
Package ‘psychonetrics’
October 3, 2023

Type Package

Title Structural Equation Modeling and Confirmatory Network Analysis

Version 0.11.5

Author Sacha Epskamp

Maintainer Sacha Epskamp <mail@sachaepskamp.com>

Description
Multi-group (dynamical) structural equation models in combination with confirmatory net-
work models from cross-sectional, time-series and panel data <doi:10.31234/osf.io/8ha93>. Al-
lows for confirmatory testing and fit as well as exploratory model search.

License GPL-2

LinkingTo Rcpp (>= 0.11.3), RcppArmadillo, pbv, roptim

Depends R (>= 3.5)

Imports methods, qgraph, numDeriv, dplyr, abind, Matrix, lavaan,
corpcor, glasso, mgcv, optimx, VCA, pbapply, parallel,
magrittr, IsingSampler, tidyr, psych, GA, combinat, rlang

Suggests psychTools, semPlot, graphicalVAR, metaSEM, mvtnorm, ggplot2

ByteCompile true

URL http://psychonetrics.org/

BugReports https://github.com/SachaEpskamp/psychonetrics/issues

StagedInstall true

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-10-03 11:00:02 UTC

R topics documented:
psychonetrics-package . 3
bifactor . 5
bootstrap . 6

1

https://doi.org/10.31234/osf.io/8ha93
http://psychonetrics.org/
https://github.com/SachaEpskamp/psychonetrics/issues

2 R topics documented:

changedata . 6
CIplot . 7
compare . 9
covML . 10
dlvm1 . 11
duplicationMatrix . 17
emergencystart . 18
esa . 18
factorscores . 19
fit . 20
fixpar . 21
generate . 22
getmatrix . 22
getVCOV . 24
groupequal . 24
Ising . 25
Jonas . 29
latentgrowth . 30
lvm . 31
meta_varcov . 42
MIs . 46
ml_lvm . 47
ml_tsdlvm1 . 52
modelsearch . 53
parameters . 54
parequal . 55
partialprune . 56
prune . 57
psychonetrics-class . 58
psychonetrics_update . 60
runmodel . 61
setestimator . 62
setverbose . 63
simplestructure . 64
StarWars . 64
stepup . 65
tsdlvm1 . 67
unionmodel . 72
var1 . 73
varcov . 78

Index 84

psychonetrics-package 3

psychonetrics-package Structural Equation Modeling and Confirmatory Network Analysis

Description

Multi-group (dynamical) structural equation models in combination with confirmatory network
models from cross-sectional, time-series and panel data <doi:10.31234/osf.io/8ha93>. Allows for
confirmatory testing and fit as well as exploratory model search.

Details

The DESCRIPTION file:

Package: psychonetrics
Type: Package
Title: Structural Equation Modeling and Confirmatory Network Analysis
Version: 0.11.5
Author: Sacha Epskamp
Maintainer: Sacha Epskamp <mail@sachaepskamp.com>
Description: Multi-group (dynamical) structural equation models in combination with confirmatory network models from cross-sectional, time-series and panel data <doi:10.31234/osf.io/8ha93>. Allows for confirmatory testing and fit as well as exploratory model search.
License: GPL-2
LinkingTo: Rcpp (>= 0.11.3), RcppArmadillo, pbv, roptim
Depends: R (>= 3.5)
Imports: methods, qgraph, numDeriv, dplyr, abind, Matrix, lavaan, corpcor, glasso, mgcv, optimx, VCA, pbapply, parallel, magrittr, IsingSampler, tidyr, psych, GA, combinat, rlang
Suggests: psychTools, semPlot, graphicalVAR, metaSEM, mvtnorm, ggplot2
ByteCompile: true
URL: http://psychonetrics.org/
BugReports: https://github.com/SachaEpskamp/psychonetrics/issues
StagedInstall: true

Index of help topics:

CIplot Plot Analytic Confidence Intervals
Ising Ising model
Jonas Jonas dataset
MIs Print modification indices
StarWars Star Wars dataset
addMIs Model updating functions
bifactor Bi-factor models
bootstrap Bootstrap a psychonetrics model
changedata Change the data of a psychonetrics object
compare Model comparison
covML Maximum likelihood covariance estimate
dlvm1 Lag-1 dynamic latent variable model family of

psychonetrics models for panel data
duplicationMatrix Model matrices used in derivatives

4 psychonetrics-package

emergencystart Reset starting values to simple defaults
esa Ergodic Subspace Analysis
factorscores Compute factor scores
fit Print fit indices
fixpar Parameters modification
generate Generate data from a fitted psychonetrics

object
getVCOV Obtain the asymptotic covariance matrix
getmatrix Extract an estimated matrix
groupequal Group equality constrains
latentgrowth Latnet growth curve model
lvm Continuous latent variable family of

psychonetrics models
meta_varcov Variance-covariance and GGM meta analysis
ml_lvm Multi-level latent variable model family
ml_tsdlvm1 Multi-level Lag-1 dynamic latent variable model

family of psychonetrics models for time-series
data

modelsearch Stepwise model search
parameters Print parameter estimates
parequal Set equality constrains across parameters
partialprune Partial pruning of multi-group models
prune Stepdown model search by pruning

non-significant parameters.
psychonetrics-class Class '"psychonetrics"'
psychonetrics-package Structural Equation Modeling and Confirmatory

Network Analysis
runmodel Run a psychonetrics model
setestimator Convenience functions
setverbose Should messages of computation progress be

printed?
simplestructure Generate factor loadings matrix with simple

structure
stepup Stepup model search along modification indices
tsdlvm1 Lag-1 dynamic latent variable model family of

psychonetrics models for time-series data
unionmodel Unify models across groups
var1 Lag-1 vector autoregression family of

psychonetrics models
varcov Variance-covariance family of psychonetrics

models

This package can be used to perform Structural Equation Modeling and confirmatory network mod-
eling. Current implemented families of models are (1) the variance–covariance matrix (varcov),
(2) the latent variable model (lvm), (3) the lag-1 vector autoregression model (var1), and (4) the
dynamical lag-1 latent variable model for panel data (dlvm1) and for time-series data (tsdlvm1).

bifactor 5

Author(s)

Sacha Epskamp

Maintainer: Sacha Epskamp <mail@sachaepskamp.com>

References

More information: psychonetrics.org

bifactor Bi-factor models

Description

Wrapper to lvm to specify a bi-factor model.

Usage

bifactor(data, lambda, latents, bifactor = "g", ...)

Arguments

data The data as used by lvm

lambda The factor loadings matrix *without* the bifactor, as used by by lvm

latents A vector of names of the latent variables, as used by lvm

bifactor Name of the bifactor

... Arguments sent to lvm

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

6 changedata

bootstrap Bootstrap a psychonetrics model

Description

This function will bootstrap the data (once) and return a new unevaluated psychonetrics object. It
requres storedata = TRUE to be used when forming a model.

Usage

bootstrap(x, replacement = TRUE, proportion = 1, verbose = TRUE, storedata = FALSE,
baseline_saturated = TRUE)

Arguments

x A psychonetrics model.

replacement Logical, should new samples be drawn with replacement?

proportion Proportion of sample to be drawn. Set to lower than 1 for subsampling.

verbose Logical, should messages be printed?

storedata Logical, should the bootstrapped data also be stored?
baseline_saturated

Logical, should the baseline and saturated models be included?

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

changedata Change the data of a psychonetrics object

Description

This function can be used to change the data in a psychonetrics object.

Usage

changedata(x, data, covs, nobs, means, groups, missing = "listwise")

CIplot 7

Arguments

x A psychonetrics model.

data A data frame encoding the data used in the analysis. Can be missing if covs and
nobs are supplied.

covs A sample variance–covariance matrix, or a list/array of such matrices for mul-
tiple groups. IMPORTANT NOTE: psychonetrics expects the maximum likeli-
hood (ML) covariance matrix, which is NOT obtained from cov directly. Manu-
ally rescale the result of cov with (nobs - 1)/nobs to obtain the ML covariance
matrix.

nobs The number of observations used in covs and means, or a vector of such num-
bers of observations for multiple groups.

means A vector of sample means, or a list/matrix containing such vectors for multiple
groups.

groups An optional string indicating the name of the group variable in data.

missing How should missingness be handled in computing the sample covariances and
number of observations when data is used. Can be "listwise" for listwise
deletion, or "pairwise" for pairwise deletion.

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

CIplot Plot Analytic Confidence Intervals

Description

Function to plot analytic confidence intervals (CI) of matrix elements estimated in psychonetrics.

Usage

CIplot(x, matrices, alpha_ci = 0.05,
alpha_color = c(0.05, 0.01, 0.001, 1e-04),
labels, labels2, labelstart, print = TRUE,
major_break = 0.2, minor_break = 0.1)

8 CIplot

Arguments

x A psychonetrics model.

matrices Vector of strings indicating the matrices to plot CIs for

alpha_ci The alpha level used for the CIs

alpha_color A vector of alphas used for coloring the CIs

labels The labels for the variables associated with the rows of a matrix.

labels2 The labels for the variables associated with the columns of a matrix. Defaults to
the value of labels for square matrices.

labelstart The value to determine if labels are printed to the right or to the left of the CI

print Logical, should the plots also be printed? Only works when one matrix is used
in ’matrices’

major_break Numeric indicating the step size between major breaks

minor_break Numeric indicating the step size between minor breaks

Value

A single ggplot2 object, or a list of ggplot2 objects for each matrix requested.

Author(s)

Sacha Epskamp

Examples

Example from ?ggm
Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Let's fit an empty GGM:
mod0 <- ggm(ConsData, vars = vars)

Run the model:
mod0 <- mod0 %>% runmodel

Labels:
labels <- c(

compare 9

"indifferent to the feelings of others",
"inquire about others' well-being",
"comfort others",
"love children",
"make people feel at ease")

Plot the CIs:
CIplot(mod0, "omega", labels = labels, labelstart = 0.2)

Example from ?gvar
library("dplyr")
library("graphicalVAR")

beta <- matrix(c(
0,0.5,
0.5,0

),2,2,byrow=TRUE)
kappa <- diag(2)
simData <- graphicalVARsim(50, beta, kappa)

Form model:
model <- gvar(simData)

Evaluate model:
model <- model %>% runmodel

Plot the CIs:
CIplot(model, "beta")

compare Model comparison

Description

This function will print a table comparing multiple models on chi-square, AIC and BIC.

Usage

compare(...)

S3 method for class 'psychonetrics_compare'
print(x, ...)

Arguments

... Any number of psychonetrics models. Can be named to change the rownames
of the output.

x Output of the compare function.

10 covML

Value

A data frame with chi-square values, degrees of freedoms, RMSEAs, AICs, and BICs.

Author(s)

Sacha Epskamp

covML Maximum likelihood covariance estimate

Description

These functions complement the base R cov function by simplifying obtaining maximum likelihood
(ML) covariance estimates (denominator n) instead of unbiased (UB) covariance estimates (denom-
inator n-1). The function covML can be used to obtain ML estimates, the function covUBtoML
transforms from UB to ML estimates, and the function covMLtoUB transforms from UB to ML
estimates.

Usage

covML(x, ...)
covUBtoML(x, n, ...)
covMLtoUB(x, n, ...)

Arguments

x A dataset

n The sample size

... Arguments sent to the cov function.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

Examples

data("StarWars")
Y <- StarWars[,1:10]

Unbiased estimate:
UB <- cov(Y)

ML Estimate:
ML <- covML(Y)

Check:
all(abs(UB - covMLtoUB(ML, nrow(Y))) < sqrt(.Machine$double.eps))
all(abs(ML - covUBtoML(UB, nrow(Y))) < sqrt(.Machine$double.eps))

dlvm1 11

dlvm1 Lag-1 dynamic latent variable model family of psychonetrics models
for panel data

Description

This is the family of models that models a dynamic factor model on panel data. There are four
covariance structures that can be modeled in different ways: within_latent, between_latent for
the within-person and between-person latent (contemporaneous) models respectively, and within_residual,
between_residual for the within-person and between-person residual models respectively. The
panelgvar wrapper function sets the lambda to an identity matrix, all residual variances to zero,
and models within-person and between-person latent (contemporaneous) models as GGMs. The
panelvar wrapper does the same but models contemporaneous relations as a variance-covariance
matrix. Finally, the panel_lvgvar wrapper automatically models all latent networks as GGMs.

Usage

dlvm1(data, vars, lambda, within_latent = c("cov", "chol",
"prec", "ggm"), within_residual = c("cov", "chol",
"prec", "ggm"), between_latent = c("cov", "chol",
"prec", "ggm"), between_residual = c("cov", "chol",
"prec", "ggm"), beta = "full", omega_zeta_within =
"full", delta_zeta_within = "full", kappa_zeta_within
= "full", sigma_zeta_within = "full",
lowertri_zeta_within = "full", omega_epsilon_within =
"empty", delta_epsilon_within = "empty",
kappa_epsilon_within = "empty", sigma_epsilon_within =
"empty", lowertri_epsilon_within = "empty",
omega_zeta_between = "full", delta_zeta_between =
"full", kappa_zeta_between = "full",
sigma_zeta_between = "full", lowertri_zeta_between =
"full", omega_epsilon_between = "empty",
delta_epsilon_between = "empty", kappa_epsilon_between
= "empty", sigma_epsilon_between = "empty",
lowertri_epsilon_between = "empty", nu, mu_eta,
identify = TRUE, identification = c("loadings",
"variance"), latents, groups, covs, means, nobs,
covtype = c("choose", "ML", "UB"), missing =
"listwise", equal = "none", baseline_saturated = TRUE,
estimator = "ML", optimizer, storedata = FALSE,
verbose = FALSE, sampleStats)

panelgvar(data, vars, within_latent = c("ggm","chol","cov","prec"),
between_latent = c("ggm","chol","cov","prec"), ...)

panelvar(data, vars, within_latent = c("cov","chol","prec","ggm"),
between_latent = c("cov","chol","prec","ggm"), ...)

12 dlvm1

panel_lvgvar(...)

