. Provides the same results but allows the
use of GPU or CPU. - ’cpu_predictor’: Multicore CPU prediction algorithm. -
’gpu_predictor’: Prediction using GPU. Default for ’gpu_exact’ and ’gpu_hist’
tree method.

objective Specify the learning task and the corresponding learning objective or a custom
objective function to be used Note: A custom objective function can be pro-
vided for the objective parameter. In this case, it should have the signature
objective(y_true, y_pred) -> grad, hess:

booster Specify which booster to use: gbtree, gblinear or dart.

n_jobs Number of parallel threads used to run xgboost.

gamma Minimum loss reduction required to make a further partition on a leaf node of
the tree.

min_child_weight

Minimum sum of instance weight(hessian) needed in a child.

max_delta_step Maximum delta step we allow each tree’s weight estimation to be.
colsample_bylevel

Subsample ratio of columns for each split, in each level.

reg_alpha L1 regularization term on weights

reg_lambda L2 regularization term on weights
scale_pos_weight

Balancing of positive and negative weights.

h2o4gpu.gradient_boosting_regressor 11

base_score The initial prediction score of all instances, global bias.

missing Value in the data which needs to be present as a missing value. If NULL, defaults
to np.nan.

backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-
tribute for actual backend used.

... Other parameters for XGBoost object. Full documentation of parameters can be
found here: https://github.com/dmlc/xgboost/blob/master/doc/parameter.md

h2o4gpu.gradient_boosting_regressor

Gradient Boosting Regressor

Description

Gradient Boosting Regressor

Usage

h2o4gpu.gradient_boosting_regressor(loss = "ls", learning_rate = 0.1,
n_estimators = 100L, subsample = 1, criterion = "friedman_mse",
min_samples_split = 2L, min_samples_leaf = 1L,
min_weight_fraction_leaf = 0, max_depth = 3L, min_impurity_decrease = 0,
min_impurity_split = NULL, init = NULL, random_state = NULL,
max_features = "auto", alpha = 0.9, verbose = 0L,
max_leaf_nodes = NULL, warm_start = FALSE, presort = "auto",
colsample_bytree = 1, num_parallel_tree = 1L, tree_method = "gpu_hist",
n_gpus = -1L, predictor = "gpu_predictor", objective = "reg:linear",
booster = "gbtree", n_jobs = 1L, gamma = 0L, min_child_weight = 1L,
max_delta_step = 0L, colsample_bylevel = 1L, reg_alpha = 0L,
reg_lambda = 1L, scale_pos_weight = 1L, base_score = 0.5,
missing = NULL, backend = "h2o4gpu", ...)

Arguments

loss loss function to be optimized. ’ls’ refers to least squares regression. ’lad’ (least
absolute deviation) is a highly robust loss function solely based on order infor-
mation of the input variables. ’huber’ is a combination of the two. ’quantile’
allows quantile regression (use alpha to specify the quantile).

learning_rate learning rate shrinks the contribution of each tree by learning_rate. There is
a trade-off between learning_rate and n_estimators.

n_estimators The number of boosting stages to perform. Gradient boosting is fairly robust to
over-fitting so a large number usually results in better performance.

subsample The fraction of samples to be used for fitting the individual base learners. If
smaller than 1.0 this results in Stochastic Gradient Boosting. subsample inter-
acts with the parameter n_estimators. Choosing subsample < 1.0 leads to a
reduction of variance and an increase in bias.

12 h2o4gpu.gradient_boosting_regressor

criterion The function to measure the quality of a split. Supported criteria are "fried-
man_mse" for the mean squared error with improvement score by Friedman,
"mse" for mean squared error, and "mae" for the mean absolute error. The de-
fault value of "friedman_mse" is generally the best as it can provide a better
approximation in some cases.

min_samples_split

The minimum number of samples required to split an internal node:
min_samples_leaf

The minimum number of samples required to be at a leaf node:
min_weight_fraction_leaf

The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node. Samples have equal weight when sam-
ple_weight is not provided.

max_depth maximum depth of the individual regression estimators. The maximum depth
limits the number of nodes in the tree. Tune this parameter for best performance;
the best value depends on the interaction of the input variables.

min_impurity_decrease

A node will be split if this split induces a decrease of the impurity greater than
or equal to this value.

