rtsdata

Efficient Data Storage system for R Time Series.

The rtsdata package simplifies the management of Time Series in R. This package overwrites the getSymbols function from quantmod package to allow for minimal code changes to get started. The rtsdata package provides functionality to download and store historical time series.

The download functionality will intelligently update historical data as needed. The incremental data is downloaded first to updated historical data. The full history is only downloaded if incremental data is not consistent. I.e. the last saved record is different from the first downloaded record.

The following download plugins are currently available:

The download functionality plugins are easily created. The user needs to provide a function to download historical data with ticker, start, and end dates parameters to create new download plugin.

The storage functionality provides a consistent interface to store historical time series.
The following storage plugins are currently available:

The storage functionality plugins are easily created. The user needs to provide a functions to load and save data to create new storage plugin.

Installation:

To install the development version run following code:

remotes::install_bitbucket("rtsvizteam/rtsdata")

The CRAN version coming soon.

Example : Basic usage

    # load `rtsdata` package
    library(rtsdata)

    # tickers to load data
    env = new.env()
    Symbols = c('spy','aapl','ibm')
    
    # download data
    getSymbols(Symbols, env, src = 'yahoo', from = '2018-01-01', to = '2018-02-13', verbose=TRUE)

    print(env$SPY)

    # update data - only the missing, recent, data is downloaded
    getSymbols(Symbols, env, src = 'yahoo', from = '2018-01-01', verbose=TRUE)

    print(env$SPY)

    # data is stored in the 'yahoo_Rdata' folder at the following location
    # defaults to the temp directory
    #
    # you can overwrite default location by setting 'RTSDATA_FOLDER' option
    #   
    # good practice is not to store this setting inside the script files,
    # for example, add options(RTSDATA_FOLDER='C:/Data') line to the .Rprofile to 
    # use 'C:/Data' folder.
    ds.default.location()

Example : use CSV storage

    # load `rtsdata` package
    library(rtsdata)

    # tickers to load data
    env = new.env()
    Symbols = c('spy','aapl','ibm')

    # change the 'yahoo' data source to use CSV files to store historical data
    # data is stored in the 'yahoo_csv' folder
    register.data.source(src = 'yahoo', storage = ds.storage.file.csv())

    getSymbols(Symbols, env, src = 'yahoo', from = '2018-01-01')
    
    print(env$SPY)

    # CSV files are stored in the 'yahoo_csv' folder at the following location  
    ds.default.location()

Example : use external data in CSV format

Suppose there is an external stock downloader that stores data at the ‘C:/Data/stocks’ folder in the the CSV format. The updates are done by the external stock downloader.

    # load `rtsdata` package
    library(rtsdata)

    # tickers to load data
    env = new.env()
    Symbols = c('spy','aapl','ibm')

    # change the 'yahoo' data source to use CSV files to store historical data
    # data is stored in the 'C:/Data/stocks' folder 
    # and disable check for updates
    register.data.source(src = 'custom', 
        storage = ds.storage.file.csv('C:/Data/stocks', custom.folder = TRUE),
        functionality = ds.functionality.default(check.update = FALSE)
    )

    getSymbols(Symbols, env, src = 'custom', from = '2018-01-01')
    
    print(env$SPY)

Example : use holiday calendar to skip checking for data updates on holidays

    # load `rtsdata` package
    library(rtsdata)

    # tickers to load data
    env = new.env()
    Symbols = c('spy','aapl','ibm')

    
    # The `RQuantLib` package must be available for this functionality
    # please specify `RQuantLib`'s holiday calendar
    getSymbols(Symbols, env, src = 'yahoo', from = '2018-01-01', calendar = 'UnitedStates/NYSE')
    
    print(env$SPY)

Example : get data from FRED

    # load `rtsdata` package
    library(rtsdata)

    # tickers to load data
    env = new.env()
    Symbols = 'DTB3'

    # get data from FRED
    # data is stored in the 'FRED_Rdata' folder
    getSymbols(Symbols, env, src = 'FRED', from = '2018-01-01')

    print(env$DTB3)

Example : use MongoDB storage

If you do not have MongoDB installed, the good tutorial to start using MongoDB on Windows: Install, setup and start MongoDB on Windows

    show dbs
    # In the clean install, you expected to see 
    # admin  0.000GB
    # local  0.000GB

    use data_storage
    show collections
    # load `rtsdata` package
    library(rtsdata)

    # tickers to load data
    env = new.env()
    Symbols = c('spy','aapl','ibm')
    
    
    # data is stored in the 'data_storage' database at the following location
    # defaults to the 'mongodb://localhost' URI
    #
    # you can overwrite default location by setting 'RTSDATA_DB' option
    #       
    # good practice is not to store this setting inside the script files. 
    # add options(RTSDATA_DB='mongodb://localhost') line to the .Rprofile to use 'mongodb://localhost' URI.
    

    
    # change the 'yahoo' data source to use MongoDB to store historical data
    register.data.source(src = 'yahoo', storage = ds.storage.database())
    
    # download data and save in MongoDB
    getSymbols(Symbols, env, src = 'yahoo', from = '2018-01-01')

    print(env$SPY)

Example : use MongoDB storage with authentication

It is a good idea to secure your database. Sample steps to add authentication to MongoDB:

    # For example, create a superuser with username 'user12' and password 'secret12'
    use admin
    db.createUser({user:"user12",pwd:"secret12", roles:[{role:"root",db:"admin"}]})
    show dbs
    # In the clean install, you expected to see 
    # admin  0.000GB
    # data_storage  0.000GB
    # local  0.000GB
    
    use data_storage
    show collections
    # load `rtsdata` package
    library(rtsdata)

    # tickers to load data
    env = new.env()
    Symbols = c('spy','aapl','ibm')


    # change the 'yahoo' data source to use MongoDB to store historical data
    register.data.source(src = 'yahoo', storage = ds.storage.database('mongodb://user12:secret12@localhost'))

    # download data and save in MongoDB
    getSymbols(Symbols, env, src = 'yahoo', from = '2018-01-01', to = '2018-02-13')

    print(env$SPY)
    
    # update data - only the missing, recent, data is downloaded
    getSymbols(Symbols, env, src = 'yahoo', from = '2018-01-01')
    
    print(env$SPY)  

To-do: Consider other storage formats