Arguments

data A data frame encoding the data used in the analysis. Can be missing if covs and
nobs are supplied.

vars Required argument. Different from in other psychonetrics models, this must
be a *matrix* with each row indicating a variable and each column indicating
a measurement. The matrix must be filled with names of the variables in the
dataset corresponding to variable i at wave j. NAs can be used to indicate miss-
ing waves. The rownames of this matrix will be used as variable names.

lambda Required argument. A model matrix encoding the factor loading structure. Each
row indicates an indicator and each column a latent. A 0 encodes a fixed to zero
element, a 1 encoding a free to estimate element, and higher integers encoding
equality constrains. For multiple groups, this argument can be a list or array
with each element/slice encoding such a matrix.

within_latent The type of within-person latent contemporaneous model to be used.
within_residual

The type of within-person residual model to be used.

between_latent The type of between-person latent model to be used.
between_residual

The type of between-person residual model to be used.

beta A model matrix encoding the temporal relationships (transpose of temporal net-
work). A 0 encodes a fixed to zero element, a 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a ma-
trix. Can also be "full" for a full temporal network or "empty" for an empty
temporal network.

omega_zeta_within

Only used when within_latent = "ggm". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

delta_zeta_within

Only used when within_latent = "ggm". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

kappa_zeta_within

Only used when within_latent = "prec". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

dlvm1 13

sigma_zeta_within

Only used when within_latent = "cov". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

lowertri_zeta_within

Only used when within_latent = "chol". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

omega_epsilon_within

Only used when within_residual = "ggm". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

delta_epsilon_within

Only used when within_residual = "ggm". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

kappa_epsilon_within

Only used when within_residual = "prec". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

sigma_epsilon_within

Only used when within_residual = "cov". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

lowertri_epsilon_within

Only used when within_residual = "chol". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

omega_zeta_between

Only used when between_latent = "ggm". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

14 dlvm1

delta_zeta_between

Only used when between_latent = "ggm". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

kappa_zeta_between

Only used when between_latent = "prec". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

sigma_zeta_between

Only used when between_latent = "cov". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

lowertri_zeta_between

Only used when between_latent = "chol". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

omega_epsilon_between

Only used when between_residual = "ggm". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

delta_epsilon_between

Only used when between_residual = "ggm". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

kappa_epsilon_between

Only used when between_residual = "prec". Can be "full", "empty", or
a typical model matrix with 0s indicating parameters constrained to zero, 1s
indicating free parameters, and higher integers indicating equality constrains.
For multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

sigma_epsilon_between

Only used when between_residual = "cov". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

dlvm1 15

lowertri_epsilon_between

Only used when between_residual = "chol". Can be "full", "empty", or
a typical model matrix with 0s indicating parameters constrained to zero, 1s
indicating free parameters, and higher integers indicating equality constrains.
For multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

nu Optional vector encoding the intercepts of the observed variables. Set elements
to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher
integers to indicate equality constrains. For multiple groups, this argument can
be a list or array with each element/column encoding such a vector.

mu_eta Optional vector encoding the means of the latent variables. Set elements to 0 to
indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers
to indicate equality constrains. For multiple groups, this argument can be a list
or array with each element/column encoding such a vector.

identify Logical, should the model be automatically identified?

identification Type of identification used. "loadings" to fix the first factor loadings to 1, and
"variance" to fix the diagonal of the latent variable model matrix (sigma_zeta,
lowertri_zeta, delta_zeta or kappa_zeta) to 1.

latents An optional character vector with names of the latent variables.

groups An optional string indicating the name of the group variable in data.

covs A sample variance–covariance matrix, or a list/array of such matrices for mul-
tiple groups. IMPORTANT NOTE: psychonetrics expects the maximum likeli-
hood (ML) covariance matrix, which is NOT obtained from cov directly. Manu-
ally rescale the result of cov with (nobs - 1)/nobs to obtain the ML covariance
matrix.

means A vector of sample means, or a list/matrix containing such vectors for multiple
groups.

nobs The number of observations used in covs and means, or a vector of such num-
bers of observations for multiple groups.

missing How should missingness be handled in computing the sample covariances and
number of observations when data is used. Can be "listwise" for listwise
deletion, or "pairwise" for pairwise deletion.

equal A character vector indicating which matrices should be constrained equal across
groups.

baseline_saturated

A logical indicating if the baseline and saturated model should be included.
Mostly used internally and NOT Recommended to be used manually.

estimator The estimator to be used. Currently implemented are "ML" for maximum like-
lihood estimation, "FIML" for full-information maximum likelihood estimation,
"ULS" for unweighted least squares estimation, "WLS" for weighted least squares
estimation, and "DWLS" for diagonally weighted least squares estimation.

optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb
function), "ucminf" (from the optimr package), and C++ based optimizers
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

16 dlvm1

storedata Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).

verbose Logical, should progress be printed to the console?

sampleStats An optional sample statistics object. Mostly used internally.

covtype If ’covs’ is used, this is the type of covariance (maximum likelihood or unbiased)
the input covariance matrix represents. Set to "ML" for maximum likelihood
estimates (denominator n) and "UB" to unbiased estimates (denominator n-1).
The default will try to find the type used, by investigating which is most likely
to result from integer valued datasets.

... Arguments sent to dlvm1.

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

Examples

library("dplyr")

Smoke data cov matrix, based on LISS data panel https://www.dataarchive.lissdata.nl
smoke <- structure(c(47.2361758611759, 43.5366809116809, 41.0057465682466,

43.5366809116809, 57.9789886039886, 47.6992521367521,
41.0057465682466,
47.6992521367521, 53.0669434731935), .Dim = c(3L, 3L),

.Dimnames = list(
c("smoke2008", "smoke2009", "smoke2010"), c("smoke2008",

"smoke2009", "smoke2010")))

Design matrix:
design <- matrix(rownames(smoke),1,3)

Form model:
mod <- panelvar(vars = design,

covs = smoke, nobs = 352
)

Run model:
mod <- mod %>% runmodel

Evaluate fit:
mod %>% fit

duplicationMatrix 17

duplicationMatrix Model matrices used in derivatives

Description

These matrices are used in the analytic gradients

Usage

duplicationMatrix(n, diag = TRUE)

eliminationMatrix(n, diag = TRUE)

diagonalizationMatrix(n)

Arguments

n Number of rows and columns in the original matrix

diag Logical indicating if the diagonal should be included (set to FALSE for deriva-
tive of vech(x))

Value

A sparse matrix

Author(s)

Sacha Epskamp

Examples

Duplication matrix for 10 variables:
duplicationMatrix(10)

Elimination matrix for 10 variables:
eliminationMatrix(10)

Diagonailzation matrix for 10 variables:
diagonalizationMatrix(10)

18 esa

emergencystart Reset starting values to simple defaults

Description

This function overwrites the starting values to simple defaults. This can help in cases where opti-
mization fails.

Usage

emergencystart(x)

Arguments

x A psychonetrics model.

Value

A psychonetrics model.

Author(s)

Sacha Epskamp

esa Ergodic Subspace Analysis

Description

These functions implement Ergodic Subspace Analysis by von Oertzen, Schmiedek and Voelkle
(2020). The functions can be used on the output of a dlvm1 model, or manually by supplying a
within persons and between persons variance-covariance matrix.

Usage

esa(x, cutoff = 0.1,
between = c("crosssection", "between"))

esa_manual(sigma_wp, sigma_bp, cutoff = 0.1)
S3 method for class 'esa'
print(x, printref = TRUE, ...)
S3 method for class 'esa_manual'
print(x, printref = TRUE, ...)
S3 method for class 'esa'
plot(x, plot = c("observed", "latent"), ...)
S3 method for class 'esa_manual'
plot(x, ...)

factorscores 19

Arguments

x Output of a dlvm1 model

sigma_wp Manual within-person variance-covariance matrix

sigma_bp Manual between-person variance-covariance matrix

cutoff Cutoff used to determine ergodicity

printref Logical, should the reference be printed?

plot Should ergodicity of observed or latent variables be plotted?

between Should the between-persons variance-covariance matrix be based on exected
cross-sectional or between-person relations

... Not used

Value

For each group a esa_manual object with the following elements:

ergodicity Ergodicity values of each component

Q_esa Component loadings

V_bp Between persons subspace

V_ergodic Ergodic subspace

V_wp Within person subspace

cutoff Cutoff value used

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

von Oertzen, T., Schmiedek, F., and Voelkle, M. C. (2020). Ergodic Subspace Analysis. Journal of
Intelligence, 8(1), 3.

factorscores Compute factor scores

Description

Currently, only the lvm framework with single group and no missing data is supported.

Usage

factorscores(data, model, method = c("bartlett", "regression"))

20 fit

Arguments

data Dataset to compute factor scores for

model A psychonetrics model

method The method to use: "regression" or "bartlett"

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

fit Print fit indices

Description

This function will print all fit indices of the model/

Usage

fit(x)

Arguments

x A psychonetrics model.

Value

Invisibly returns a data frame with fit measure estimates.

Author(s)

Sacha Epskamp

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

fixpar 21

Let's fit an empty GGM:
mod0 <- ggm(ConsData, vars = vars, omega = "empty")

Run model:
mod0 <- mod0 %>% runmodel

Inspect fit:
mod0 %>% fit # Pretty bad fit...

fixpar Parameters modification

Description

The fixpar function can be used to fix a parameter to some value (Typically zero), and the freepar
function can be used to free a parameter from being fixed to a value.

Usage

fixpar(x, matrix, row, col, value = 0, group, verbose,
log = TRUE, runmodel = FALSE, ...)

freepar(x, matrix, row, col, start, group, verbose, log =
TRUE, runmodel = FALSE, startEPC = TRUE, ...)

Arguments

x A psychonetrics model.

matrix String indicating the matrix of the parameter

row Integer or string indicating the row of the matrix of the parameter

col Integer or string indicating the column of the matrix of the parameter

value Used in fixpar to indicate the value to which a parameters is constrained

start Used in freepar to indicate the starting value of the parameter

group Integer indicating the group of the parameter to be constrained

verbose Logical, should messages be printed?

log Logical, should the log be updated?

runmodel Logical, should the model be updated?

startEPC Logical, should the starting value be set at the expected parameter change?

... Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

22 getmatrix

Author(s)

Sacha Epskamp

generate Generate data from a fitted psychonetrics object

Description

This function will generate new data from the estimated mean and variance-covariance structure of
a psychonetrics model.

Usage

generate(x, n = 500)

Arguments

x A psychonetrics model.

n Number of cases to sample per group.

Value

A data frame with simulated data

Author(s)

Sacha Epskamp

getmatrix Extract an estimated matrix

Description

This function will extract an estimated matrix, and will either return a single matrix for single group
models or a list of such matrices for multiple group models.

Usage

getmatrix(x, matrix, group, threshold = FALSE, alpha = 0.01,
adjust = c("none", "holm", "hochberg", "hommel",
"bonferroni", "BH", "BY", "fdr"), mode = c("tested",
"all"), diag = TRUE)

getmatrix 23

Arguments

x A psychonetrics model.

matrix String indicating the matrix to be extracted.

group Integer indicating the group for the matrix to be extracted.

threshold Logical. Should the matrix be thresholded (non-significant values set to zero?
Can also be a value with an absolute threshold below wich parameters are set to
zero.)

alpha Significance level to use.

adjust p-value adjustment method to use. See p.adjust.

mode Mode for adjusting for multiple comparisons. Should all parameters be consid-
ered as the total number of tests or only the tested parameters (parameters of
interest)?

diag Set to FALSE to set diagonal elements to zero.

Value

A matrix of parameter estimates, of a list of such matrices for multiple group models.

Author(s)

Sacha Epskamp

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "full")

Run model:
mod <- mod %>% runmodel

Obtain network:
mod %>% getmatrix("omega")

24 groupequal

getVCOV Obtain the asymptotic covariance matrix

Description

This function can be used to obtain the estimated asymptotic covariance matrix from a psychonetrics
object.

Usage

getVCOV(model)

Arguments

model A psychonetrics model.

Value

This function returns a matrix.

Author(s)

Sacha Epskamp

groupequal Group equality constrains

Description

The groupequal function constrains parameters equal across groups, and the groupfree function
frees equality constrains across groups.

Usage

groupequal(x, matrix, row, col, verbose, log = TRUE, runmodel =
FALSE, identify = TRUE, ...)

groupfree(x, matrix, row, col, verbose, log = TRUE, runmodel =
FALSE, identify = TRUE, ...)

Ising 25

Arguments

x A psychonetrics model.

matrix String indicating the matrix of the parameter

row Integer or string indicating the row of the matrix of the parameter

col Integer or string indicating the column of the matrix of the parameter

verbose Logical, should messages be printed?

log Logical, should the log be updated?

runmodel Logical, should the model be updated?

identify Logical, should the model be identified?

... Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

Ising Ising model

Description

This is the family of Ising models fit to dichotomous datasets. Note that the input matters (see
also https://arxiv.org/abs/1811.02916) in this model! Models based on a dataset that is encoded
with -1 and 1 are not entirely equivalent to models based on datasets encoded with 0 and 1 (non-
equivalences occur in multi-group settings with equality constrains).