min_impurity_split

Threshold for early stopping in tree growth. A node will split if its impurity is
above the threshold, otherwise it is a leaf.

init An estimator object that is used to compute the initial predictions. init has to
provide fit and predict. If NULL it uses loss.init_estimator.

random_state If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If NULL, the
random number generator is the RandomState instance used by np.random.

max_features The number of features to consider when looking for the best split:

alpha The alpha-quantile of the huber loss function and the quantile loss function.
Only if loss='huber' or loss='quantile'.

verbose Enable verbose output. If 1 then it prints progress and performance once in a
while (the more trees the lower the frequency). If greater than 1 then it prints
progress and performance for every tree.

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined
as relative reduction in impurity. If NULL then unlimited number of leaf nodes.

warm_start When set to TRUE, reuse the solution of the previous call to fit and add more
estimators to the ensemble, otherwise, just erase the previous solution.

presort Whether to presort the data to speed up the finding of best splits in fitting. Auto
mode by default will use presorting on dense data and default to normal sorting
on sparse data. Setting presort to true on sparse data will raise an error.

colsample_bytree

Subsample ratio of columns when constructing each tree.
num_parallel_tree

Number of trees to grow per round

h2o4gpu.gradient_boosting_regressor 13

tree_method The tree construction algorithm used in XGBoost Distributed and external mem-
ory version only support approximate algorithm. Choices: ‘auto’, ‘exact’, ‘ap-
prox’, ‘hist’, ‘gpu_exact’, ‘gpu_hist’ ‘auto’: Use heuristic to choose faster one.
- For small to medium dataset, exact greedy will be used. - For very large-
dataset, approximate algorithm will be chosen. - Because old behavior is always
use exact greedy in single machine, - user will get a message when approxi-
mate algorithm is chosen to notify this choice. ‘exact’: Exact greedy algorithm.
‘approx’: Approximate greedy algorithm using sketching and histogram. ‘hist’:
Fast histogram optimized approximate greedy algorithm. It uses some perfor-
mance improvements such as bins caching. ‘gpu_exact’: GPU implementation
of exact algorithm. ‘gpu_hist’: GPU implementation of hist algorithm.

n_gpus Number of gpu’s to use in GradientBoostingRegressor solver. Default is -1.

predictor The type of predictor algorithm to use. Provides the same results but allows the
use of GPU or CPU. - ’cpu_predictor’: Multicore CPU prediction algorithm. -
’gpu_predictor’: Prediction using GPU. Default for ’gpu_exact’ and ’gpu_hist’
tree method.

objective Specify the learning task and the corresponding learning objective or a custom
objective function to be used Note: A custom objective function can be pro-
vided for the objective parameter. In this case, it should have the signature
objective(y_true, y_pred) -> grad, hess:

booster Specify which booster to use: gbtree, gblinear or dart.

n_jobs Number of parallel threads used to run xgboost.

gamma Minimum loss reduction required to make a further partition on a leaf node of
the tree.

min_child_weight

Minimum sum of instance weight(hessian) needed in a child.

max_delta_step Maximum delta step we allow each tree’s weight estimation to be.

colsample_bylevel

Subsample ratio of columns for each split, in each level.

reg_alpha L1 regularization term on weights

reg_lambda L2 regularization term on weights

scale_pos_weight

Balancing of positive and negative weights.

base_score The initial prediction score of all instances, global bias.

missing Value in the data which needs to be present as a missing value. If NULL, defaults
to np.nan.

backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-
tribute for actual backend used.

... Other parameters for XGBoost object. Full documentation of parameters can be
found here: https://github.com/dmlc/xgboost/blob/master/doc/parameter.md

14 h2o4gpu.kmeans

h2o4gpu.kmeans K-means Clustering

Description

K-means Clustering

Usage

h2o4gpu.kmeans(n_clusters = 8L, init = "k-means++", n_init = 1L,
max_iter = 300L, tol = 1e-04, precompute_distances = "auto",
verbose = 0L, random_state = NULL, copy_x = TRUE, n_jobs = 1L,
algorithm = "auto", gpu_id = 0L, n_gpus = -1L, do_checks = 1L,
backend = "h2o4gpu")

