Anomaly Detection

library(nixtlar)

1. Anomaly detection

Anomaly detection plays a crucial role in time series analysis and forecasting. Anomalies, also known as outliers, are unusual observations that don’t follow the expected time series patterns. They can be caused by a variety of factors, including errors in the data collection process, unexpected events, or sudden changes in the patterns of the time series. Anomalies can provide critical information about a system, like a potential problem or malfunction. After identifying them, it is important to understand what caused them, and then decide whether to remove, replace, or keep them.

TimeGPT has a method for detecting anomalies, and users can call it from nixtlar. This vignette will explain how to do this. It assumes you have already set up your API key. If you haven’t done this, please read the Get Started vignette first.

2. Load data

For this vignette, we’ll use the electricity consumption dataset that is included in nixtlar, which contains the hourly prices of five different electricity markets.

df <- nixtlar::electricity
head(df)
#>   unique_id                  ds     y
#> 1        BE 2016-10-22 00:00:00 70.00
#> 2        BE 2016-10-22 01:00:00 37.10
#> 3        BE 2016-10-22 02:00:00 37.10
#> 4        BE 2016-10-22 03:00:00 44.75
#> 5        BE 2016-10-22 04:00:00 37.10
#> 6        BE 2016-10-22 05:00:00 35.61

3. Detect anomalies

To detect anomalies, use nixtlar::nixtla_client_detect_anomalies, which should include the following parameter:

nixtla_client_anomalies <- nixtlar::nixtla_client_detect_anomalies(df) 
#> Frequency chosen: h
head(nixtla_client_anomalies)
#>   unique_id                  ds     y anomaly  TimeGPT TimeGPT-lo-99
#> 1        BE 2016-10-27 00:00:00 52.58   FALSE 56.07623     -28.58337
#> 2        BE 2016-10-27 01:00:00 44.86   FALSE 52.41973     -32.23986
#> 3        BE 2016-10-27 02:00:00 42.31   FALSE 52.81474     -31.84486
#> 4        BE 2016-10-27 03:00:00 39.66   FALSE 52.59026     -32.06934
#> 5        BE 2016-10-27 04:00:00 38.98   FALSE 52.67297     -31.98662
#> 6        BE 2016-10-27 05:00:00 42.31   FALSE 54.10659     -30.55301
#>   TimeGPT-hi-99
#> 1      140.7358
#> 2      137.0793
#> 3      137.4743
#> 4      137.2499
#> 5      137.3326
#> 6      138.7662

The anomaly_detection method from TimeGPT evaluates each observation and uses a prediction interval to determine if it is an anomaly or not. By default, nixtlar::nixtla_client_detect_anomalies uses a 99% prediction interval. Observations that fall outside this interval will be considered anomalies and will have a value of True in the anomaly column (False otherwise). To change the prediction interval, for example to 95%, use the argument level=c(95). Keep in mind that multiple levels are not allowed, so when given several values, nixtlar::nixtla_client_detect_anomalies will use the maximum.

4. Plot anomalies

nixtlar includes a function to plot the historical data and any output from nixtlar::nixtla_client_forecast, nixtlar::nixtla_client_historic, nixtlar::nixtla_client_detect_anomalies and nixtlar::nixtla_client_cross_validation. If you have long series, you can use max_insample_length to only plot the last N historical values (the forecast will always be plotted in full).

When using nixtlar::nixtla_client_plot with the output of nixtlar::nixtla_client_detect_anomalies, set plot_anomalies=TRUE to plot the anomalies.

nixtlar::nixtla_client_plot(df, nixtla_client_anomalies, plot_anomalies = TRUE)