Usage

Ising(data, omega = "full", tau, beta, vars, groups, covs,
means, nobs, covtype = c("choose", "ML", "UB"),
responses, missing = "listwise", equal = "none",
baseline_saturated = TRUE, estimator = "default",
optimizer, storedata = FALSE, WLS.W, sampleStats,
identify = TRUE, verbose = FALSE, maxNodes = 20,

min_sum = -Inf)

26 Ising

Arguments

data A data frame encoding the data used in the analysis. Can be missing if covs and
nobs are supplied.

omega The network structure. Either "full" to estimate every element freely, "empty"
to set all elements to zero, or a matrix of the dimensions nNode x nNode with
0 encoding a fixed to zero element, 1 encoding a free to estimate element, and
higher integers encoding equality constrains. For multiple groups, this argument
can be a list or array with each element/slice encoding such a matrix.

tau Optional vector encoding the threshold/intercept structure. Set elements to 0 to
indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers
to indicate equality constrains. For multiple groups, this argument can be a list
or array with each element/column encoding such a vector.

beta Optional scalar encoding the inverse temperature. 1 indicate free beta param-
eters, and higher integers to indicate equality constrains. For multiple groups,
this argument can be a list or array with each element/column encoding such
scalers.

vars An optional character vector encoding the variables used in the analyis. Must
equal names of the dataset in data.

groups An optional character vector encoding the variables used in the analyis. Must
equal names of the dataset in data.

covs A sample variance–covariance matrix, or a list/array of such matrices for multi-
ple groups. Make sure covtype argument is set correctly to the type of covari-
ances used.

means A vector of sample means, or a list/matrix containing such vectors for multiple
groups.

nobs The number of observations used in covs and means, or a vector of such num-
bers of observations for multiple groups.

covtype If ’covs’ is used, this is the type of covariance (maximum likelihood or unbiased)
the input covariance matrix represents. Set to "ML" for maximum likelihood
estimates (denominator n) and "UB" to unbiased estimates (denominator n-1).
The default will try to find the type used, by investigating which is most likely
to result from integer valued datasets.

responses A vector of dichotemous responses used (e.g., c(-1,1) or c(0,1). Only needed
when ’covs’ is used.)

missing How should missingness be handled in computing the sample covariances and
number of observations when data is used. Can be "listwise" for listwise
deletion, or "pairwise" for pairwise deletion. NOT RECOMMENDED TO
BE USED YET IN ISING MODEL.

equal A character vector indicating which matrices should be constrained equal across
groups.

baseline_saturated

A logical indicating if the baseline and saturated model should be included.
Mostly used internally and NOT Recommended to be used manually.

Ising 27

estimator The estimator to be used. Currently implemented are "ML" for maximum like-
lihood estimation, "FIML" for full-information maximum likelihood estimation,
"ULS" for unweighted least squares estimation, "WLS" for weighted least squares
estimation, and "DWLS" for diagonally weighted least squares estimation. Only
ML estimation is currently supported for the Ising model.

optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb
function), "ucminf" (from the optimr package), and C++ based optimizers
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

storedata Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).

WLS.W Optional WLS weights matrix. CURRENTLY NOT USED.

sampleStats An optional sample statistics object. Mostly used internally.

identify Logical, should the model be identified?

verbose Logical, should messages be printed?

maxNodes The maximum number of nodes allowed in the analysis. This function will stop
with an error if more nodes are used (it is not recommended to set this higher).

min_sum The minimum sum score that is artifically possible in the dataset. Defaults to
-Inf. Set this only if you know a lower sum score is not possible in the data, for
example due to selection bias.

Details

The Ising Model takes the following form:

Pr(Y = y) = exp(−βH(y;τ ,Ω))
Z(τ ,Ω)

With Hamiltonian:

H (y; τ ,Ω) = −
∑m
i=1 τiyi −

∑m
i=2

∑i−1
j=1 ωijyiyj .

And Z representing the partition function or normalizing constant.

Value

An object of the class psychonetrics

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Epskamp, S., Maris, G., Waldorp, L. J., & Borsboom, D. (2018). Network Psychometrics. In:
Irwing, P., Hughes, D., & Booth, T. (Eds.), The Wiley Handbook of Psychometric Testing, 2 Volume
Set: A Multidisciplinary Reference on Survey, Scale and Test Development. New York: Wiley.

28 Ising

Examples

library("dplyr")
data("Jonas")

Variables to use:
vars <- names(Jonas)[1:10]

Arranged groups to put unfamiliar group first (beta constrained to 1):
Jonas <- Jonas[order(Jonas$group),]

Form saturated model:
model1 <- Ising(Jonas, vars = vars, groups = "group")

Run model:
model1 <- model1 %>% runmodel

Prune-stepup to find a sparse model:
model1b <- model1 %>% prune(alpha = 0.05) %>% stepup(alpha = 0.05)

Equal networks:
suppressWarnings(

model2 <- model1 %>% groupequal("omega") %>% runmodel
)

Prune-stepup to find a sparse model:
model2b <- model2 %>% prune(alpha = 0.05) %>% stepup(mi = "mi_equal", alpha = 0.05)

Equal thresholds:
model3 <- model2 %>% groupequal("tau") %>% runmodel

Prune-stepup to find a sparse model:
model3b <- model3 %>% prune(alpha = 0.05) %>% stepup(mi = "mi_equal", alpha = 0.05)

Equal beta:
model4 <- model3 %>% groupequal("beta") %>% runmodel

Prune-stepup to find a sparse model:
model4b <- model4 %>% prune(alpha = 0.05) %>% stepup(mi = "mi_equal", alpha = 0.05)

Compare all models:
compare(

`1. all parameters free (dense)` = model1,
`2. all parameters free (sparse)` = model1b,
`3. equal networks (dense)` = model2,
`4. equal networks (sparse)` = model2b,
`5. equal networks and thresholds (dense)` = model3,
`6. equal networks and thresholds (sparse)` = model3b,
`7. all parameters equal (dense)` = model4,
`8. all parameters equal (sparse)` = model4b

) %>% arrange(BIC)

Jonas 29

Jonas Jonas dataset

Description

Responses of 10 attitude items towards a researcher named Jonas. Participants were shown three
photos of Jonas with the text: "This is Jonas, a researcher from Germany who is now becoming a
PhD in Psychology". Subsequently, the participants had to answer 10 yes / no questions starting
with "I believe that Jonas...", as well as rate their familliarity with Jonas. The sample consists of
people familiar with Jonas and not familiar with Jonas, and allows for testing Attitudinal Entropy
Framework <doi:10.1080/1047840X.2018.1537246>.

Usage

data("Jonas")

Format

A data frame with 215 observations on the following 12 variables.

scientist ... is a good scientist

jeans ... Is a person that wears beautiful jeans

cares ... really cares about people like you

economics ... would solve our economic problems

hardworking ... is hardworking

honest ... is honest

intouch ... is in touch with ordinary people

knowledgeable ... is knowledgeable

makeupmind ... can’t make up his mind

getsthingsdone ... gets things done

familiar Answers to the question "How familiar are you with Jonas?" (three responses possible)

group The question ’familiar’ categorized in two groups ("Knows Jonas" and "Doesn’t Know
Jonas")

Examples

data(Jonas)

30 latentgrowth

latentgrowth Latnet growth curve model

Description

Wrapper to lvm to specify a latent growth curve model.

Usage

latentgrowth(vars, time = seq_len(ncol(vars)) - 1, covariates =
character(0), covariates_as = c("regression",
"covariance"), ...)

Arguments

vars Different from in other psychonetrics models, this must be a *matrix* with each
row indicating a variable and each column indicating a measurement. The ma-
trix must be filled with names of the variables in the dataset corresponding to
variable i at wave j. NAs can be used to indicate missing waves. The rownames
of this matrix will be used as variable names.

time A vector with the encoding of each measurement (e.g., 0, 1, 2, 3).

covariates A vector with strings indicating names of between-person covariate variables in
the data

covariates_as Should covariates be included as regressions or actual covariates?

... Arguments sent to lvm

Details

See https://github.com/SachaEpskamp/SEM-code-examples/tree/master/Latent_growth_
examples/psychonetrics for examples

Value

An object of the class psychonetrics (psychonetrics-class). See for an example https://github.
com/SachaEpskamp/SEM-code-examples/tree/master/Latent_growth_examples/psychonetrics.

Author(s)

Sacha Epskamp

Examples

library("dplyr")

Smoke data cov matrix, based on LISS data panel https://www.dataarchive.lissdata.nl
smoke <- structure(c(47.2361758611759, 43.5366809116809, 41.0057465682466,

43.5366809116809, 57.9789886039886, 47.6992521367521,

https://github.com/SachaEpskamp/SEM-code-examples/tree/master/Latent_growth_examples/psychonetrics
https://github.com/SachaEpskamp/SEM-code-examples/tree/master/Latent_growth_examples/psychonetrics
https://github.com/SachaEpskamp/SEM-code-examples/tree/master/Latent_growth_examples/psychonetrics
https://github.com/SachaEpskamp/SEM-code-examples/tree/master/Latent_growth_examples/psychonetrics

lvm 31

41.0057465682466,
47.6992521367521, 53.0669434731935), .Dim = c(3L, 3L),

.Dimnames = list(
c("smoke2008", "smoke2009", "smoke2010"), c("smoke2008",

"smoke2009", "smoke2010")))

Design matrix:
design <- matrix(rownames(smoke),1,3)

Form model:
mod <- latentgrowth(vars = design,

covs = smoke, nobs = 352
)

Not run:
Run model:
mod <- mod %>% runmodel

Evaluate fit:
mod %>% fit

Look at parameters:
mod %>% parameters

End(Not run)

lvm Continuous latent variable family of psychonetrics models

Description

This is the family of models that models the data as a structural equation model (SEM), allowing the
latent and residual variance-covariance matrices to be further modeled as networks. The latent and
residual arguments can be used to define what latent and residual models are used respectively:
"cov" (default) models a variance-covariance matrix directly, "chol" models a Cholesky decompo-
sition, "prec" models a precision matrix, and "ggm" models a Gaussian graphical model (Epskamp,
Rhemtulla and Borsboom, 2017). The wrapper lnm() sets latent = "ggm" for the latent network
model (LNM), the wrapper rnm() sets residual = "ggm" for the residual network model (RNM),
and the wrapper lrnm() combines the LNM and RNM.

Usage

lvm(data, lambda, latent = c("cov", "chol", "prec",
"ggm"), residual = c("cov", "chol", "prec", "ggm"),
sigma_zeta = "full", kappa_zeta = "full", omega_zeta =
"full", lowertri_zeta = "full", delta_zeta = "full",
sigma_epsilon = "empty", kappa_epsilon = "empty",
omega_epsilon = "empty", lowertri_epsilon = "empty",
delta_epsilon = "empty", beta = "empty", nu, nu_eta,

32 lvm

identify = TRUE, identification = c("loadings",
"variance"), vars, latents, groups, covs, means, nobs,
missing = "listwise", equal = "none",
baseline_saturated = TRUE, estimator = "ML",
optimizer, storedata = FALSE, WLS.W, covtype =
c("choose", "ML", "UB"), standardize = c("none", "z",
"quantile"), sampleStats, verbose = FALSE,
simplelambdastart = FALSE)

lnm(...)
rnm(...)
lrnm(...)

Arguments

data A data frame encoding the data used in the analysis. Can be missing if covs and
nobs are supplied.

lambda A model matrix encoding the factor loading structure. Each row indicates an
indicator and each column a latent. A 0 encodes a fixed to zero element, a
1 encoding a free to estimate element, and higher integers encoding equality
constrains. For multiple groups, this argument can be a list or array with each
element/slice encoding such a matrix.

latent The type of latent model used. See description.

residual The type of residual model used. See description.

sigma_zeta Only used when latent = "cov". Either "full" to estimate every element
freely, "empty" to only include diagonal elements, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to
estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

kappa_zeta Only used when latent = "prec". Either "full" to estimate every element
freely, "empty" to only include diagonal elements, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to
estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

omega_zeta Only used when latent = "ggm". Either "full" to estimate every element
freely, "empty" to set all elements to zero, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

lowertri_zeta Only used when latent = "chol". Either "full" to estimate every element
freely, "empty" to only include diagonal elements, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to

lvm 33

estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

delta_zeta Only used when latent = "ggm". Either "full" to estimate every element
freely, "empty" to set all elements to zero, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

sigma_epsilon Only used when residual = "cov". Either "full" to estimate every element
freely, "empty" to only include diagonal elements, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to
estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

kappa_epsilon Only used when residual = "prec". Either "full" to estimate every element
freely, "empty" to only include diagonal elements, or a matrix of the dimensions
node x node with 0 encoding a fixed to zero element, 1 encoding a free to es-
timate element, and higher integers encoding equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

omega_epsilon Only used when residual = "ggm". Either "full" to estimate every element
freely, "empty" to set all elements to zero, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

lowertri_epsilon

Only used when residual = "chol". Either "full" to estimate every element
freely, "empty" to only include diagonal elements, or a matrix of the dimensions
node x node with 0 encoding a fixed to zero element, 1 encoding a free to es-
timate element, and higher integers encoding equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

delta_epsilon Only used when residual = "ggm". Either "full" to estimate every element
freely, "empty" to set all elements to zero, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

beta A model matrix encoding the structural relations between latent variables. A
0 encodes a fixed to zero element, a 1 encoding a free to estimate element, and
higher integers encoding equality constrains. For multiple groups, this argument
can be a list or array with each element/slice encoding such a matrix.

nu Optional vector encoding the intercepts of the observed variables. Set elements
to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher

34 lvm

integers to indicate equality constrains. For multiple groups, this argument can
be a list or array with each element/column encoding such a vector.

nu_eta Optional vector encoding the intercepts of the latent variables. Set elements to
0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher
integers to indicate equality constrains. For multiple groups, this argument can
be a list or array with each element/column encoding such a vector.

identify Logical, should the model be automatically identified?

identification Type of identification used. "loadings" to fix the first factor loadings to 1, and
"variance" to fix the diagonal of the latent variable model matrix (sigma_zeta,
lowertri_zeta, delta_zeta or kappa_zeta) to 1.

vars An optional character vector encoding the variables used in the analysis. Must
equal names of the dataset in data.

latents An optional character vector with names of the latent variables.

groups An optional string indicating the name of the group variable in data.

covs A sample variance–covariance matrix, or a list/array of such matrices for multi-
ple groups. Make sure covtype argument is set correctly to the type of covari-
ances used.

means A vector of sample means, or a list/matrix containing such vectors for multiple
groups.

nobs The number of observations used in covs and means, or a vector of such num-
bers of observations for multiple groups.

missing How should missingness be handled in computing the sample covariances and
number of observations when data is used. Can be "listwise" for listwise
deletion, or "pairwise" for pairwise deletion.

equal A character vector indicating which matrices should be constrained equal across
groups.

baseline_saturated

A logical indicating if the baseline and saturated model should be included.
Mostly used internally and NOT Recommended to be used manually.

estimator The estimator to be used. Currently implemented are "ML" for maximum like-
lihood estimation, "FIML" for full-information maximum likelihood estimation,
"ULS" for unweighted least squares estimation, "WLS" for weighted least squares
estimation, and "DWLS" for diagonally weighted least squares estimation.

optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb
function), "ucminf" (from the optimr package), and C++ based optimizers
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

storedata Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).

verbose Logical, should progress be printed to the console?