Arguments

n_clusters The number of clusters to form as well as the number of centroids to generate.

init Method for initialization, defaults to ’random’: ’k-means++’ : selects initial
cluster centers for k-mean clustering in a smart way to speed up convergence.
Not supported yet - if chosen we will use SKLearn’s methods. ’random’: choose
k observations (rows) at random from data for the initial centroids. If an ndarray
is passed, it should be of shape (n_clusters, n_features) and gives the initial
centers. Not supported yet - if chosen we will use SKLearn’s methods.

n_init Number of time the k-means algorithm will be run with different centroid seeds.
The final results will be the best output of n_init consecutive runs in terms of
inertia. Not supported yet - always runs 1.

max_iter Maximum number of iterations of the algorithm.

tol Relative tolerance to declare convergence.

precompute_distances

Precompute distances (faster but takes more memory). ’auto’ : do not precom-
pute distances if n_samples * n_clusters > 12 million. This corresponds to about
100MB overhead per job using double precision. TRUE : always precompute
distances FALSE : never precompute distances Not supported yet - always uses
auto if running h2o4gpu version.

verbose Logger verbosity level.

random_state random_state for RandomState. Must be convertible to 32 bit unsigned integers.

copy_x When pre-computing distances it is more numerically accurate to center the data
first. If copy_x is TRUE, then the original data is not modified. If FALSE, the
original data is modified, and put back before the function returns, but small
numerical differences may be introduced by subtracting and then adding the
data mean. Not supported yet - always uses TRUE if running h2o4gpu version.

h2o4gpu.pca 15

n_jobs The number of jobs to use for the computation. This works by computing each
of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel
computing code is used at all, which is useful for debugging. For n_jobs below
-1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are
used. Not supported yet - CPU backend not yet implemented.

algorithm K-means algorithm to use. The classical EM-style algorithm is "full". The
"elkan" variation is more efficient by using the triangle inequality, but currently
doesn’t support sparse data. "auto" chooses "elkan" for dense data and "full" for
sparse data. Not supported yet - always uses full if running h2o4gpu version.

gpu_id ID of the GPU on which the algorithm should run.
n_gpus Number of GPUs on which the algorithm should run. < 0 means all possible

GPUs on the machine. 0 means no GPUs, run on CPU.
do_checks If set to 0 GPU error check will not be performed.
backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-

tribute for actual backend used.

h2o4gpu.pca Principal Component Analysis (PCA)

Description

Principal Component Analysis (PCA)

Usage

h2o4gpu.pca(n_components = 2L, copy = TRUE, whiten = FALSE,
svd_solver = "arpack", tol = 0, iterated_power = "auto",
random_state = NULL, verbose = FALSE, backend = "h2o4gpu",
gpu_id = 0L)

Arguments

n_components Desired dimensionality of output data
copy If FALSE, data passed to fit are overwritten and running fit(X).transform(X) will

not yield the expected results, use fit_transform(X) instead.
whiten When TRUE (FALSE by default) the components_ vectors are multiplied by

the square root of (n_samples) and divided by the singular values to ensure un-
correlated outputs with unit component-wise variances.

svd_solver ’auto’ is selected by a default policy based on X.shape and n_components: if
the input data is larger than 500x500 and the number of components to extract
is lower than 80 percent of the smallest dimension of the data, then the more
efficient ’randomized’ method is enabled. Otherwise the exact full SVD is com-
puted and optionally truncated afterwards. ’full’ runs exact full SVD calling the
standard LAPACK solver via scipy.linalg.svd and select the components by
postprocessing ’arpack’runs SVD truncated to n_components calling ARPACK
solver via scipy.sparse.linalg.svds. It requires strictly 0 < n_components
< columns. ’randomized’ runs randomized SVD by the method of Halko et al.