WLS.W The weights matrix used in WLS estimation (experimental)

sampleStats An optional sample statistics object. Mostly used internally.

lvm 35

covtype If ’covs’ is used, this is the type of covariance (maximum likelihood or unbiased)
the input covariance matrix represents. Set to "ML" for maximum likelihood
estimates (denominator n) and "UB" to unbiased estimates (denominator n-1).
The default will try to find the type used, by investigating which is most likely
to result from integer valued datasets.

standardize Which standardization method should be used? "none" (default) for no stan-
dardization, "z" for z-scores, and "quantile" for a non-parametric transforma-
tion to the quantiles of the marginal standard normal distribution.

simplelambdastart

Logical, should simple start values be used for lambda? Setting this to TRUE
can avoid some estimation problems.

... Arguments sent to varcov

Details

The model used in this family is:

var(y) = Λ(I −B)−1Σζ(I −B)−1>Λ> +Σε

E(y) = ν +Λ(I −B)−1νeta

in which the latent covariance matrix can further be modeled in three ways. With latent = "chol"
as Cholesky decomposition:

Σζ = LζLζ ,

with latent = "prec" as Precision matrix:

Σζ =K
−1
ζ ,

and finally with latent = "ggm" as Gaussian graphical model:

Σζ = ∆ζ(I −Ωζ)
(− 1)∆ζ .

Likewise, the residual covariance matrix can also further be modeled in three ways. With residual
= "chol" as Cholesky decomposition:

Σε = LεLε,

with latent = "prec" as Precision matrix:

Σε =K
−1
ε ,

and finally with latent = "ggm" as Gaussian graphical model:

Σε = ∆ε(I −Ωε)
(− 1)∆ε.

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

References

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Com-
bining network and latent variable models. Psychometrika, 82(4), 904-927.

36 lvm

Examples

library("dplyr")

Confirmatory Factor Analysis

Example also shown in https://youtu.be/Hdu5z-fwuk8

Load data:
data(StarWars)

Originals only:
Lambda <- matrix(1,4)

Model:
mod0 <- lvm(StarWars, lambda = Lambda, vars = c("Q1","Q5","Q6","Q7"),

identification = "variance", latents = "Originals")

Run model:
mod0 <- mod0 %>% runmodel

Evaluate fit:
mod0 %>% fit

Full analysis
Factor loadings matrix:
Lambda <- matrix(0, 10, 3)
Lambda[1:4,1] <- 1
Lambda[c(1,5:7),2] <- 1
Lambda[c(1,8:10),3] <- 1

Observed variables:
obsvars <- paste0("Q",1:10)

Latents:
latents <- c("Prequels","Original","Sequels")

Make model:
mod1 <- lvm(StarWars, lambda = Lambda, vars = obsvars,

identification = "variance", latents = latents)

Run model:
mod1 <- mod1 %>% runmodel

Look at fit:
mod1

Look at parameter estimates:
mod1 %>% parameters

Look at modification indices:
mod1 %>% MIs

lvm 37

Add and refit:
mod2 <- mod1 %>% freepar("sigma_epsilon","Q10","Q4") %>% runmodel

Compare:
compare(original = mod1, adjusted = mod2)

Fit measures:
mod2 %>% fit

Path diagrams
semPlot is not (yet) supported by default, but can be used as follows:
Load packages:
library("semPlot")

Estimates:
lambdaEst <- getmatrix(mod2, "lambda")
psiEst <- getmatrix(mod2, "sigma_zeta")
thetaEst <- getmatrix(mod2, "sigma_epsilon")

LISREL Model: LY = Lambda (lambda-y), TE = Theta (theta-epsilon), PS = Psi
mod <- lisrelModel(LY = lambdaEst, PS = psiEst, TE = thetaEst)

Plot with semPlot:
semPaths(mod, "std", "est", as.expression = "nodes")

We can make this nicer (set whatLabels = "none" to hide labels):
semPaths(mod,

this argument controls what the color of edges represent. In this case,
standardized parameters:

what = "std",

This argument controls what the edge labels represent. In this case, parameter
estimates:

whatLabels = "est",

This argument draws the node and edge labels as mathematical exprssions:
as.expression = "nodes",

This will plot residuals as arrows, closer to what we use in class:
style = "lisrel",

This makes the residuals larger:
residScale = 10,

qgraph colorblind friendly theme:
theme = "colorblind",

tree layout options are "tree", "tree2", and "tree3":
layout = "tree2",

38 lvm

This makes the latent covariances connect at a cardinal center point:
cardinal = "lat cov",

Changes curve into rounded straight lines:
curvePivot = TRUE,

Size of manifest variables:
sizeMan = 4,

Size of latent varibales:
sizeLat = 10,

Size of edge labels:
edge.label.cex = 1,

Sets the margins:
mar = c(9,1,8,1),

Prevents re-ordering of ovbserved variables:
reorder = FALSE,

Width of the plot:
width = 8,

Height of plot:
height = 5,

Colors according to latents:
groups = "latents",

Pastel colors:
pastel = TRUE,

Disable borders:
borders = FALSE
)

Use arguments filetype = "pdf" and filename = "semPlotExample1" to store PDF

Latent Network Modeling

Latent network model:
lnm <- lvm(StarWars, lambda = Lambda, vars = obsvars,

latents = latents, identification = "variance",
latent = "ggm")

Run model:
lnm <- lnm %>% runmodel

Look at parameters:
lnm %>% parameters

Remove non-sig latent edge:

lvm 39

lnm <- lnm %>% prune(alpha = 0.05)

Compare to the original CFA model:
compare(cfa = mod1, lnm = lnm)

Plot network:
library("qgraph")
qgraph(lnm@modelmatrices[[1]]$omega_zeta, labels = latents,

theme = "colorblind", vsize = 10)

A wrapper for the latent network model is the lnm function:
lnm2 <- lnm(StarWars, lambda = Lambda, vars = obsvars,

latents = latents, identification = "variance")
lnm2 <- lnm2 %>% runmodel %>% prune(alpha = 0.05)
compare(lnm, lnm2) # Is the same as the model before.

I could also estimate a "residual network model", which adds partial correlations to
the residual level:
This can be done using lvm(..., residal = "ggm") or with rnm(...)
rnm <- rnm(StarWars, lambda = Lambda, vars = obsvars,

latents = latents, identification = "variance")
Stepup search:
rnm <- rnm %>% stepup

It will estimate the same model (with link Q10 - Q4) as above. In the case of only one
partial correlation, There is no difference between residual covariances (SEM) or
residual partial correlations (RNM).

For more information on latent and residual network models, see:
Epskamp, S., Rhemtulla, M.T., & Borsboom, D. Generalized Network Psychometrics:
Combining Network and Latent Variable Models
(2017). Psychometrika. doi:10.1007/s11336-017-9557-x

Gaussian graphical models

All psychonetrics functions (e.g., lvm, lnm, rnm...) allow input via a covariance
matrix, with the "covs" and "nobs" arguments.
The following fits a baseline GGM network with no edges:
S <- (nrow(StarWars) - 1)/ (nrow(StarWars)) * cov(StarWars[,1:10])
ggmmod <- ggm(covs = S, nobs = nrow(StarWars))

Run model with stepup search and pruning:
ggmmod <- ggmmod%>% prune %>% modelsearch

Fit measures:
ggmmod %>% fit

Plot network:
nodeNames <- c(
"I am a huge Star Wars\nfan! (star what?)",
"I would trust this person\nwith my democracy.",
"I enjoyed the story of\nAnakin's early life.",

40 lvm

"The special effects in\nthis scene are awful (Battle of\nGeonosis).",
"I would trust this person\nwith my life.",
"I found Darth Vader's big\nreveal in 'Empire' one of the greatest
moments in movie history.",
"The special effects in\nthis scene are amazing (Death Star\nExplosion).",
"If possible, I would\ndefinitely buy this\ndroid.",
"The story in the Star\nWars sequels is an improvement to\nthe previous movies.",
"The special effects in\nthis scene are marvellous (Starkiller\nBase Firing)."
)
library("qgraph")
qgraph(as.matrix(ggmmod@modelmatrices[[1]]$omega), nodeNames = nodeNames,

legend.cex = 0.25, theme = "colorblind", layout = "spring")

We can actually compare this model statistically (note they are not nested) to the
latent variable model:
compare(original_cfa = mod1, adjusted_cfa = mod2, exploratory_ggm = ggmmod)

Meausrement invariance
Let's say we are interested in seeing if people >= 30 like the original trilogy better
than people < 30.
First we can make a grouping variable:
StarWars$agegroup <- ifelse(StarWars$Q12 < 30, "young", "less young")

Let's look at the distribution:
table(StarWars$agegroup) # Pretty even...

Observed variables:
obsvars <- paste0("Q",1:10)

Let's look at the mean scores:
StarWars %>% group_by(agegroup) %>% summarize_each_(funs(mean),vars = obsvars)
Less young people seem to score higher on prequel questions and lower on other
questions

Factor loadings matrix:
Lambda <- matrix(0, 10, 3)
Lambda[1:4,1] <- 1
Lambda[c(1,5:7),2] <- 1
Lambda[c(1,8:10),3] <- 1

Residual covariances:
Theta <- diag(1, 10)
Theta[4,10] <- Theta[10,4] <- 1

Latents:
latents <- c("Prequels","Original","Sequels")

Make model:
mod_configural <- lvm(StarWars, lambda = Lambda, vars = obsvars,

latents = latents, sigma_epsilon = Theta,
identification = "variance",
groups = "agegroup")

lvm 41

Run model:
mod_configural <- mod_configural %>% runmodel

Look at fit:
mod_configural
mod_configural %>% fit

Looks good, let's try weak invariance:
mod_weak <- mod_configural %>% groupequal("lambda") %>% runmodel

Compare models:
compare(configural = mod_configural, weak = mod_weak)

weak invariance can be accepted, let's try strong:
mod_strong <- mod_weak %>% groupequal("nu") %>% runmodel
Means are automatically identified

Compare models:
compare(configural = mod_configural, weak = mod_weak, strong = mod_strong)

Questionable p-value and AIC difference, but ok BIC difference. This is quite good, but
let's take a look. I have not yet implemented LM tests for equality constrains, but we
can look at something called "equality-free" MIs:
mod_strong %>% MIs(matrices = "nu", type = "free")

Indicates that Q10 would improve fit. We can also look at residuals:
residuals(mod_strong)

Let's try freeing intercept 10:
mod_strong_partial <- mod_strong %>% groupfree("nu",10) %>% runmodel

Compare all models:
compare(configural = mod_configural,

weak = mod_weak,
strong = mod_strong,
strong_partial = mod_strong_partial)

This seems worth it and lead to an acceptable model! It seems that older people find
the latest special effects more marvellous!
mod_strong_partial %>% getmatrix("nu")

Now let's investigate strict invariance:
mod_strict <- mod_strong_partial %>% groupequal("sigma_epsilon") %>% runmodel

Compare all models:
compare(configural = mod_configural,

weak = mod_weak,
strong_partial = mod_strong_partial,
strict = mod_strict)

Strict invariance can be accepted!

Now we can test for homogeneity!

42 meta_varcov

Are the latent variances equal?
mod_eqvar <- mod_strict %>% groupequal("sigma_zeta") %>% runmodel

Compare:
compare(strict = mod_strict, eqvar = mod_eqvar)

This is acceptable. What about the means? (alpha = nu_eta)
mod_eqmeans <- mod_eqvar %>% groupequal("nu_eta") %>% runmodel

Compare:
compare(eqvar = mod_eqvar, eqmeans = mod_eqmeans)

Rejected! We could look at MIs again:
mod_eqmeans %>% MIs(matrices = "nu_eta", type = "free")

Indicates the strongest effect for prequels. Let's see what happens:
eqmeans2 <- mod_eqvar %>%

groupequal("nu_eta",row = c("Original","Sequels")) %>% runmodel

Compare:
compare(eqvar = mod_eqvar, eqmeans = eqmeans2)
Questionable, what about the sequels as well?

eqmeans3 <- mod_eqvar %>% groupequal("nu_eta", row = "Original") %>% runmodel

Compare:
compare(eqvar = mod_eqvar, eqmeans = eqmeans3)

Still questionable.. Let's look at the mean differences:
mod_eqvar %>% getmatrix("nu_eta")

Looks like people over 30 like the prequels better and the other two trilogies less!

meta_varcov Variance-covariance and GGM meta analysis

Description

Meta analysis of correlation matrices to fit a homogenous correlation matrix or Gaussian graphical
model. Based on meta-analytic SEM (Jak and Cheung, 2019).

Usage

meta_varcov(cors, nobs, Vmats, Vmethod = c("individual", "pooled",
"metaSEM_individual", "metaSEM_weighted"), Vestimation
= c("averaged", "per_study"), type = c("cor", "ggm"),
sigma_y = "full", kappa_y = "full", omega_y = "full",
lowertri_y = "full", delta_y = "full", rho_y = "full",
SD_y = "full", randomEffects = c("chol", "cov",

meta_varcov 43

"prec", "ggm", "cor"), sigma_randomEffects = "full",
kappa_randomEffects = "full", omega_randomEffects =
"full", lowertri_randomEffects = "full",
delta_randomEffects = "full", rho_randomEffects =
"full", SD_randomEffects = "full", vars,
baseline_saturated = TRUE, optimizer, estimator =
c("FIML", "ML"), sampleStats, verbose = FALSE)

meta_ggm(...)

Arguments

cors A list of correlation matrices. Must contain rows and columns with NAs for
variables not included in a study.

nobs A vector with the number of observations per study.
Vmats Optional list with ’V’ matrices (sampling error variance approximations).
Vmethod Which method should be used to apprixomate the sampling error variance?
Vestimation How should the sampling error estimates be evaluated?
type What to model? Currently only "cor" and "ggm" are supported.
sigma_y Only used when type = "cov". Either "full" to estimate every element freely,

"empty" to only include diagonal elements, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

kappa_y Only used when type = "prec". Either "full" to estimate every element freely,
"empty" to only include diagonal elements, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

omega_y Only used when type = "ggm". Either "full" to estimate every element freely,
"empty" to set all elements to zero, or a matrix of the dimensions node x node
with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
and higher integers encoding equality constrains. For multiple groups, this ar-
gument can be a list or array with each element/slice encoding such a matrix.

lowertri_y Only used when type = "chol". Either "full" to estimate every element freely,
"empty" to only include diagonal elements, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

delta_y Only used when type = "ggm". Either "full" to estimate every element freely,
"empty" to set all elements to zero, or a matrix of the dimensions node x node
with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
and higher integers encoding equality constrains. For multiple groups, this ar-
gument can be a list or array with each element/slice encoding such a matrix.

44 meta_varcov

rho_y Only used when type = "cor". Either "full" to estimate every element freely,
"empty" to set all elements to zero, or a matrix of the dimensions node x node
with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
and higher integers encoding equality constrains. For multiple groups, this ar-
gument can be a list or array with each element/slice encoding such a matrix.

SD_y Only used when type = "cor". Either "full" to estimate every element freely,
"empty" to set all elements to zero, or a matrix of the dimensions node x node
with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
and higher integers encoding equality constrains. For multiple groups, this ar-
gument can be a list or array with each element/slice encoding such a matrix.

randomEffects What to model for the random effects?
sigma_randomEffects

Only used when type = "cov". Either "full" to estimate every element freely,
"empty" to only include diagonal elements, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

kappa_randomEffects

Only used when randomEffects = "prec". Either "full" to estimate every
element freely, "empty" to only include diagonal elements, or a matrix of the
dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a
free to estimate element, and higher integers encoding equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

omega_randomEffects

Only used when randomEffects = "ggm". Either "full" to estimate every ele-
ment freely, "empty" to set all elements to zero, or a matrix of the dimensions
node x node with 0 encoding a fixed to zero element, 1 encoding a free to es-
timate element, and higher integers encoding equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

lowertri_randomEffects

Only used when randomEffects = "chol". Either "full" to estimate every
element freely, "empty" to only include diagonal elements, or a matrix of the
dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a
free to estimate element, and higher integers encoding equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

delta_randomEffects

Only used when randomEffects = "ggm". Either "full" to estimate every ele-
ment freely, "empty" to set all elements to zero, or a matrix of the dimensions
node x node with 0 encoding a fixed to zero element, 1 encoding a free to es-
timate element, and higher integers encoding equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

meta_varcov 45

rho_randomEffects

Only used when randomEffects = "cor". Either "full" to estimate every ele-
ment freely, "empty" to set all elements to zero, or a matrix of the dimensions
node x node with 0 encoding a fixed to zero element, 1 encoding a free to es-
timate element, and higher integers encoding equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

SD_randomEffects

Only used when randomEffects = "cor". Either "full" to estimate every ele-
ment freely, "empty" to set all elements to zero, or a matrix of the dimensions
node x node with 0 encoding a fixed to zero element, 1 encoding a free to es-
timate element, and higher integers encoding equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

vars Variables to be included.
baseline_saturated

A logical indicating if the baseline and saturated model should be included.
Mostly used internally and NOT Recommended to be used manually.

optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb
function), "ucminf" (from the optimr package), and C++ based optimizers
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

estimator The estimator to be used. Currently implemented are "ML" for maximum likeli-
hood estimation or "FIML" for full-information maximum likelihood estimation.

sampleStats An optional sample statistics object. Mostly used internally.

verbose Logical, should progress be printed to the console?

... Arguments sent to meta_varcov

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Jak, S., and Cheung, M. W. L. (2019). Meta-analytic structural equation modeling with moderating
effects on SEM parameters. Psychological methods.

46 MIs

MIs Print modification indices

Description

This function prints a list of modification indices (MIs)

Usage

MIs(x, all = FALSE, matrices, type = c("normal", "equal", "free"), top = 10,
verbose = TRUE, nonZero = FALSE)

Arguments

x A psychonetrics model.

all Logical, should all MIs be printed or only the highest?

matrices Optional vector of matrices to include in the output.

type String indicating which kind of modification index should be printed. ("mi"
is the typical MI, "mi_free" is the modification index free from equality con-
strains across groups, and "mi_equal" is the modification index if the parameter
is added constrained equal across all groups).

top Number of MIs to include in output if all = FALSE

verbose Logical, should messages be printed?

nonZero Logical, should only MIs be printed of non-zero parameters? Useful to explore
violations of group equality.

Value

Invisibly returns a relevant subset of the data frame containing all information on the parameters, or
a list of such data frames if multiple types of MIs are requested.

Author(s)

Sacha Epskamp

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

ml_lvm 47

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "empty")

Run model:
mod <- mod %>% runmodel

Modification indices:
mod %>% MIs

ml_lvm Multi-level latent variable model family

Description

This family is the two-level random intercept variant of the lvm model family. It is mostly a special
case of the dlvm1 family, with the addition of structural effects rather than temporal effects in the
beta matrix.

Usage

ml_lnm(...)
ml_rnm(...)
ml_lrnm(...)
ml_lvm(data, lambda, clusters, within_latent = c("cov",

"chol", "prec", "ggm"), within_residual = c("cov",
"chol", "prec", "ggm"), between_latent = c("cov",
"chol", "prec", "ggm"), between_residual = c("cov",
"chol", "prec", "ggm"), beta_within = "empty",
beta_between = "empty", omega_zeta_within = "full",
delta_zeta_within = "full", kappa_zeta_within =
"full", sigma_zeta_within = "full",
lowertri_zeta_within = "full", omega_epsilon_within =
"empty", delta_epsilon_within = "empty",
kappa_epsilon_within = "empty", sigma_epsilon_within =
"empty", lowertri_epsilon_within = "empty",
omega_zeta_between = "full", delta_zeta_between =
"full", kappa_zeta_between = "full",
sigma_zeta_between = "full", lowertri_zeta_between =
"full", omega_epsilon_between = "empty",
delta_epsilon_between = "empty", kappa_epsilon_between
= "empty", sigma_epsilon_between = "empty",
lowertri_epsilon_between = "empty", nu, nu_eta,

48 ml_lvm

identify = TRUE, identification = c("loadings",
"variance"), vars, latents, groups, equal = "none",
baseline_saturated = TRUE, estimator = c("FIML",
"MUML"), optimizer, storedata = FALSE, verbose =
FALSE, standardize = c("none", "z", "quantile"),
sampleStats)

Arguments

data A data frame encoding the data used in the analysis. Must be a raw dataset.

lambda A model matrix encoding the factor loading structure. Each row indicates an in-
dicator and each column a latent. A 0 encodes a fixed to zero element, a 1 encod-
ing a free to estimate element, and higher integers encoding equality constrains.
For multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix. Could also be the result of simplestructure.

clusters A string indicating the variable in the dataset that describes group membership.

within_latent The type of within-person latent contemporaneous model to be used.
within_residual

The type of within-person residual model to be used.

between_latent The type of between-person latent model to be used.
between_residual

The type of between-person residual model to be used.

beta_within A model matrix encoding the within-cluster structural. A 0 encodes a fixed
to zero element, a 1 encoding a free to estimate element, and higher integers
encoding equality constrains. For multiple groups, this argument can be a list or
array with each element/slice encoding such a matrix. Defaults to "empty".

beta_between A model matrix encoding the between-cluster structural. A 0 encodes a fixed
to zero element, a 1 encoding a free to estimate element, and higher integers
encoding equality constrains. For multiple groups, this argument can be a list or
array with each element/slice encoding such a matrix. Defaults to "empty".

omega_zeta_within

Only used when within_latent = "ggm". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

delta_zeta_within

Only used when within_latent = "ggm". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

kappa_zeta_within

Only used when within_latent = "prec". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple

ml_lvm 49

groups, this argument can be a list or array with each element/slice encoding
such a matrix.

sigma_zeta_within

Only used when within_latent = "cov". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

lowertri_zeta_within

Only used when within_latent = "chol". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

omega_epsilon_within

Only used when within_residual = "ggm". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

delta_epsilon_within

Only used when within_residual = "ggm". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

kappa_epsilon_within

Only used when within_residual = "prec". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

sigma_epsilon_within

Only used when within_residual = "cov". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

lowertri_epsilon_within

Only used when within_residual = "chol". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

omega_zeta_between

Only used when between_latent = "ggm". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple

50 ml_lvm

groups, this argument can be a list or array with each element/slice encoding
such a matrix.

delta_zeta_between

Only used when between_latent = "ggm". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

kappa_zeta_between

Only used when between_latent = "prec". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

sigma_zeta_between

Only used when between_latent = "cov". Can be "full", "empty", or a typi-
cal model matrix with 0s indicating parameters constrained to zero, 1s indicating
free parameters, and higher integers indicating equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

lowertri_zeta_between

Only used when between_latent = "chol". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

omega_epsilon_between

Only used when between_residual = "ggm". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

delta_epsilon_between

Only used when between_residual = "ggm". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

kappa_epsilon_between

Only used when between_residual = "prec". Can be "full", "empty", or
a typical model matrix with 0s indicating parameters constrained to zero, 1s
indicating free parameters, and higher integers indicating equality constrains.
For multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

sigma_epsilon_between

Only used when between_residual = "cov". Can be "full", "empty", or a
typical model matrix with 0s indicating parameters constrained to zero, 1s indi-
cating free parameters, and higher integers indicating equality constrains. For

ml_lvm 51

multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

lowertri_epsilon_between

Only used when between_residual = "chol". Can be "full", "empty", or
a typical model matrix with 0s indicating parameters constrained to zero, 1s
indicating free parameters, and higher integers indicating equality constrains.
For multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

nu Optional vector encoding the intercepts of the observed variables. Set elements
to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher
integers to indicate equality constrains. For multiple groups, this argument can
be a list or array with each element/column encoding such a vector.

nu_eta Optional vector encoding the intercepts of the latent variables. Set elements to
0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher
integers to indicate equality constrains. For multiple groups, this argument can
be a list or array with each element/column encoding such a vector.

identify Logical, should the model be automatically identified?

identification Type of identification used. "loadings" to fix the first factor loadings to 1, and
"variance" to fix the diagonal of the latent variable model matrix (sigma_zeta,
lowertri_zeta, delta_zeta or kappa_zeta) to 1.

vars An optional character vector with names of the variables used.

latents An optional character vector with names of the latent variables.

groups An optional string indicating the name of the group variable in data.

equal A character vector indicating which matrices should be constrained equal across
groups.

baseline_saturated

A logical indicating if the baseline and saturated model should be included.
Mostly used internally and NOT Recommended to be used manually.

estimator Estimator used. Currently only "FIML" is supported.

optimizer The optimizer to be used. Usually either "nlminb" (with box constrains) or
"ucminf" (ignoring box constrains), but any optimizer supported by optimr
can be used.

storedata Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).

verbose Logical, should progress be printed to the console?

standardize Which standardization method should be used? "none" (default) for no stan-
dardization, "z" for z-scores, and "quantile" for a non-parametric transforma-
tion to the quantiles of the marginal standard normal distribution.

sampleStats An optional sample statistics object. Mostly used internally.

... Arguments sent to ’ml_lvm’

Value

An object of the class psychonetrics (psychonetrics-class)

52 ml_tsdlvm1

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

ml_tsdlvm1 Multi-level Lag-1 dynamic latent variable model family of psychonet-
rics models for time-series data

Description

This function is a wrapper around dlvm1 that allows for specifying the model using a long format
data and similar input as the mlVAR package. The ml_ts_lvgvar simply sets within_latent =
"ggm" and between_latent = "ggm" by default. The ml_gvar and ml_var are simple wrappers
with different named defaults for contemporaneous and between-person effects.

Usage

ml_tsdlvm1(data, beepvar, idvar, vars, groups, estimator = "FIML",
standardize = c("none", "z", "quantile"), ...)

ml_ts_lvgvar(...)

ml_gvar(..., contemporaneous = c("ggm", "cov", "chol", "prec"),
between = c("ggm", "cov", "chol", "prec"))

ml_var(..., contemporaneous = c("cov", "chol", "prec", "ggm"),
between = c("cov", "chol", "prec", "ggm"))

Arguments

data The data to be used. Must be raw data in long format (each row indicates one
person at one time point).

beepvar Optional string indicating assessment beep per day. Adding this argument will
cause non-consecutive beeps to be treated as missing!

idvar String indicating the subject ID

vars Vectors of variables to include in the analysis

groups An optional string indicating the name of the group variable in data.

estimator Estimator to be used. Must be "FIML".

standardize Which standardization method should be used? "none" (default) for no stan-
dardization, "z" for z-scores, and "quantile" for a non-parametric transforma-
tion to the quantiles of the marginal standard normal distribution.

contemporaneous

The type of within-person latent contemporaneous model to be used.

between The type of between-person latent model to be used.

... Arguments sent to dlvm1

modelsearch 53

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

modelsearch Stepwise model search

Description

This function peforms stepwise model search to find an optimal model that (locally) minimzes some
criterion (by default, the BIC).

Usage

modelsearch(x, criterion = "bic", matrices, prunealpha = 0.01,
addalpha = 0.01, verbose, ...)

Arguments

x A psychonetrics model.

criterion String indicating the criterion to minimize. Any criterion from fit can be used.

matrices Vector of strings indicating which matrices should be searched. Will default to
network structures and factor loadings.

prunealpha Minimal alpha used to consider edges to be removed

addalpha Maximum alpha used to consider edges to be added

verbose Logical, should messages be printed?

... Arguments sent to runmodel

Details

The full algorithm is as follows:

1. Evaluate all models in which an edge is removed that has p > prunealpha, or an edge is added
that has a modification index with p < addalpha

2. If none of these models improve the criterion, return the previous model and stop the algorithm

3. Update the model to the model that improved the criterion the most

4. Evaluate all other considered models that improved the criterion

5. If none of these models improve the criterion, go to 1, else go to 3

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

54 parameters

See Also

prune, stepup

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars)

Run model:
mod <- mod %>% runmodel

Model search
mod <- mod %>% prune(alpha= 0.01) %>% modelsearch

parameters Print parameter estimates

Description

This function will print a list of parameters of the model

Usage

parameters(x)

Arguments

x A psychonetrics model.