16 h2o4gpu.random_forest_classifier

tol Tolerance for singular values computed by svd_solver == ’arpack’.

iterated_power Number of iterations for the power method computed by svd_solver == ’ran-
domized’.

random_state If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If NULL,
the random number generator is the RandomState instance used by np.random.
Used when svd_solver == ’arpack’ or ’randomized’.

verbose Verbose or not

backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-
tribute for actual backend used.

gpu_id ID of the GPU on which the algorithm should run. Only used by h2o4gpu
backend.

h2o4gpu.random_forest_classifier

Random Forest Classifier

Description

Random Forest Classifier

Usage

h2o4gpu.random_forest_classifier(n_estimators = 100L, criterion = "gini",
max_depth = 3L, min_samples_split = 2L, min_samples_leaf = 1L,
min_weight_fraction_leaf = 0, max_features = "auto",
max_leaf_nodes = NULL, min_impurity_decrease = 0,
min_impurity_split = NULL, bootstrap = TRUE, oob_score = FALSE,
n_jobs = 1L, random_state = NULL, verbose = 0L, warm_start = FALSE,
class_weight = NULL, subsample = 1, colsample_bytree = 1,
num_parallel_tree = 1L, tree_method = "gpu_hist", n_gpus = -1L,
predictor = "gpu_predictor", backend = "h2o4gpu")

Arguments

n_estimators The number of trees in the forest.

criterion The function to measure the quality of a split. Supported criteria are "gini" for
the Gini impurity and "entropy" for the information gain. Note: this parameter
is tree-specific.

max_depth The maximum depth of the tree. If NULL, then nodes are expanded until all
leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split

The minimum number of samples required to split an internal node:
min_samples_leaf

The minimum number of samples required to be at a leaf node:

h2o4gpu.random_forest_classifier 17

min_weight_fraction_leaf

The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node. Samples have equal weight when sam-
ple_weight is not provided.

max_features The number of features to consider when looking for the best split:

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined
as relative reduction in impurity. If NULL then unlimited number of leaf nodes.

min_impurity_decrease

A node will be split if this split induces a decrease of the impurity greater than
or equal to this value.

min_impurity_split

Threshold for early stopping in tree growth. A node will split if its impurity is
above the threshold, otherwise it is a leaf.

bootstrap Whether bootstrap samples are used when building trees.

oob_score whether to use out-of-bag samples to estimate the R^2 on unseen data.

n_jobs The number of jobs to run in parallel for both fit and predict. If -1, then the
number of jobs is set to the number of cores.

random_state If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If NULL, the
random number generator is the RandomState instance used by np.random.

verbose Controls the verbosity of the tree building process.

warm_start When set to TRUE, reuse the solution of the previous call to fit and add more
estimators to the ensemble, otherwise, just fit a whole new forest.

class_weight "balanced_subsample" or NULL, optional (default=NULL) Weights associated
with classes in the form {class_label: weight}. If not given, all classes are
supposed to have weight one. For multi-output problems, a list of dicts can be
provided in the same order as the columns of y.

subsample Subsample ratio of the training instance.
colsample_bytree

Subsample ratio of columns when constructing each tree.
num_parallel_tree

Number of trees to grow per round

tree_method The tree construction algorithm used in XGBoost Distributed and external mem-
ory version only support approximate algorithm. Choices: ‘auto’, ‘exact’, ‘ap-
prox’, ‘hist’, ‘gpu_exact’, ‘gpu_hist’ ‘auto’: Use heuristic to choose faster one.
- For small to medium dataset, exact greedy will be used. - For very large-
dataset, approximate algorithm will be chosen. - Because old behavior is always
use exact greedy in single machine, - user will get a message when approxi-
mate algorithm is chosen to notify this choice. ‘exact’: Exact greedy algorithm.
‘approx’: Approximate greedy algorithm using sketching and histogram. ‘hist’:
Fast histogram optimized approximate greedy algorithm. It uses some perfor-
mance improvements such as bins caching. ‘gpu_exact’: GPU implementation
of exact algorithm. ‘gpu_hist’: GPU implementation of hist algorithm.

n_gpus Number of gpu’s to use in RandomForestClassifier solver. Default is -1.