Value

Invisibly returns a data frame containing information on all parameters.

parequal 55

Author(s)

Sacha Epskamp

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "empty")

Run model:
mod <- mod %>% runmodel

Parameter estimates:
mod %>% parameters

parequal Set equality constrains across parameters

Description

This function can be used to set parameters equal

Usage

parequal(x, ..., inds = integer(0), verbose, log = TRUE,
runmodel = FALSE)

Arguments

x A psychonetrics model.
... Arguments sent to runmodel

inds Parameter indices of parameters to be constrained equal
verbose Logical, should messages be printed?
log Logical, should the log be updated?
runmodel Logical, should the model be updated?

56 partialprune

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

partialprune Partial pruning of multi-group models

Description

This function will search for a multi-group model with equality constrains on some but not all
parameters. This is called partial pruning (Epskamp, Isvoranu, & Cheung, 2020; Haslbeck, 2020).
The algorithm is as follows: 1. remove all parameters not significant at alpha in all groups (without
equality constrains), 2. create a union model with all parameters included in any group included in
all groups and constrained equal. 3. Stepwise free equality constrains of the parameter that features
the largest sum of modification indices until BIC can no longer be improved. 4. Select and return
the best model according to BIC (original model, pruned model, union model and partially pruned
model).

Usage

partialprune(x, alpha = 0.01, matrices, verbose, combinefun = unionmodel, ...)

Arguments

x A psychonetrics model.

alpha Significance level to use.

matrices Vector of strings indicating which matrices should be pruned. Will default to
network structures.

verbose Logical, should messages be printed?

combinefun Function used to combine models of different groups.

... Arguments sent to prune.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

References

Epskamp, S., Isvoranu, A. M., & Cheung, M. (2020). Meta-analytic gaussian network aggregation.
PsyArXiv preprint. DOI:10.31234/osf.io/236w8.

Haslbeck, J. (2020). Estimating Group Differences in Network Models using Moderation Analysis.
PsyArXiv preprint. DOI:10.31234/osf.io/926pv.

prune 57

prune Stepdown model search by pruning non-significant parameters.

Description

This function will (recursively) remove parameters that are not significant and refit the model.

Usage

prune(x, alpha = 0.01, adjust = c("none", "holm",
"hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr"), matrices, runmodel = TRUE, recursive = FALSE,
verbose, log = TRUE, identify = TRUE, startreduce = 1,
limit = Inf, mode = c("tested","all"), ...)

Arguments

x A psychonetrics model.

alpha Significance level to use.

adjust p-value adjustment method to use. See p.adjust.

matrices Vector of strings indicating which matrices should be pruned. Will default to
network structures.

runmodel Logical, should the model be evaluated after pruning?

recursive Logical, should the pruning process be repeated?

verbose Logical, should messages be printed?

log Logical, should the log be updated?

identify Logical, should models be identified automatically?

startreduce A numeric value indicating a factor with which the starting values should be
reduced. Can be useful when encountering numeric problems.

limit The maximum number of parameters to be pruned.

mode Mode for adjusting for multiple comparisons. Should all parameters be consid-
ered as the total number of tests or only the tested parameters (parameters of
interest)?

... Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

58 psychonetrics-class

See Also

stepup

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "full")

Run model:
mod <- mod %>% runmodel

Prune model:
mod <- mod %>% prune(adjust = "fdr", recursive = FALSE)

psychonetrics-class Class "psychonetrics"

Description

Main class for psychonetrics results.

Objects from the Class

Objects can be created by calls of the form new("psychonetrics", ...).

Slots

model: Object of class "character" ~~

submodel: Object of class "character" ~~

parameters: Object of class "data.frame" ~~

matrices: Object of class "data.frame" ~~

meanstructure: Object of class "logical" ~~

psychonetrics-class 59

computed: Object of class "logical" ~~

sample: Object of class "psychonetrics_samplestats" ~~

modelmatrices: Object of class "list" ~~

log: Object of class "psychonetrics_log" ~~

optim: Object of class "list" ~~

fitmeasures: Object of class "list" ~~

baseline_saturated: Object of class "list" ~~

equal: Object of class "character" ~~

objective: Object of class "numeric" ~~

information: Object of class "matrix" ~~

identification: Object of class "character" ~~

optimizer: Object of class "character" ~~

optim.args: Object of class "list" ~~

estimator: Object of class "character" ~~

distribution: Object of class "character" ~~

extramatrices: Object of class "list" ~~

rawts: Object of class "logical" ~~

Drawts: Object of class "list" ~~

types: Object of class "list" ~~

cpp: Object of class "logical" ~~

verbose: Object of class "logical" ~~

Methods

resid signature(object = "psychonetrics"): ...

residuals signature(object = "psychonetrics"): ...

show signature(object = "psychonetrics"): ...

Author(s)

Sacha Epskamp

Examples

showClass("psychonetrics")

60 psychonetrics_update

psychonetrics_update Model updating functions

Description

These functions update a psychonetrics model. Typically they are not required.

Usage

addMIs(x, matrices = "all", type = c("normal", "free",
"equal"), verbose, analyticFisher = TRUE)

addSEs(x, verbose)

addfit(x, verbose)

identify(x)

Arguments

x A psychonetrics model.

matrices Optional vector of matrices to include in MIs.

type String indicating which modification indices should be updated.

verbose Logical, should messages be printed?

analyticFisher Logical indicating if an analytic Fisher information matrix should be used.

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

runmodel 61

runmodel Run a psychonetrics model

Description

This is the main function used to run a psychonetrics model.

Usage

runmodel(x, level = c("gradient", "fitfunction"), addfit =
TRUE, addMIs = TRUE, addSEs = TRUE, addInformation =
TRUE, log = TRUE, verbose, optim.control,
analyticFisher = TRUE, warn_improper = TRUE,
warn_gradient = TRUE, return_improper = TRUE, bounded
= TRUE)

Arguments

x A psychonetrics model.

level Level at which the model should be estimated. Defaults to "gradient" to indi-
cate the analytic gradient should be used.

addfit Logical, should fit measures be added?

addMIs Logical, should modification indices be added?

addSEs Logical, should standard errors be added?

addInformation Logical, should the Fisher information be added?

log Logical, should the log be updated?

verbose Logical, should messages be printed?

optim.control A list with options for optimr

analyticFisher Logical, should the analytic Fisher information be used? If FALSE, numeric
information is used instead.

return_improper

Should a result in which improper computation was used be return? Improper
computation can mean that a pseudoinverse of small spectral shift was used in
computing the inverse of a matrix.

warn_improper Logical. Should a warning be given when at some point in the estimation a
pseudoinverse was used?

warn_gradient Logical. Should a warning be given when the average absolute gradient is > 1?

bounded Logical. Should bounded estimation be used (e.g., variances should be posi-
tive)?

Value

An object of the class psychonetrics (psychonetrics-class)

62 setestimator

Author(s)

Sacha Epskamp

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "full")

Run model:
mod <- mod %>% runmodel

setestimator Convenience functions

Description

These functions can be used to change some estimator options.

Usage

setestimator(x, estimator)

setoptimizer(x, optimizer = c("default", "nlminb", "ucminf",
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN",
"cpp_Nelder-Mead"), optim.args)

usecpp(x, use = TRUE)

Arguments

x A psychonetrics model.

estimator A string indicating the estimator to be used

setverbose 63

optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb
function), "ucminf" (from the optimr package), and C++ based optimizers
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

use Logical indicating if C++ should be used (currently only used in FIML)

optim.args List of arguments to sent to the optimizer.

Details

The default optimizer is nlminb with the following arguments:

• eval.max=20000L

• iter.max=10000L

• trace=0L

• abs.tol=sqrt(.Machine$double.eps)

• rel.tol=sqrt(.Machine$double.eps)

• step.min=1.0

• step.max=1.0

• x.tol=1.5e-8

• xf.tol=2.2e-14

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

setverbose Should messages of computation progress be printed?

Description

This function controls if messages should be printed for a psychonetrics model.

Usage

setverbose(x, verbose = TRUE)

Arguments

x A psychonetrics model.

verbose Logical indicating if verbose should be enabled

64 StarWars

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

simplestructure Generate factor loadings matrix with simple structure

Description

This function generates the input for lambda arguments in latent variable models using a simple
structure. The input is a vector with an element for each variable indicating the factor the variable
loads on.

Usage

simplestructure(x)

Arguments

x A vector indicating which factor each indicator loads on.

Author(s)

Sacha Epskamp <mail@sachaepskamp.com>

StarWars Star Wars dataset

Description

This questionaire was constructed by Carolin Katzera, Charlotte Tanis, Esther Niehoff, Myrthe
Veenman, and Jason Nak as part of an assignment for a course on confirmatory factor analysis
(http://sachaepskamp.com/SEM2018). They also collected the data among fellow psychology stu-
dents as well as through social media.

Usage

data("StarWars")

stepup 65

Format

A data frame with 271 observations on the following 13 variables.

Q1 I am a huge Star Wars fan! (star what?)

Q2 I would trust this person with my democracy <picture of Jar Jar Binks>

Q3 I enjoyed the story of Anakin’s early life

Q4 The special effects in this scene are awful <video of the Battle of Geonosis>

Q5 I would trust this person with my life <picture of Han Solo>

Q6 I found Darth Vader’ss big reveal in "Empire" one of the greatest moments in movie history

Q7 The special effects in this scene are amazing <video of the Death Star explosion>

Q8 If possible, I would definitely buy this droid <picture of BB-8>

Q9 The story in the Star Wars sequels is an improvement to the previous movies

Q10 The special effects in this scene are marvellous <video of the Starkiller Base firing>

Q11 What is your gender?

Q12 How old are you?

Q13 Have you seen any of the Star Wars movies?

Details

The questionaire is online at https://github.com/SachaEpskamp/SEM-code-examples/blob/master/CFA_fit_examples/StarWars_questionaire.pdf.
The authors of the questionaire defined a measurement model before collecting data: Q2 - Q4 are
expected to load on a "prequel" factor, Q5 - Q7 are expected to load in a "originals" factor, and Q8
- Q10 are expected to load on a "sequal" factor. Finally, Q1 is expected to load on all three.

Source

https://github.com/SachaEpskamp/SEM-code-examples/blob/master/CFA_fit_examples

Examples

data(StarWars)

stepup Stepup model search along modification indices

Description

This function automatically peforms step-up search by adding the parameter with the largest modi-
fication index until some criterion is reached or no modification indices are significant at alpha.

66 stepup

Usage

stepup(x, alpha = 0.01, criterion = "bic", matrices, mi =
c("mi", "mi_free", "mi_equal"), greedyadjust =
c("bonferroni", "none", "holm", "hochberg", "hommel",
"fdr", "BH", "BY"), stopif, greedy = FALSE, verbose,
checkinformation = TRUE, singularinformation =
c("tryfix", "skip", "continue", "stop"), startEPC =
TRUE, ...)

Arguments

x A psychonetrics model.

alpha Significance level to use.

criterion String indicating the criterion to minimize. Any criterion from fit can be used.

matrices Vector of strings indicating which matrices should be searched. Will default to
network structures and factor loadings.

mi String indicating which kind of modification index should be used ("mi" is the
typical MI, "mi_free" is the modification index free from equality constrains
across groups, and "mi_equal" is the modification index if the parameter is
added constrained equal across all groups).

greedyadjust String indicating which p-value adjustment should be used in greedy start. Any
method from p.adjust can be used.

stopif An R expression, using objects from fit, which will break stepup search if it
evaluates to TRUE. For example, stopif = rmsea < 0.05 will lead to search to
stop if rmsea is below 0.05.

greedy Logical, should a greedy start be used? If TRUE, the first step adds any parameter
that is significant (after adjustement)

verbose Logical, should messages be printed?
checkinformation

Logical, should the Fisher information be checked for potentially non-identified
models?

singularinformation

String indicating how to proceed if the information matrix is singular. "tryfix"
will adjust starting values to try to fix the proble, "skip" will lead to the algo-
rithm to skip the current parameter, "continue" will ignore the situation, and
"stop" will break the algorithm and return a list with the last two models.

startEPC Logical, should the starting value be set at the expected parameter change?

... Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

tsdlvm1 67

See Also

prune

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:
ConsData <- bfi %>%

select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Let's fit a full GGM:
mod <- ggm(ConsData, vars = vars, omega = "full")

Run model:
mod <- mod %>%runmodel %>%prune(alpha = 0.05)

Remove an edge (example):
mod <- mod %>%fixpar("omega",1,2) %>%runmodel

Stepup search
mod <- mod %>%stepup(alpha = 0.05)

tsdlvm1 Lag-1 dynamic latent variable model family of psychonetrics models
for time-series data

Description

This is the family of models that models a dynamic factor model on time-series. There are two
covariance structures that can be modeled in different ways: contemporaneous for the contempo-
raneous model and residual for the residual model. These can be set to "cov" for covariances,
"prec" for a precision matrix, "ggm" for a Gaussian graphical model and "chol" for a Cholesky
decomposition. The ts_lvgvar wrapper function sets contemporaneous = "ggm" for the graphical
VAR model.

68 tsdlvm1

Usage

tsdlvm1(data, lambda, contemporaneous = c("cov", "chol",
"prec", "ggm"), residual = c("cov", "chol", "prec",
"ggm"), beta = "full", omega_zeta = "full", delta_zeta
= "full", kappa_zeta = "full", sigma_zeta = "full",
lowertri_zeta = "full", omega_epsilon = "empty",
delta_epsilon = "empty", kappa_epsilon = "empty",
sigma_epsilon = "empty", lowertri_epsilon = "empty",
nu, mu_eta, identify = TRUE, identification =
c("loadings", "variance"), latents, beepvar, dayvar,
idvar, vars, groups, covs, means, nobs, missing =
"listwise", equal = "none", baseline_saturated = TRUE,
estimator = "ML", optimizer, storedata = FALSE,
sampleStats, covtype = c("choose", "ML", "UB"),
centerWithin = FALSE, standardize = c("none", "z",
"quantile"), verbose = FALSE)

ts_lvgvar(...)

Arguments

data A data frame encoding the data used in the analysis. Can be missing if covs and
nobs are supplied.

lambda A model matrix encoding the factor loading structure. Each row indicates an
indicator and each column a latent. A 0 encodes a fixed to zero element, a
1 encoding a free to estimate element, and higher integers encoding equality
constrains. For multiple groups, this argument can be a list or array with each
element/slice encoding such a matrix.

contemporaneous

The type of contemporaneous model used. See description.

residual The type of residual model used. See description.

beta A model matrix encoding the temporal relationships (transpose of temporal net-
work) between latent variables. A 0 encodes a fixed to zero element, a 1 encod-
ing a free to estimate element, and higher integers encoding equality constrains.
For multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix. Can also be "full" for a full temporal network or
"empty" for an empty temporal network.

omega_zeta Only used when contemporaneous = "ggm". Either "full" to estimate every
element freely, "empty" to set all elements to zero, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to
estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

delta_zeta Only used when contemporaneous = "ggm". Either "full" to estimate every
element freely, "empty" to set all elements to zero, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to

tsdlvm1 69

estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

kappa_zeta Only used when contemporaneous = "prec". Either "full" to estimate every
element freely, "empty" to only include diagonal elements, or a matrix of the
dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a
free to estimate element, and higher integers encoding equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

sigma_zeta Only used when contemporaneous = "cov". Either "full" to estimate every
element freely, "empty" to only include diagonal elements, or a matrix of the
dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a
free to estimate element, and higher integers encoding equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

lowertri_zeta Only used when contemporaneous = "chol". Either "full" to estimate every
element freely, "empty" to only include diagonal elements, or a matrix of the
dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a
free to estimate element, and higher integers encoding equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

omega_epsilon Only used when residual = "ggm". Either "full" to estimate every element
freely, "empty" to set all elements to zero, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

delta_epsilon Only used when residual = "ggm". Either "full" to estimate every element
freely, "empty" to set all elements to zero, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

kappa_epsilon Only used when residual = "prec". Either "full" to estimate every element
freely, "empty" to only include diagonal elements, or a matrix of the dimensions
node x node with 0 encoding a fixed to zero element, 1 encoding a free to es-
timate element, and higher integers encoding equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

sigma_epsilon Only used when residual = "cov". Either "full" to estimate every element
freely, "empty" to only include diagonal elements, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to
estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

lowertri_epsilon

Only used when residual = "chol". Either "full" to estimate every element

70 tsdlvm1

freely, "empty" to only include diagonal elements, or a matrix of the dimensions
node x node with 0 encoding a fixed to zero element, 1 encoding a free to es-
timate element, and higher integers encoding equality constrains. For multiple
groups, this argument can be a list or array with each element/slice encoding
such a matrix.

nu Optional vector encoding the intercepts of the observed variables. Set elements
to 0 to indicate fixed to zero constrains, 1 to indicate free intercepts, and higher
integers to indicate equality constrains. For multiple groups, this argument can
be a list or array with each element/column encoding such a vector.

mu_eta Optional vector encoding the means of the latent variables. Set elements to 0 to
indicate fixed to zero constrains, 1 to indicate free intercepts, and higher integers
to indicate equality constrains. For multiple groups, this argument can be a list
or array with each element/column encoding such a vector.

identify Logical, should the model be automatically identified?

identification Type of identification used. "loadings" to fix the first factor loadings to 1, and
"variance" to fix the diagonal of the latent variable model matrix (sigma_zeta,
lowertri_zeta, delta_zeta or kappa_zeta) to 1.

latents An optional character vector with names of the latent variables.

beepvar Optional string indicating assessment beep per day. Adding this argument will
cause non-consecutive beeps to be treated as missing!

dayvar Optional string indicating assessment day. Adding this argument makes sure that
the first measurement of a day is not regressed on the last measurement of the
previous day. IMPORTANT: only add this if the data has multiple observations
per day.

idvar Optional string indicating the subject ID

vars An optional character vector encoding the variables used in the analyis. Must
equal names of the dataset in data.

groups An optional string indicating the name of the group variable in data.

covs A sample variance–covariance matrix, or a list/array of such matrices for multi-
ple groups. Make sure covtype argument is set correctly to the type of covari-
ances used.

means A vector of sample means, or a list/matrix containing such vectors for multiple
groups.

nobs The number of observations used in covs and means, or a vector of such num-
bers of observations for multiple groups.

missing How should missingness be handled in computing the sample covariances and
number of observations when data is used. Can be "listwise" for listwise
deletion, or "pairwise" for pairwise deletion.

equal A character vector indicating which matrices should be constrained equal across
groups.

baseline_saturated

A logical indicating if the baseline and saturated model should be included.
Mostly used internally and NOT Recommended to be used manually.

tsdlvm1 71

estimator The estimator to be used. Currently implemented are "ML" for maximum like-
lihood estimation, "FIML" for full-information maximum likelihood estimation,
"ULS" for unweighted least squares estimation, "WLS" for weighted least squares
estimation, and "DWLS" for diagonally weighted least squares estimation.

optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb
function), "ucminf" (from the optimr package), and C++ based optimizers
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

storedata Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).

standardize Which standardization method should be used? "none" (default) for no stan-
dardization, "z" for z-scores, and "quantile" for a non-parametric transforma-
tion to the quantiles of the marginal standard normal distribution.

sampleStats An optional sample statistics object. Mostly used internally.

centerWithin Logical, should data be within-person centered?

covtype If ’covs’ is used, this is the type of covariance (maximum likelihood or unbiased)
the input covariance matrix represents. Set to "ML" for maximum likelihood
estimates (denominator n) and "UB" to unbiased estimates (denominator n-1).
The default will try to find the type used, by investigating which is most likely
to result from integer valued datasets.

verbose Logical, should messages be printed?

... Arguments sent to tsdlvm1

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

Examples

Note: this example is wrapped in a dontrun environment because the data is not
available locally.
Not run:
Obtain the data from:
#
Epskamp, S., van Borkulo, C. D., van der Veen, D. C., Servaas, M. N., Isvoranu, A. M.,
Riese, H., & Cramer, A. O. (2018). Personalized network modeling in psychopathology:
The importance of contemporaneous and temporal connections. Clinical Psychological
Science, 6(3), 416-427.
#
Available here: https://osf.io/c8wjz/
tsdata <- read.csv("Supplementary2_data.csv")

Encode time variable in a way R understands:
tsdata$time <- as.POSIXct(tsdata$time, tz = "Europe/Amsterdam")

72 unionmodel

Extract days:
tsdata$Day <- as.Date(tsdata$time, tz = "Europe/Amsterdam")

Variables to use:
vars <- c("relaxed", "sad", "nervous", "concentration", "tired", "rumination",

"bodily.discomfort")

Create lambda matrix (in this case: one factor):
Lambda <- matrix(1,7,1)

Estimate dynamical factor model:
model <- tsdlvm1(

tsdata,
lambda = Lambda,
vars = vars,
dayvar = "Day",
estimator = "FIML"

)

Run model:
model <- model %>% runmodel

Look at fit:
model %>% print
model %>% fit # Pretty bad fit

End(Not run)

unionmodel Unify models across groups

Description

The unionmodel will add all parameters to all groups that are free in at least one group, and the
intersectionmodel will constrain all parameters across groups to zero unless they are free to
estimate in all groups.

Usage

unionmodel(x, runmodel = FALSE, verbose, log = TRUE, identify =
TRUE, ...)

intersectionmodel(x, runmodel = FALSE, verbose, log = TRUE, identify =
TRUE, ...)

Arguments

x A psychonetrics model.

var1 73

runmodel Logical, should the model be updated?

verbose Logical, should messages be printed?

log Logical, should the log be updated?

identify Logical, should the model be identified?

... Arguments sent to runmodel

Value

An object of the class psychonetrics (psychonetrics-class)

Author(s)

Sacha Epskamp

var1 Lag-1 vector autoregression family of psychonetrics models

Description

This is the family of models that models time-series data using a lag-1 vector autoregressive model
(VAR; Epskamp,Waldorp, Mottus, Borsboom, 2018). The model is fitted to the Toeplitz matrix, but
unlike typical SEM software the block of covariances of the lagged variables is not used in estimat-
ing the temporal and contemporaneous relationships (the block is modeled completely separately
using a cholesky decomposition, and does not enter the model elsewise). The contemporaneous
argument can be used to define what contemporaneous model is used: contemporaneous = "cov"
(default) models a variance-covariance matrix, contemporaneous = "chol" models a Cholesky
decomposition, contemporaneous = "prec" models a precision matrix, and contemporaneous =
"ggm" (alias: gvar()) models a Gaussian graphical model, also then known as a graphical VAR
model.

Usage

var1(data, contemporaneous = c("cov", "chol", "prec",
"ggm"), beta = "full", omega_zeta = "full", delta_zeta
= "full", kappa_zeta = "full", sigma_zeta = "full",
lowertri_zeta = "full", mu, beepvar, dayvar, idvar,
vars, groups, covs, means, nobs, missing = "listwise",
equal = "none", baseline_saturated = TRUE, estimator =
"ML", optimizer, storedata = FALSE, covtype =
c("choose", "ML", "UB"), standardize = c("none", "z",
"quantile"), sampleStats, verbose = FALSE, bootstrap =
FALSE)

gvar(...)

74 var1

Arguments

data A data frame encoding the data used in the analysis. Can be missing if covs and
nobs are supplied.

contemporaneous

The type of contemporaneous model used. See description.

beta A model matrix encoding the temporal relationships (transpose of temporal net-
work). A 0 encodes a fixed to zero element, a 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a ma-
trix. Can also be "full" for a full temporal network or "empty" for an empty
temporal network.

omega_zeta Only used when contemporaneous = "ggm". Either "full" to estimate every
element freely, "empty" to set all elements to zero, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to
estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

delta_zeta Only used when contemporaneous = "ggm". Either "full" to estimate every
element freely, "empty" to set all elements to zero, or a matrix of the dimen-
sions node x node with 0 encoding a fixed to zero element, 1 encoding a free to
estimate element, and higher integers encoding equality constrains. For multi-
ple groups, this argument can be a list or array with each element/slice encoding
such a matrix.

kappa_zeta Only used when contemporaneous = "prec". Either "full" to estimate every
element freely, "empty" to only include diagonal elements, or a matrix of the
dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a
free to estimate element, and higher integers encoding equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

sigma_zeta Only used when contemporaneous = "cov". Either "full" to estimate every
element freely, "empty" to only include diagonal elements, or a matrix of the
dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a
free to estimate element, and higher integers encoding equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

lowertri_zeta Only used when contemporaneous = "chol". Either "full" to estimate every
element freely, "empty" to only include diagonal elements, or a matrix of the
dimensions node x node with 0 encoding a fixed to zero element, 1 encoding a
free to estimate element, and higher integers encoding equality constrains. For
multiple groups, this argument can be a list or array with each element/slice
encoding such a matrix.

mu Optional vector encoding the mean structure. Set elements to 0 to indicate fixed
to zero constrains, 1 to indicate free means, and higher integers to indicate equal-
ity constrains. For multiple groups, this argument can be a list or array with each
element/column encoding such a vector.

var1 75

beepvar Optional string indicating assessment beep per day. Adding this argument will
cause non-consecutive beeps to be treated as missing!

dayvar Optional string indicating assessment day. Adding this argument makes sure that
the first measurement of a day is not regressed on the last measurement of the
previous day. IMPORTANT: only add this if the data has multiple observations
per day.

idvar Optional string indicating the subject ID

vars An optional character vector encoding the variables used in the analyis. Must
equal names of the dataset in data.

groups An optional string indicating the name of the group variable in data.

covs A sample variance–covariance matrix, or a list/array of such matrices for multi-
ple groups. Make sure covtype argument is set correctly to the type of covari-
ances used.

means A vector of sample means, or a list/matrix containing such vectors for multiple
groups.

nobs The number of observations used in covs and means, or a vector of such num-
bers of observations for multiple groups.

missing How should missingness be handled in computing the sample covariances and
number of observations when data is used. Can be "listwise" for listwise
deletion, or "pairwise" for pairwise deletion.

equal A character vector indicating which matrices should be constrained equal across
groups.

baseline_saturated

A logical indicating if the baseline and saturated model should be included.
Mostly used internally and NOT Recommended to be used manually.

estimator The estimator to be used. Currently implemented are "ML" for maximum like-
lihood estimation, "FIML" for full-information maximum likelihood estimation,
"ULS" for unweighted least squares estimation, "WLS" for weighted least squares
estimation, and "DWLS" for diagonally weighted least squares estimation.

optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb
function), "ucminf" (from the optimr package), and C++ based optimizers
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

storedata Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).

standardize Which standardization method should be used? "none" (default) for no stan-
dardization, "z" for z-scores, and "quantile" for a non-parametric transforma-
tion to the quantiles of the marginal standard normal distribution.

sampleStats An optional sample statistics object. Mostly used internally.

covtype If ’covs’ is used, this is the type of covariance (maximum likelihood or unbiased)
the input covariance matrix represents. Set to "ML" for maximum likelihood
estimates (denominator n) and "UB" to unbiased estimates (denominator n-1).
The default will try to find the type used, by investigating which is most likely
to result from integer valued datasets.

76 var1

verbose Logical, should messages be printed?

bootstrap Bootstraps the data (reshuffles rows with replacement).

... Arguments sent to var1

Details

This will be updated in a later version.

Value

An object of the class psychonetrics

Author(s)

Sacha Epskamp

References

Epskamp, S., Waldorp, L. J., Mottus, R., & Borsboom, D. (2018). The Gaussian graphical model
in cross-sectional and time-series data. Multivariate Behavioral Research, 53(4), 453-480.