18 h2o4gpu.random_forest_regressor

predictor The type of predictor algorithm to use. Provides the same results but allows the
use of GPU or CPU. - ’cpu_predictor’: Multicore CPU prediction algorithm. -
’gpu_predictor’: Prediction using GPU. Default for ’gpu_exact’ and ’gpu_hist’
tree method.

backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-
tribute for actual backend used.

h2o4gpu.random_forest_regressor

Random Forest Regressor

Description

Random Forest Regressor

Usage

h2o4gpu.random_forest_regressor(n_estimators = 100L, criterion = "mse",
max_depth = 3L, min_samples_split = 2L, min_samples_leaf = 1L,
min_weight_fraction_leaf = 0, max_features = "auto",
max_leaf_nodes = NULL, min_impurity_decrease = 0,
min_impurity_split = NULL, bootstrap = TRUE, oob_score = FALSE,
n_jobs = 1L, random_state = NULL, verbose = 0L, warm_start = FALSE,
subsample = 1, colsample_bytree = 1, num_parallel_tree = 1L,
tree_method = "gpu_hist", n_gpus = -1L, predictor = "gpu_predictor",
backend = "h2o4gpu")

Arguments

n_estimators The number of trees in the forest.

criterion The function to measure the quality of a split. Supported criteria are "mse" for
the mean squared error, which is equal to variance reduction as feature selection
criterion, and "mae" for the mean absolute error.

max_depth The maximum depth of the tree. If NULL, then nodes are expanded until all
leaves are pure or until all leaves contain less than min_samples_split samples.

min_samples_split

The minimum number of samples required to split an internal node:
min_samples_leaf

The minimum number of samples required to be at a leaf node:
min_weight_fraction_leaf

The minimum weighted fraction of the sum total of weights (of all the input
samples) required to be at a leaf node. Samples have equal weight when sam-
ple_weight is not provided.

max_features The number of features to consider when looking for the best split:

h2o4gpu.random_forest_regressor 19

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion. Best nodes are defined
as relative reduction in impurity. If NULL then unlimited number of leaf nodes.

min_impurity_decrease

A node will be split if this split induces a decrease of the impurity greater than
or equal to this value.

min_impurity_split

Threshold for early stopping in tree growth. A node will split if its impurity is
above the threshold, otherwise it is a leaf.

bootstrap Whether bootstrap samples are used when building trees.

oob_score whether to use out-of-bag samples to estimate the R^2 on unseen data.

n_jobs The number of jobs to run in parallel for both fit and predict. If -1, then the
number of jobs is set to the number of cores.

random_state If int, random_state is the seed used by the random number generator; If Ran-
domState instance, random_state is the random number generator; If NULL, the
random number generator is the RandomState instance used by np.random.

verbose Controls the verbosity of the tree building process.

warm_start When set to TRUE, reuse the solution of the previous call to fit and add more
estimators to the ensemble, otherwise, just fit a whole new forest.

subsample Subsample ratio of the training instance.
colsample_bytree

Subsample ratio of columns when constructing each tree.
num_parallel_tree

Number of trees to grow per round

tree_method The tree construction algorithm used in XGBoost Distributed and external mem-
ory version only support approximate algorithm. Choices: ‘auto’, ‘exact’, ‘ap-
prox’, ‘hist’, ‘gpu_exact’, ‘gpu_hist’ ‘auto’: Use heuristic to choose faster one.
- For small to medium dataset, exact greedy will be used. - For very large-
dataset, approximate algorithm will be chosen. - Because old behavior is always
use exact greedy in single machine, - user will get a message when approxi-
mate algorithm is chosen to notify this choice. ‘exact’: Exact greedy algorithm.
‘approx’: Approximate greedy algorithm using sketching and histogram. ‘hist’:
Fast histogram optimized approximate greedy algorithm. It uses some perfor-
mance improvements such as bins caching. ‘gpu_exact’: GPU implementation
of exact algorithm. ‘gpu_hist’: GPU implementation of hist algorithm.

n_gpus Number of gpu’s to use in RandomForestRegressor solver. Default is -1.

predictor The type of predictor algorithm to use. Provides the same results but allows the
use of GPU or CPU. - ’cpu_predictor’: Multicore CPU prediction algorithm. -
’gpu_predictor’: Prediction using GPU. Default for ’gpu_exact’ and ’gpu_hist’
tree method.

backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-
tribute for actual backend used.

20 predict.h2o4gpu_model

h2o4gpu.truncated_svd Truncated Singular Value Decomposition (TruncatedSVD)

Description

Truncated Singular Value Decomposition (TruncatedSVD)

Usage

h2o4gpu.truncated_svd(n_components = 2L, algorithm = "power",
n_iter = 100L, random_state = NULL, tol = 1e-05, verbose = FALSE,
backend = "h2o4gpu", n_gpus = 1L, gpu_id = 0L)

Arguments

n_components Desired dimensionality of output data

algorithm SVD solver to use. H2O4GPU options: Either "cusolver" (similar to ARPACK)
or "power" for the power method. SKlearn options: Either "arpack" for the
ARPACK wrapper in SciPy (scipy.sparse.linalg.svds), or "randomized" for the
randomized algorithm due to Halko (2009).

n_iter number of iterations (only relevant for power method) Should be at most 2147483647
due to INT_MAX in C++ backend.

random_state seed (NULL for auto-generated)

tol Tolerance for "power" method. Ignored by "cusolver". Should be > 0.0 to ensure
convergence. Should be 0.0 to effectively ignore and only base convergence
upon n_iter

verbose Verbose or not

backend Which backend to use. Options are ’auto’, ’sklearn’, ’h2o4gpu’. Saves as at-
tribute for actual backend used.

n_gpus How many gpus to use. If 0, use CPU backup method. Currently SVD only uses
1 GPU, so >1 has no effect compared to 1.

gpu_id ID of the GPU on which the algorithm should run.

predict.h2o4gpu_model Make Predictions using Trained H2O4GPU Estimator

Description

This function makes predictions from new data using a trained H2O4GPU model and returns class
predictions for classification and predicted values for regression.

transform.h2o4gpu_model 21

Usage

S3 method for class 'h2o4gpu_model'
predict(object, x, type = "raw", ...)

Arguments

object The h2o4gpu model object

x The new data where each column represents a different predictor variable to be
used in generating predictions.

type One of "raw" or "prob", indicating the type of output: predicted values or prob-
abilities

... Additional arguments (unused for now).

Examples

Not run:

library(h2o4gpu)

Setup dataset
x <- iris[1:4]
y <- as.integer(iris$Species) - 1

Initialize and train the classifier
model <- h2o4gpu.random_forest_classifier() %>% fit(x, y)

Make predictions
predictions <- model %>% predict(x)

End(Not run)

transform.h2o4gpu_model

Transform a Dataset using Trained H2O4GPU Estimator

Description

This function transforms the given new data using a trained H2O4GPU model.

Usage

S3 method for class 'h2o4gpu_model'
transform(object, x, ...)

22 transform.h2o4gpu_model

Arguments

object The h2o4gpu model object

x The new data where each column represents a different predictor variable to be
used in generating predictions.

... Additional arguments (unused for now).

Examples

Not run:

library(h2o4gpu)

Prepare data
iris$Species <- as.integer(iris$Species) # convert to numeric data

Randomly sample 80% of the rows for the training set
set.seed(1)
train_idx <- sample(1:nrow(iris), 0.8*nrow(iris))
train <- iris[train_idx,]
test <- iris[-train_idx,]

Train a K-Means model
model_km <- h2o4gpu.kmeans(n_clusters = 3L) %>% fit(train)

Transform test data
test_dist <- model_km %>% transform(test)

End(Not run)

Index

fit, 2
fit.h2o4gpu_model, 3

h2o4gpu, 3
h2o4gpu-package (h2o4gpu), 3
h2o4gpu.elastic_net_classifier, 4
h2o4gpu.elastic_net_regressor, 6
h2o4gpu.gradient_boosting_classifier,

8
h2o4gpu.gradient_boosting_regressor,

11
h2o4gpu.kmeans, 14
h2o4gpu.pca, 15
h2o4gpu.random_forest_classifier, 16
h2o4gpu.random_forest_regressor, 18
h2o4gpu.truncated_svd, 20

predict.h2o4gpu_model, 20

transform (fit), 2
transform.h2o4gpu_model, 21

23

	fit
	fit.h2o4gpu_model
	h2o4gpu
	h2o4gpu.elastic_net_classifier
	h2o4gpu.elastic_net_regressor
	h2o4gpu.gradient_boosting_classifier
	h2o4gpu.gradient_boosting_regressor
	h2o4gpu.kmeans
	h2o4gpu.pca
	h2o4gpu.random_forest_classifier
	h2o4gpu.random_forest_regressor
	h2o4gpu.truncated_svd
	predict.h2o4gpu_model
	transform.h2o4gpu_model
	Index