See Also

lvm, varcov, dlvm1

Examples

library("dplyr")
library("graphicalVAR")

beta <- matrix(c(
0,0.5,
0.5,0

),2,2,byrow=TRUE)
kappa <- diag(2)
simData <- graphicalVARsim(50, beta, kappa)

Form model:
model <- gvar(simData)

Evaluate model:
model <- model %>% runmodel

Parameter estimates:
model %>% parameters

Plot the CIs:
CIplot(model, "beta")

Note: this example is wrapped in a dontrun environment because the data is not
available locally.

var1 77

Not run:
Longer example:
#
Obtain the data from:
#
Epskamp, S., van Borkulo, C. D., van der Veen, D. C., Servaas, M. N., Isvoranu, A. M.,
Riese, H., & Cramer, A. O. (2018). Personalized network modeling in psychopathology:
The importance of contemporaneous and temporal connections. Clinical Psychological
Science, 6(3), 416-427.
#
Available here: https://osf.io/c8wjz/

tsdata <- read.csv("Supplementary2_data.csv")

Encode time variable in a way R understands:
tsdata$time <- as.POSIXct(tsdata$time, tz = "Europe/Amsterdam")

Extract days:
tsdata$Day <- as.Date(tsdata$time, tz = "Europe/Amsterdam")

Variables to use:
vars <- c("relaxed", "sad", "nervous", "concentration", "tired", "rumination",

"bodily.discomfort")

Estimate, prune with FDR, and perform stepup search:
model_FDRprune <- gvar(

tsdata,
vars = vars,
dayvar = "Day",
estimator = "FIML"
) %>%
runmodel %>%
prune(adjust = "fdr", recursive = FALSE) %>%
stepup(criterion = "bic")

Estimate with greedy stepup search:
model_stepup <- gvar(

tsdata,
vars = vars,
dayvar = "Day",
estimator = "FIML",
omega_zeta = "empty",
beta = "empty"

) %>%
runmodel %>%
stepup(greedy = TRUE, greedyadjust = "bonferroni", criterion = "bic")

Compare models:
compare(

FDRprune = model_FDRprune,
stepup = model_stepup

)
Very similar but not identical. Stepup is prefered here according to AIC and BIC

78 varcov

Stepup results:
temporal <- getmatrix(model_stepup, "PDC") # PDC = Partial Directed Correlations
contemporaneous <- getmatrix(model_stepup, "omega_zeta")

Average layout:
library("qgraph")
L <- averageLayout(temporal, contemporaneous)

Labels:
labs <- gsub("\\.","\n",vars)

Plot:
layout(t(1:2))
qgraph(temporal, layout = L, theme = "colorblind", directed=TRUE, diag=TRUE,

title = "Temporal", vsize = 12, mar = rep(6,4), asize = 5,
labels = labs)

qgraph(contemporaneous, layout = L, theme = "colorblind",
title = "Contemporaneous", vsize = 12, mar = rep(6,4), asize = 5,
labels = labs)

End(Not run)

varcov Variance-covariance family of psychonetrics models

Description

This is the family of models that models only a variance-covariance matrix with mean structure.
The type argument can be used to define what model is used: type = "cov" (default) models a
variance-covariance matrix directly, type = "chol" (alias: cholesky()) models a Cholesky de-
composition, type = "prec" (alias: precision()) models a precision matrix, type = "ggm" (alias:
ggm()) models a Gaussian graphical model (Epskamp, Rhemtulla and Borsboom, 2017), and type
= "cor" (alias: corr()) models a correlation matrix.

Usage

varcov(data, type = c("cov", "chol", "prec", "ggm", "cor"),
sigma = "full", kappa = "full", omega = "full",
lowertri = "full", delta = "full", rho = "full", SD =
"full", mu, tau, vars, ordered = character(0), groups,
covs, means, nobs, missing = "listwise", equal =
"none", baseline_saturated = TRUE, estimator =
"default", optimizer, storedata = FALSE, WLS.W,
sampleStats, meanstructure, corinput, verbose = FALSE,
covtype = c("choose", "ML", "UB"), standardize =
c("none", "z", "quantile"), fullFIML = FALSE)

cholesky(...)
precision(...)

varcov 79

prec(...)
ggm(...)
corr(...)

Arguments

data A data frame encoding the data used in the analysis. Can be missing if covs and
nobs are supplied.

type The type of model used. See description.

sigma Only used when type = "cov". Either "full" to estimate every element freely,
"empty" to only include diagonal elements, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

kappa Only used when type = "prec". Either "full" to estimate every element freely,
"empty" to only include diagonal elements, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

omega Only used when type = "ggm". Either "full" to estimate every element freely,
"empty" to set all elements to zero, or a matrix of the dimensions node x node
with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
and higher integers encoding equality constrains. For multiple groups, this ar-
gument can be a list or array with each element/slice encoding such a matrix.

lowertri Only used when type = "chol". Either "full" to estimate every element freely,
"empty" to only include diagonal elements, or a matrix of the dimensions node
x node with 0 encoding a fixed to zero element, 1 encoding a free to estimate
element, and higher integers encoding equality constrains. For multiple groups,
this argument can be a list or array with each element/slice encoding such a
matrix.

delta Only used when type = "ggm". Either "full" to estimate every element freely,
"empty" to set all elements to zero, or a matrix of the dimensions node x node
with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
and higher integers encoding equality constrains. For multiple groups, this ar-
gument can be a list or array with each element/slice encoding such a matrix.

rho Only used when type = "cor". Either "full" to estimate every element freely,
"empty" to set all elements to zero, or a matrix of the dimensions node x node
with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
and higher integers encoding equality constrains. For multiple groups, this ar-
gument can be a list or array with each element/slice encoding such a matrix.

SD Only used when type = "cor". Either "full" to estimate every element freely,
"empty" to set all elements to zero, or a matrix of the dimensions node x node
with 0 encoding a fixed to zero element, 1 encoding a free to estimate element,
and higher integers encoding equality constrains. For multiple groups, this ar-
gument can be a list or array with each element/slice encoding such a matrix.

80 varcov

mu Optional vector encoding the mean structure. Set elements to 0 to indicate fixed
to zero constrains, 1 to indicate free means, and higher integers to indicate equal-
ity constrains. For multiple groups, this argument can be a list or array with each
element/column encoding such a vector.

tau Optional list encoding the thresholds per variable.

vars An optional character vector encoding the variables used in the analyis. Must
equal names of the dataset in data.

groups An optional string indicating the name of the group variable in data.

covs A sample variance–covariance matrix, or a list/array of such matrices for multi-
ple groups. Make sure covtype argument is set correctly to the type of covari-
ances used.

means A vector of sample means, or a list/matrix containing such vectors for multiple
groups.

nobs The number of observations used in covs and means, or a vector of such num-
bers of observations for multiple groups.

covtype If ’covs’ is used, this is the type of covariance (maximum likelihood or unbiased)
the input covariance matrix represents. Set to "ML" for maximum likelihood
estimates (denominator n) and "UB" to unbiased estimates (denominator n-1).
The default will try to find the type used, by investigating which is most likely
to result from integer valued datasets.

missing How should missingness be handled in computing the sample covariances and
number of observations when data is used. Can be "listwise" for listwise
deletion, or "pairwise" for pairwise deletion.

equal A character vector indicating which matrices should be constrained equal across
groups.

baseline_saturated

A logical indicating if the baseline and saturated model should be included.
Mostly used internally and NOT Recommended to be used manually.

estimator The estimator to be used. Currently implemented are "ML" for maximum like-
lihood estimation, "FIML" for full-information maximum likelihood estimation,
"ULS" for unweighted least squares estimation, "WLS" for weighted least squares
estimation, and "DWLS" for diagonally weighted least squares estimation.

optimizer The optimizer to be used. Can be one of "nlminb" (the default R nlminb
function), "ucminf" (from the optimr package), and C++ based optimizers
"cpp_L-BFGS-B", "cpp_BFGS", "cpp_CG", "cpp_SANN", and "cpp_Nelder-Mead".
The C++ optimizers are faster but slightly less stable. Defaults to "nlminb".

storedata Logical, should the raw data be stored? Needed for bootstrapping (see bootstrap).

standardize Which standardization method should be used? "none" (default) for no stan-
dardization, "z" for z-scores, and "quantile" for a non-parametric transforma-
tion to the quantiles of the marginal standard normal distribution.

WLS.W Optional WLS weights matrix.

sampleStats An optional sample statistics object. Mostly used internally.

verbose Logical, should progress be printed to the console?

varcov 81

ordered A vector with strings indicating the variables that are ordered catagorical, or set
to TRUE to model all variables as ordered catagorical.

meanstructure Logical, should the meanstructure be modeled explicitly?

corinput Logical, is the input a correlation matrix?

fullFIML Logical, should row-wise FIML be used? Not recommended!

... Arguments sent to varcov

Details

The model used in this family is:

var(y) = Σ

E(y) = µ
in which the covariance matrix can further be modeled in three ways. With type = "chol" as
Cholesky decomposition:

Σ = LL,

with type = "prec" as Precision matrix:

Σ =K−1,

and finally with type = "ggm" as Gaussian graphical model:

Σ = ∆(I −Ω)(− 1)∆.

Value

An object of the class psychonetrics

Author(s)

Sacha Epskamp

References

Epskamp, S., Rhemtulla, M., & Borsboom, D. (2017). Generalized network psychometrics: Com-
bining network and latent variable models. Psychometrika, 82(4), 904-927.

See Also

lvm, var1, dlvm1

Examples

Load bfi data from psych package:
library("psychTools")
data(bfi)

Also load dplyr for the pipe operator:
library("dplyr")

Let's take the agreeableness items, and gender:

82 varcov

ConsData <- bfi %>%
select(A1:A5, gender) %>%
na.omit # Let's remove missingness (otherwise use Estimator = "FIML)

Define variables:
vars <- names(ConsData)[1:5]

Saturated estimation:
mod_saturated <- ggm(ConsData, vars = vars)

Run the model:
mod_saturated <- mod_saturated %>% runmodel

We can look at the parameters:
mod_saturated %>% parameters

Labels:
labels <- c(

"indifferent to the feelings of others",
"inquire about others' well-being",
"comfort others",
"love children",
"make people feel at ease")

Plot CIs:
CIplot(mod_saturated, "omega", labels = labels, labelstart = 0.2)

We can also fit an empty network:
mod0 <- ggm(ConsData, vars = vars, omega = "empty")

Run the model:
mod0 <- mod0 %>% runmodel

We can look at the modification indices:
mod0 %>% MIs

To automatically add along modification indices, we can use stepup:
mod1 <- mod0 %>% stepup

Let's also prune all non-significant edges to finish:
mod1 <- mod1 %>% prune

Look at the fit:
mod1 %>% fit

Compare to original (baseline) model:
compare(baseline = mod0, adjusted = mod1)

We can also look at the parameters:
mod1 %>% parameters

varcov 83

Or obtain the network as follows:
getmatrix(mod1, "omega")

Index

∗ classes
psychonetrics-class, 58

∗ datasets
Jonas, 29
StarWars, 64

addfit (psychonetrics_update), 60
addMIs (psychonetrics_update), 60
addSEs (psychonetrics_update), 60

bifactor, 5
bootstrap, 6, 16, 34, 51

changedata, 6
cholesky (varcov), 78
CIplot, 7
compare, 9
corr (varcov), 78
cov, 7, 15
covML, 10
covMLtoUB (covML), 10
covUBtoML (covML), 10

diagonalizationMatrix
(duplicationMatrix), 17

dlvm1, 4, 11, 18, 19, 47, 52, 76, 81
duplicationMatrix, 17

eliminationMatrix (duplicationMatrix),
17

emergencystart, 18
esa, 18
esa_manual (esa), 18

factorscores, 19
fit, 20, 53, 66
fixpar, 21
freepar (fixpar), 21

generate, 22
getmatrix, 22

getVCOV, 24
ggm (varcov), 78
groupequal, 24
groupfree (groupequal), 24
gvar (var1), 73

identify (psychonetrics_update), 60
intersectionmodel (unionmodel), 72
Ising, 25

Jonas, 29

latentgrowth, 30
lnm (lvm), 31
lrnm (lvm), 31
lvm, 4, 5, 30, 31, 47, 76, 81

meta_ggm (meta_varcov), 42
meta_varcov, 42
MIs, 46
ml_gvar (ml_tsdlvm1), 52
ml_lnm (ml_lvm), 47
ml_lrnm (ml_lvm), 47
ml_lvm, 47
ml_rnm (ml_lvm), 47
ml_ts_lvgvar (ml_tsdlvm1), 52
ml_tsdlvm1, 52
ml_var (ml_tsdlvm1), 52
modelsearch, 53

panel_lvgvar (dlvm1), 11
panelgvar (dlvm1), 11
panelvar (dlvm1), 11
parameters, 54
parequal, 55
partialprune, 56
plot.esa (esa), 18
plot.esa_manual (esa), 18
prec (varcov), 78
precision (varcov), 78
print.esa (esa), 18

84

INDEX 85

print.esa_manual (esa), 18
print.psychonetrics_compare (compare), 9
prune, 54, 56, 57, 67
psychonetrics (psychonetrics-package), 3
psychonetrics-class, 5–7, 16, 21, 25, 30,

35, 45, 51, 53, 56, 57, 58, 60, 61, 63,
64, 66, 71, 73

psychonetrics-package, 3
psychonetrics_update, 60

resid,psychonetrics-method
(psychonetrics-class), 58

residuals,psychonetrics-method
(psychonetrics-class), 58

rnm (lvm), 31
runmodel, 53, 57, 61, 66

setestimator, 62
setoptimizer (setestimator), 62
setverbose, 63
show,psychonetrics-method

(psychonetrics-class), 58
simplestructure, 48, 64
StarWars, 64
stepup, 54, 58, 65

ts_lvgvar (tsdlvm1), 67
tsdlvm1, 4, 67

unionmodel, 72
usecpp (setestimator), 62

var1, 4, 73, 81
varcov, 4, 76, 78

	psychonetrics-package
	bifactor
	bootstrap
	changedata
	CIplot
	compare
	covML
	dlvm1
	duplicationMatrix
	emergencystart
	esa
	factorscores
	fit
	fixpar
	generate
	getmatrix
	getVCOV
	groupequal
	Ising
	Jonas
	latentgrowth
	lvm
	meta_varcov
	MIs
	ml_lvm
	ml_tsdlvm1
	modelsearch
	parameters
	parequal
	partialprune
	prune
	psychonetrics-class
	psychonetrics_update
	runmodel
	setestimator
	setverbose
	simplestructure
	StarWars
	stepup
	tsdlvm1
	unionmodel
	var1
	varcov
	Index

